时间序列模型分析的各种stata命令.

合集下载

stata操作介绍之时间序列-四

stata操作介绍之时间序列-四

ARIMA模型
dfuller 检验: . dfuller fylltemp, lag(3)
说明:P值为0.089,大于0.05,故不能拒绝原假设,说明该 变量满足稳定性检验;
ARIMA模型
dfgls检验: . dfgls fylltemp, maxlag(3) notrend
说明:P值为0.0,小于0.05,故拒绝原假设,说明该变量不 满足稳定性检验;
说明:由上图可知,常数项与一期滞后变量系数都是统计显 著的,卡方检验也显著。
ARIMA模型
生成残差: . predict fylres, res . corrgram fylres ,lags(9)
说明:由图可知,统计量对应的P值为0.6574,不能拒绝原 假设,即认为残差不存在自相关。因此,认为变量fylltemp 使用AR(1)进行分析是合适的。
平滑分析
生成移动平均值(1):
. gen water3=(water[ _n-1]+water[ _n]+water[ _n+1])/3
平滑分析
生成移动平均值(2): . tssmooth ma water5=water,window(2 1 2)
注:tssmooth:表示移动平均值平滑(加权或不加权); window(2 1 2):表示使用该值的前两个值、该值与该值的
说明:由图可知,lag为0时,交叉相关性最强(线条最长), 且为负。
自相关分析
交叉相关表: . xcorr wNAO fylltemp if year >=1970 & year <=1990,lags(7) table
ARIMA模型
时间序列中的自相关集成移动平均模型 (autoregressive integrated moving average简称 ARIMA),是指将非平稳时间序列转化为平稳时间 序列,然后将因变量仅对它的滞后值以及随机误差 项的现值和滞后值进行回归所建立的模型。

stata中tsset的用法

stata中tsset的用法

Stata中tsset的用法Stata是一款广泛用于数据分析和统计建模的软件,而tsset是Stata 中用于时间序列数据处理的一个非常重要的命令。

对于经济学、金融学等领域的研究者来说,tsset命令的熟练掌握是必不可少的。

本文将针对Stata中tsset命令的使用方法进行详细的介绍,帮助读者更好地理解和运用tsset命令。

一、tsset命令的基本概念1. 什么是tsset命令tsset命令是Stata中用于设置时间序列数据格式和处理面板数据的命令。

通过使用tsset命令,用户可以将数据按照时间序列的格式进行整理和处理,便于后续的时间序列分析和建模。

tsset命令在Stata中有着广泛的应用,对于面板数据的处理也有着非常重要的作用。

2. tsset命令的作用通过使用tsset命令,用户可以将数据集中的时间变量和交叉截面变量识别出来,并设置Stata对这些变量进行时间序列数据处理。

这样一来,用户可以在Stata中轻松地进行时间序列数据的分析和建模,而不用担心数据格式和结构的问题。

3. tsset命令的基本格式在Stata中,tsset命令的基本格式为:tsset timevar [panelvar]其中,timevar表示时间变量,panelvar表示交叉截面变量。

用户可以根据自己的数据特点进行相应的设置,以满足具体的分析需求。

二、tsset命令的具体用法1. 时间变量的设置在使用tsset命令时,首先需要设置时间变量。

时间变量通常代表数据集中的时间序列,可以是年份、季度、月份等。

用户需要确保时间变量的格式正确,并且覆盖了整个时间序列的范围。

2. 交叉截面变量的设置除了时间变量,有些数据集还包含了交叉截面变量,代表了不同个体或单位。

在设置tsset命令时,用户也需要考虑是否有交叉截面变量,以便正确地识别数据的面板结构。

3. 基本的tsset命令设置在Stata中,用户可以通过简单的命令设置来调用tsset命令,例如:tsset year这条命令表示将数据集中的年份变量作为时间变量,没有交叉截面变量。

stata操作介绍之时间序列分析

stata操作介绍之时间序列分析

【例1】使用文件“cpi.dta”的数据来对tsset命令的应用 进行说明。该例子是我国1983年1月年至2007年8月的居 民消费价格指数CPI。部分数据如表2所示: 表2 我国居民消费价格指数CPI Year
1983 1983 1983 1983 1983 1983 1983
month
daily weekly monthly quarterly harfyearly yearly generic format(%fmt) 时间周期 delta(#) delta((exp)) delta(#units) delta((exp)units)
注:(1)units表示时间单位,对于%tc,允许的时间单位包括:second、seconds、secs、secs、 minutes、minute、mine、min、hours、hour、days、weeks、week。对于其他%t的格式,Stata自动 获得其时间单位,delta选项经常与%tc格式一起使用。 STATA从入门到精通 Page 4
【例2】继续使用上例的数据来对tssmooth命令的应用进 行说明。在本例中对该组数据进行修匀,以便消除不规则 变动的影响,得到时间序列长期趋势,本例修匀的方法是 利用之前的1个月和之后的2个月及本月进行平均。
Page 9
STATA从入门到精通
二、
ARIMA模型的估计、单位根与协整
时间序列模型一般分为四类,分别是自回归过程、移动平均过程、自 回归移动平均过程、单整自回归移动平均过程。 自回归过程 如果一个剔出均值和确定性成分的线性过程可表达为 xt = 1xt-1 + 2 xt-2 + … + p xt-p + ut 其中i, i = 1, … p 是自回归参数,ut 是白噪声过程,则称xt为p阶自 回归过程,用AR(p)表示。xt是由它的p个滞后变量的加权和以及ut相 加而成。

stata命令大全(全)

stata命令大全(全)
*--> R-sq: overall corr{x_it*b_w,y_it}A2
*
*-- F(4,373) = 855.93检验除常数项外其他解释变量的联合显著性
*-- corr(u_i, Xb)=-0.2347
*-- sigma_u, sigma_e, rho
* rho = sigma_uA2/(sigma_uA2+sigma_eA2)
*空间计量分析:SLM模型与SEM模型
*说明:STATA与Matlab结合使用。常应用于空间溢出效应(R&D)、财政 分权、地方政府公共行为等。
、常用的数据处理与作图
*指定面板格式
xtset id year(id为截面名称,year为时间名称)
xtdes /*数据特征*/
xtsum logy h /*数据统计特征*/
drop if id==2/*注意用==*/
*如何得到连续year或id编号(当完成上述操作时, 为形成panel格式,需要用egen命令)
ege n year_ new二group(year)
xtset id year_ new
**保留变量或保留观测值
keep inv /*删除变量*/
**或
keep if year==2000
dis e(sigma_u)A2/(e(sigma_u)A2+e(sigma_e)A2)
个体效应是否显著?
*F(28,373) =338.86 HO: al=a2 = a3 = a4 = a29
*Prob > F = 0.0000表明,固定效应高度显著
*---如何得到调整后的R2即adj-R2?
ereturn list
考虑中国29个省份的C-D生产函数

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

时间序列模型分析报告地各种stata命令

时间序列模型分析报告地各种stata命令

时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。

在一些大规模的联立方程中,情况更是如此。

而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。

从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。

本章将介绍如下时间序列分析方法,ARIMA模型、ARCH 族模型、VAR模型、VEC模型、单位根检验及协整检验等。

一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96.dta, clearlist in 1/20gen Lgnp = L.gnptsset datelist in 1/20gen Lgnp = L.gnp2)检查是否有断点:tsreport, reportuse gnp96.dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96.dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L.gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1.2变量的生成与处理1)滞后项、超前项和差分项help tsvarlist use gnp96.dta, cleartsset dategen Lgnp = L.gnp96 /*一阶滞后*/gen L2gnp = L2.gnp96gen Fgnp = F.gnp96 /*一阶超前*/gen F2gnp = F2.gnp96gen Dgnp = D.gnp96 /*一阶差分*/gen D2gnp = D2.gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D.lngnpgen growth2 = (gnp96-L.gnp96)/L.gnp96gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101.3日期的处理日期的格式help tsfmt基本时点:整数数值,如-3, -2, -1, 0, 1, 2, 3 ....1960年1月1日,取值为0;显示格式:1)使用tsset 命令指定显示格式use B6_tsset.dta, cleartsset t, dailylistuse B6_tsset.dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式%d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ . , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写) M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年(1 or 2)q 一年中的第几季度(1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格). display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point)样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY.q 1999.2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920.dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1 tsset newmonth, monthlylist year month time newmonth in 1/301.4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0.7 0.2) nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _ttsline ar2 ma2* 亦可采用twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) ///ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert)) 3)例3:增加两条纵向的标示线sysuse tsline2, cleartsset daytsline calories, tline(28nov2002 25dec2002) * 或采用 twoway line 命令 local d1 = d(28nov2002) local d2 = d(25dec2002) line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)") tsline calories, tlabel(, format(%td))二、ARIMA 模型和SARMIA 模型ARIMA 模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。

与时间序列相关的STATA-命令及其统计量的解析

与时间序列相关的STATA-命令及其统计量的解析

与时间序列相关的STATA 命令及其统计量的解析残差U 序列相关:①DW 统计量——针对一阶自相关的(高阶无效)STATA 命令:1.先回归2.直接输入dwstat统计量如何看:查表②Q 统计量——针对高阶自相关correlogram-Q-statisticsSTATA 命令:1.先回归reg2.取出残差predict u,residual(不要忘记逗号)3. wntestq u Q统计量如何看:p 值越小(越接近0)Q 值越大——表示存在自相关具体自相关的阶数可以看自相关系数图和偏相关系数图:STATA 命令:自相关系数图:ac u( 残差) 或者窗口操作在 Graphics ——Time-series graphs —— correlogram(ac) 偏相关系数图:pac u 或者窗口操作在Graphics——Time-series graphs—— (pac)自相关与偏相关系数以及Q 统计量同时表示出来的方法:corrgram u或者是窗口操作在Statistics——Time-series——Graphs——Autocorrelations&Partial autocorrelations③LM 统计量——针对高阶自相关STATA 命令:1.先回归reg2.直接输入命令estate bgodfrey,lags(n) 或者窗口操作在 Statistics——Postestimation(倒数第二个)——Reports and Statistics(倒数第二个) ——在里面选择 Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)LM 统计量如何看:P 值越小(越接近 0)表示越显著(显著拒绝原假设),存在序列相关具体是几阶序列相关,你可以把滞后期写为几,当然默认是 1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。

stata操作介绍之时间序列分析

stata操作介绍之时间序列分析
时间单位,或者定义时间周期(即timevar两个观测值之间 的周期数)。Options的相关描述如表1所示。
时间单位
格式说明
Clocktime
daily weekly monthly quarterly harfyearly yearly generic format(%fmt) 时间周期
timevar的格式为%tc, 0=1jan1960 00:00:00.000,1=1jan1960 00:00:00.001 即0代表1960年1月1日的第一秒,1为1960年1月1日的第二秒,依次后推。 timevar的格式为%td,0=1jan1960,1=2jan1960;即0为1960年第一天,1 为1960年第二天,依次后推。 timevar的格式为%tw,0=1960w1,1=1960w2;即0为1960年第一周,1 为1960年第二周,依次后推。 timevar的格式为%tm,0=1,1=;即0为1960年第一月,1为1960年第二 月,依次后推。 timevar的格式为%tq,0=1960q1,1=1960q2;即0为1960年第一季,1为 1960年第二季,依次后推。 timevar的格式为%th,0=1960h1,1=1960h2;即0为从1960起的第一个半 年,1为从1960年起第二个半年,依次后推。 timevar的格式为%ty,1960=1960,1961=1960 timevar的格式为%tg
数据=修匀部分+粗糙部分,运用Stata进行修匀使用 tssmooth命令,其基本命令格式如下所示:
tssmooth smoother[type] newvar = exp [if] [in] [, ...]
其中平s滑mo的o种t类her[type]有一系sm列oo目ther录[ty,pe]如下表3所示:

stata命令总结

stata命令总结

stata命令总结.docStata命令总结引言Stata是一款强大的统计分析软件,广泛应用于经济学、社会学、医学等领域。

Stata命令是进行数据处理、统计分析、图形展示等操作的基础。

本文将对Stata中常用的命令进行总结,以帮助用户更高效地使用Stata进行数据分析。

Stata基础命令1. 数据管理导入数据:import excel, import delimited导出数据:export excel, export delimited数据集保存:save, saveold2. 变量管理创建变量:generate, egen修改变量:replace删除变量:drop3. 数据清洗数据类型转换:destring, encode, format缺失值处理:mvdecode, drop if missing()异常值检测:tabulate, summarize描述性统计分析1. 基本统计量描述性统计:summarize频率统计:tabulate相关系数:correlate2. 分组统计分组描述:bysort, xtsum 分组汇总:collapse3. 数据转换数据长格式:reshape long 数据宽格式:reshape wide 推断性统计分析1. 假设检验t检验:ttest方差分析:anova卡方检验:tabulate, chi2 2. 回归分析线性回归:regress逻辑回归:logit泊松回归:poisson3. 时间序列分析时间序列描述:tsreport自回归模型:arima高级统计分析1. 面板数据分析面板数据描述:xtset, xtsum固定效应模型:xtreg fe随机效应模型:xtreg re2. 多层次模型多层次线性模型:xtmelogit3. 结构方程模型结构方程模型:sem绘图与可视化1. 基本图形散点图:scatter线图:line柱状图:bar2. 高级图形箱线图:boxplot直方图:histogram核密度估计图:kdensity3. 交互式图形交互式图形:twoway, graph edit编程与自动化1. 循环与条件语句循环:foreach, forvalues条件语句:if, else2. 脚本与批处理脚本编写:do-file批处理:batch3. 宏与用户定义命令宏:macro用户定义命令:program define结语Stata命令的掌握是进行高效数据分析的前提。

stata中garch模型命令

stata中garch模型命令

stata中garch模型命令Stata中的GARCH模型命令GARCH模型是一种常用的用于建模金融时间序列数据的经济学模型,它可以有效地捕捉到金融市场中存在的波动群集现象。

在Stata 软件中,我们可以使用一些命令来拟合GARCH模型,并对金融时间序列数据进行预测和分析。

一、引言金融市场中的波动性一直是投资者和研究人员关注的重要问题。

传统的时间序列模型,如ARMA模型,往往无法捕捉到金融市场中存在的波动群集现象。

GARCH模型的提出解决了这个问题,它通过引入条件异方差性,能够更好地描述金融时间序列数据的波动特征。

二、GARCH模型简介GARCH模型是由Engle于1982年提出的,它是一种用于建模条件异方差性的时间序列模型。

GARCH模型由两个方程组成:条件均值方程和条件方差方程。

条件均值方程描述了时间序列数据的平均水平,通常使用ARMA模型来表示。

条件方差方程则描述了时间序列数据的波动性,通常使用ARCH模型来表示。

GARCH模型在ARCH模型的基础上引入了过去时刻波动的平方作为额外的解释变量,从而能够更好地描述条件方差的变化。

三、Stata中的GARCH模型命令在Stata中,我们可以使用命令“arch”来拟合GARCH模型。

该命令的基本语法如下:arch depvar [indepvars] [, options]其中,“depvar”表示被解释变量,即时间序列数据;“indepvars”表示解释变量,即过去时刻波动的平方;“options”为可选参数,用于指定GARCH模型的具体设定。

在使用该命令时,我们需要指定GARCH模型的阶数,即ARCH阶数和GARCH阶数。

可以通过设置“p”和“q”参数来设定。

例如,设置“p=1”和“q=1”表示拟合一个ARCH(1)GARCH(1)模型。

我们还可以使用命令“garch”来拟合GARCH模型。

该命令的基本语法如下:garch depvar [indepvars] [, options]与“arch”命令类似,该命令也需要指定GARCH模型的阶数。

stata第六讲

stata第六讲
• ARIMA(p,d,q)模型,季节ARMA • ARMA(p,q)模型不一定是平稳时间序列模型,
如果ARMA(p,q)是不平稳的,经过d阶单整 (差分)后成为平稳模型,称为 ARIMA(p,d,q)。单整后可以用一个 ARMA(p,q)模型作为它的生成模型的。 • 下载外部命令: • Findit sim_arma
Stata 第六讲
时间序列
一、 基本命令介绍
1、时间序列的定义 • STATA命令: tsset timevar • 其中,timevar为你要定义的时间变量名 • eg: gen t=_n 表示新建一个变量,取值为
1,2,……n • 打开 gdp.dta • tsset year表示将变量year设置为时间变量
p、q阶数的确定
比较信息准则AIC、BIC,约小越好。 •ቤተ መጻሕፍቲ ባይዱ1。假定为ARIMA(1,1,1),创建模型方程: • arima logmr, arima(1,1,1) 或者
arima d_logmr, ar(1) ma(1) • 列示信息准则 • estat ic
• 2。假定为ARIMA(1,1,2),创建模型方程: • arima d_logmr, ar(1) ma(2) • estat ic • 3。假定为ARIMA(2,1,1),创建模型方程: • arima d_logmr, ar(2) ma(1) • estat ic • 4。假定为ARIMA(2,1,2),创建模型方程: • arima d_logmr, ar(2) ma(2) • estat ic • 应该是一个ARIMA(1,1,1)模型 • AIC BIC 越小越好!
• 其基本思想是,如果多个单位根序列拥有 “共同的随机趋势”,则可以对这些变量 做线性组合而消去此随机趋势

时间序列模型分析的各种stata命令

时间序列模型分析的各种stata命令

时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。

在一些大规模的联立方程中,情况更是如此。

而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。

从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。

本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。

一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96.dta, clearlist in 1/20gen Lgnp = L.gnptsset datelist in 1/20gen Lgnp = L.gnp2)检查是否有断点:tsreport, reportuse gnp96.dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/ 3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96.dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/ list in -10/-1sum5)应用:样本外预测: predictreg gnp.gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1.2变量的生成与处理1)滞后项、超前项和差分项 help tsvarlist use gnp96.dta, cleartsset dategen Lgnp = L.gnp96 /*一阶滞后*/gen L2gnp = L2.gnp96gen Fgnp = F.gnp96 /*一阶超前*/gen F2gnp = F2.gnp96gen Dgnp = D.gnp96 /*一阶差分*/gen D2gnp = D2.gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D.lngnpgen growth2 = (gnp96-L.gnp96)/L.gnp96gen diff = growth - growth2 /*表明对数差分和变量的增长率差别很小*/list date gnp96 lngnp growth* diff in 1/101.3日期的处理日期的格式 help tsfmt基本时点:整数数值,如 -3, -2, -1, 0, 1, 2, 3 ....,取值为 0;显示格式:1)使用 tsset 命令指定显示格式use B6_tsset.dta, cleartsset t, dailylistuse B6_tsset.dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1 format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式 %d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目xx:“<描述特定的显示格式>”中可包含如下字母或字符c y m l n d j h q w _ . , : - / ' !cC Y M L ND JW定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0) m三个英文字母的月份简写(第一个字母大写)M英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h一年中的第几半年 (1 or 2)q一年中的第几季度 (1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_display a blank (空格).display a period(句号),display a comma(逗号):display a colon(冒号)-display a dash (短线)/display a slash(斜线)'display a close single quote(右引号)!cdisplay character c (code !! to display an exclamation point)样式1:FormatSample date in format-----------------------------------%td07jul1948%tdM_d,_CYJuly 7, 1948%tdY/M/D%tdM-D-CY%tqCY.q1999.2%tqCY:q1992:2%twCY,_w2010, 48-----------------------------------样式2:FormatSample date in format----------------------------------%d11jul1948%dDlCY11jul1948%dDlY11jul48%dM_d,_CYJuly 11, 1948%dd_M_CY11 July 1948%dN/D/Y%dD/N/Y%dY/N/D%dN-D-CY----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /**/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920.dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1tsset newmonth, monthlylist year month time newmonth in 1/301.4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0.7 0.2) nobs(200)sim_arma ma2, ma(0.7 0.2)tsset _ttsline ar2 ma2* 亦可采用 twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) /// ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert))3)例3:增加两条纵向的标示线sysuse tsline2, cleartsset daytsline calories, tline(28nov2002 25dec2002)* 或采用 twoway line 命令local d1 = d(28nov2002)local d2 = d(25dec2002)line calories day, xline(`d1' `d2')4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)")tsline calories, tlabel(, format(%td))二、ARIMA 模型和SARMIA模型ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的来近似描述这个序列。

协整检验stata命令

协整检验stata命令

协整检验stata命令
协整检验是时间序列分析中的一项重要技术,用于判断两个或多个时间序列之间是否存在长期均衡关系。

Stata是一种常用的统计分析软件,支持协整检验的命令有多种。

下面介绍其中两个常用命令:coint和dfuller。

1. coint命令
coint命令用于进行协整检验,其基本语法为:coint y1 y2 [if] [in] [weight], lags(n)
其中,y1和y2分别表示待检验的两个时间序列;if和in为数据筛选条件;weight为数据加权方式;lags(n)为协整检验的滞后阶数。

例如,要检验两个变量x和y是否存在协整关系,可以使用以下命令:
coint x y, lags(2)
其中,lags参数指定为2,表示使用2个滞后阶数进行协整检验。

如果结果显示存在协整关系,则可以继续进行向量误差修正模型(VECM)分析。

2. dfuller命令
dfuller命令也可以用于协整检验,其基本语法为:dfuller y1 y2 [if] [in] [weight]
其中,y1和y2同样表示待检验的两个时间序列;if和in为数据筛选条件;weight为数据加权方式。

例如,要检验两个变量a和b是否存在协整关系,可以使用以下命令:
dfuller a b
如果结果显示存在协整关系,则可以继续进行VECM分析。

需要注意的是,协整检验的结果可能受到多种因素的影响,包括样本大小、协整检验的滞后阶数、序列平稳性等。

因此,在进行协整检验时,需要谨慎选择参数,并结合实际情况进行判断。

时间序列模型分析的各种stata命令

时间序列模型分析的各种stata命令

时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。

在一些大规模的联立方程中,情况更就是如此。

而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。

从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象与过程控制等领域。

本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。

一、基本命令1、1时间序列数据的处理1)声明时间序列:tsset 命令use gnp96、dta, clearlist in 1/20gen Lgnp = L、gnptsset datelist in 1/20gen Lgnp = L、gnp2)检查就是否有断点:tsreport, reportuse gnp96、dta, cleartsset datetsreport, reportdrop in 10/10list in 1/12tsreport, reporttsreport, report list /*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport, report listlist in 1/124)追加样本:tsappenduse gnp96、dta, cleartsset datelist in -10/-1sumtsappend , add(5) /*追加5个观察值*/list in -10/-1sum5)应用:样本外预测: predictreg gnp96 L、gnp96predict gnp_hatlist in -10/-16)清除时间标识: tsset, cleartsset, clear1、2变量的生成与处理1)滞后项、超前项与差分项 help tsvarlistuse gnp96、dta, cleartsset dategen Lgnp = L、gnp96 /*一阶滞后*/gen L2gnp = L2、gnp96gen Fgnp = F、gnp96 /*一阶超前*/gen F2gnp = F2、gnp96gen Dgnp = D、gnp96 /*一阶差分*/gen D2gnp = D2、gnp96list in 1/10list in -10/-12)产生增长率变量: 对数差分gen lngnp = ln(gnp96)gen growth = D、lngnpgen growth2 = (gnp96-L、gnp96)/L、gnp96gen diff = growth - growth2 /*表明对数差分与变量的增长率差别很小*/ list date gnp96 lngnp growth* diff in 1/101、3日期的处理日期的格式 help tsfmt基本时点:整数数值,如 -3, -2, -1, 0, 1, 2, 3 、、、、1960年1月1日,取值为 0;1)使用use B6_tsset、dta, cleartsset t, dailylistuse B6_tsset、dta, cleartsset t, weeklylist2)指定起始时点cap drop monthgenerate month = m(1990-1) + _n - 1format month %tmlist t month in 1/20cap drop yeargen year = y(1952) + _n - 1format year %tylist t year in 1/203)自己设定不同的显示格式日期的显示格式 %d (%td) 定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符c y m l nd j h q w _ 、 , : - / ' !cC Y M L ND J W定义如下:c and C 世纪值(个位数不附加/附加0)y and Y 不含世纪值的年份(个位数不附加/附加0)m 三个英文字母的月份简写(第一个字母大写)M 英文字母拼写的月份(第一个字母大写)n and N 数字月份(个位数不附加/附加0)d and D 一个月中的第几日(个位数不附加/附加0)j and J 一年中的第几日(个位数不附加/附加0)h 一年中的第几半年 (1 or 2)q 一年中的第几季度 (1, 2, 3, or 4)w and W 一年中的第几周(个位数不附加/附加0)_ display a blank (空格)、 display a period(句号), display a comma(逗号): display a colon(冒号)- display a dash (短线)/ display a slash(斜线)' display a close single quote(右引号)!c display character c (code !! to display an exclamation point) 样式1:Format Sample date in format-----------------------------------%td 07jul1948%tdM_d,_CY July 7, 1948%tdY/M/D 48/07/11%tdM-D-CY 07-11-1948%tqCY、q 1999、2%tqCY:q 1992:2%twCY,_w 2010, 48-----------------------------------样式2:Format Sample date in format----------------------------------%d 11jul1948%dDlCY 11jul1948%dDlY 11jul48%dM_d,_CY July 11, 1948%dd_M_CY 11 July 1948%dN/D/Y 07/11/48%dD/N/Y 11/07/48%dY/N/D 48/07/11%dN-D-CY 07-11-1948----------------------------------clearset obs 100gen t = _n + d(13feb1978)list t in 1/5format t %dCY-N-D /*1978-02-14*/list t in 1/5format t %dcy_n_d /*1978 2 14*/list t in 1/5use B6_tsset, clearlisttsset t, format(%twCY-m)list4)一个实例:生成连续的时间变量use e1920、dta, clearlist year month in 1/30sort year monthgen time = _ntsset timelist year month time in 1/30generate newmonth = m(1920-1) + time - 1tsset newmonth, monthlylist year month time newmonth in 1/301、4图解时间序列1)例1:clearset seed 13579113sim_arma ar2, ar(0、7 0、2) nobs(200)sim_arma ma2, ma(0、7 0、2)tsset _ttsline ar2 ma2* 亦可采用 twoway line 命令绘制,但较为繁琐twoway line ar2 ma2 _t2)例2:增加文字标注sysuse tsline2, cleartsset daytsline calories, ttick(28nov2002 25dec2002, tpos(in)) /// ttext(3470 28nov2002 "thanks" ///3470 25dec2002 "x-mas", orient(vert)) 3)例3:增加两条纵向的标示线 sysuse tsline2, clear tsset daytsline calories, tline(28nov2002 25dec2002) * 或采用 twoway line 命令 local d1 = d(28nov2002) local d2 = d(25dec2002)line calories day, xline(`d1' `d2') 4)例4:改变标签tsline calories, tlabel(, format(%tdmd)) ttitle("Date (2002)") tsline calories, tlabel(, format(%td))二、ARIMA 模型与SARMIA 模型ARIMA 模型的基本思想就是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。

sac模型的stata命令 解释说明以及概述

sac模型的stata命令 解释说明以及概述

sac模型的stata命令解释说明以及概述1. 引言1.1 概述本文将介绍和解释SAC模型(Switching Autoregressive Conditional Heteroskedasticity Model)在STATA软件中的实现方法和命令。

SAC模型是一种时间序列模型,用于描述随时间变化的方差结构,并被广泛用于金融领域的风险管理、股价预测等问题。

STATA软件是一种统计分析软件,提供了丰富的命令和功能,可用于各种数据分析任务。

1.2 文章结构本文按照以下顺序组织内容:首先介绍SAC模型的基本概念,包括定义、原理、应用领域以及优势与局限性。

然后简要介绍STATA软件,并详细说明其命令的基本语法和功能。

接下来重点介绍在STATA中实现SAC模型需要使用的相关命令,并解释这些命令的参数含义与使用方法。

随后,将通过案例分析来展示如何使用STATA命令进行SAC模型拟合和参数估计,并对结果进行解读和评价指标分析。

最后,在结论部分总结主要研究发现并提出对SAC模型及在STATA中使用方法的改进建议和展望。

1.3 目的本文的目的是为读者提供一个全面的理解和使用SAC模型在STATA中实现的指南。

通过阅读本文,读者将了解到SAC模型的基本概念、原理和应用领域,并具备在STATA软件中实现SAC模型的能力。

同时,本文还希望通过案例分析和结果解释,展示SAC模型在实际问题中的应用,并引发对于改进和拓展这一模型及其在STATA中使用方法的思考。

2. SAC模型的基本概念2.1 SAC模型定义与原理SAC模型(Stochastic Approach to Chemical Kinetics)是一种用于描述化学反应动力学的统计模型。

它基于概率和统计推断的原理,通过考虑分子碰撞的随机性来建立反应速率方程。

SAC模型认为分子之间的碰撞是随机发生的,而反应速率受到温度、浓度和催化剂等因素的影响。

SAC模型中,化学反应被视为由一系列元反应组成的网络。

时间序列模型分析的各种stata命令

时间序列模型分析的各种stata命令

时间序列模型结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。

在一些大规模的联立方程中,情况更是如此。

而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着BoxandJenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。

从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。

本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。

一、基本命令1.1时间序列数据的处理1)声明时间序列:tsset命令usegnp96.dta,clearlistin1/20genLgnp=L.gnptssetdatelistin1/20genLgnp=L.gnp2)检查是否有断点:tsreport,reportusegnp96.dta,cleartssetdatetsreport,reportdropin10/10listin1/12tsreport,reporttsreport,reportlist/*列出存在断点的样本信息*/3)填充缺漏值:tsfilltsfilltsreport,reportlistlistin1/124)追加样本:tsappendusegnp96.dta,cleartssetdatelistin-10/-1sumtsappend,add(5)/*追加5个观察值*/listin-10/-1sum5)应用:样本外预测:predictreggnp96 L.gnp96predictgnp_hatlistin-10/-16)清除时间标识:tsset,cleartsset,clear1.2变量的生成与处理1)滞后项、超前项和差分项helptsvarlistusegnp96.dta,cleartssetdategenLgnp=L.gnp96/*一阶滞后*/genL2gnp=L2.gnp96genFgnp=F.gnp96/*一阶超前*/genF2gnp=F2.gnp96genDgnp=D.gnp96/*一阶差分*/genD2gnp=D2.gnp96listin1/10listin-10/-12)产生增长率变量:对数差分genlngnp=ln(gnp96)gengrowth=D.lngnpgengrowth2=(gnp96-L.gnp96)/L.gnp96gendiff=growth-growth2/*表明对数差分和变量的增长率差别很小*/ listdategnp96lngnpgrowth*diffin1/101.3日期的处理日期的格式helptsfmt基本时点:整数数值,如-3,-2,-1,0,1,2,3....1960年1月1日,取值为0;1)使用useB6_tsset.dta,cleartssett,dailylistuseB6_tsset.dta,cleartssett,weeklylist2)指定起始时点capdropmonthgeneratemonth=m(1990-1)+_n-1formatmonth%tmlisttmonthin1/20capdropyeargenyear=y(1952)+_n-1formatyear%tylisttyearin1/203)自己设定不同的显示格式日期的显示格式%d(%td)定义如下:%[-][t]d<描述特定的显示格式>具体项目释义:“<描述特定的显示格式>”中可包含如下字母或字符cymlndjhqw_.,:-/'!cCYMLNDJW定义如下:candC世纪值(个位数不附加/附加0)yandY不含世纪值的年份(个位数不附加/附加0)m三个英文字母的月份简写(第一个字母大写)M英文字母拼写的月份(第一个字母大写)nandN数字月份(个位数不附加/附加0)dandD一个月中的第几日(个位数不附加/附加0)jandJ一年中的第几日(个位数不附加/附加0)h一年中的第几半年(1or2)q一年中的第几季度(1,2,3,or4)wandW一年中的第几周(个位数不附加/附加0)_displayablank(空格).displayaperiod(句号),displayacomma(逗号):displayacolon(冒号)-displayadash(短线)/displayaslash(斜线)'displayaclosesinglequote(右引号)!cdisplaycharacterc(code!!todisplayanexclamationpoint) 样式1:FormatSampledateinformat-----------------------------------%td07jul1948%tdM_d,_CYJuly7,1948%tdY/M/D48/07/11%tdM-D-CY07-11-1948%tqCY.q1999.2%tqCY:q1992:2%twCY,_w2010,48-----------------------------------样式2:FormatSampledateinformat----------------------------------%d11jul1948%dDlCY11jul1948%dDlY11jul48%dM_d,_CYJuly11,1948%dd_M_CY11July1948%dN/D/Y07/11/48%dD/N/Y11/07/48%dY/N/D48/07/11%dN-D-CY07-11-1948---------------------------------- clearsetobs100gent=_n+d(13feb1978)listtin1/5formatt%dCY-N-D/*1978-02-14*/listtin1/5formatt%dcy_n_d/*1978214*/listtin1/5useB6_tsset,clearlisttssett,format(%twCY-m)list4)一个实例:生成连续的时间变量usee1920.dta,clearlistyearmonthin1/30sortyearmonthgentime=_ntssettimelistyearmonthtimein1/30 generatenewmonth=m(1920-1)+time-1 tssetnewmonth,monthly listyearmonthtimenewmonthin1/301.4图解时间序列1)例1:clearsetseedsim_armaar2,ar(0.70.2)nobs(200)sim_armama2,ma(0.70.2)tsset_ttslinear2ma2*亦可采用twowayline命令绘制,但较为繁琐twowaylinear2ma2_t2)例2:增加文字标注sysusetsline2,cleartssetdaytslinecalories,ttick(28nov200225dec2002,tpos(in))///ttext(347028nov2002"thanks"///347025dec2002"x-mas",orient(vert))3)例3:增加两条纵向的标示线sysusetsline2,cleartssetdaytslinecalories,tline(28nov200225dec2002)*或采用twowayline 命令locald1=d(28nov2002)locald2=d(25dec2002)linecaloriesday,xline(`d1'`d2')4)例4:改变标签tslinecalories,tlabel(,format(%tdmd))ttitle("Date(2002)")tslinecalories,tlabel(,format(%td))二、ARIMA 模型和SARMIA 模型ARIMA 模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。

时间序列Stata指令

时间序列Stata指令

STATA COMMAND FOR TIME SERIES ANALYSISHow to set time series data:tsset year, yearlyHow to fill missing data for Time Series analysis:ipolate x time, gen(xi) epolateHow to check unit root using Augmented Dikker Fuller test (ADF):ADF unit root test using constantdfuller xADF test for constant and trend:dfuller x, trendWhen a variable has unit root, we take difference as follows:dfuller d.xADF test after differencing for constant and trend:dfuller d.x, trendIf you want to have summary statistics:sum y x1 x2 x3 x4How to run correlation matrix for your data:correlate y x1 x2 x3 x4Command for running regression model:regress y x1 x2 x3 x4If you want to check normality after running regression model, run two commands consecutively:predict myResiduals, rsktest myResidualsAfter regression, you can check for serial correlation using either of the following: dwstat or estat bgodfreyUse the following command for heteroskedasticity test :Prob value below 10% means there is heteroskedasticity problem in the modelestat hottestIf you want to see whether the model is mis-specified or if some variables are omitted: estat ovtestCommand for selecting optimum lags for your model is given below:varsoc y x1 x2 x3 x4, maxlag(4)the asterisk (*) indicates the appropriate lag selectedCommand for testing co-integration:vecrank y x1 x2 x3 x4, trend(constant)When co-integration is established, run VECM otherwise unrestricted VAR model is appropriate.Assuming variables are co-integrated, we run VECM using the following command:vec y x1 x2 x3 x4, trend(contant)The long-run causality must be negative, significant and in between 0 to 1, representing error correction term or speed of adjustment.Command to run impulse response function (you must estimate VECM or VAR model before running it) as follows:First you use the following command to create file:irf create order1, step(10) set(myirf1)Command for impulse response of all independent variables on dependent variable:irf graph irf, irf(order1) impulse(y x1 x2 x3 x4) response(smd)Assuming there is no co-integration, you run VAR model as a replacement for VECM as follows: (Note VAR model is for short run effect only)var y x1 x2 x3 x4, lags(1/4)If you want to check how variables jointly affect the dependent variables, use Granger causality test as follows:vargrangerDiagnostic checking for VAR model: Run the following tests:Lagrange multiplier test to check if residuals are auto-correlated or not (whether model is well-specified):varlmarJarque-Bera test to check whether residuals are normally distributed or not:varnorm, jberajbera stands for Jarque-BeraProb value below 10% shows residuals are not normally distributedTime Series Autoregressive Distributed Lag (ARDL) Model:ardl y x1 x2 x3 x4, lag(2 1 1 1 1) ecThe value must be negative, significant and in between 0 to 1, representing error correction term or speed of adjustmentTo confirm existence of long-run relationship, we run bound test as follows:estat btestbtest stand for bound testThe long-run cointegration is possible if the F statistics value is above the critical value. Command for Zivot-Andrews unit root test (structural break):zandrews xzandrews d.xGregory-Hansen Cointegration testCommand for g-hansen test with change in level:ghansen y x1 x2 x3 x4, break(level) lagmethod(aic) maxlags(4)Command for g-hansen test under regime change;ghansen y x1 x2 x3 x4, break(regime) lagmethod(fixed) maxlags(4)Command for g-hansen test with change in regime and trend:ghansen y x1 x2 x3 x4, break(regimetrend) lagmethod(downt) level(0.99) trim(0.1) Command for Non-linear Autoregressive Distributed Lag (NARDL) for frequency data nardl y x1 x2 x3 x4, p(2) q(4) constraints (1/2) plot bootstrapt (500) level (95)p(2) stands for lags of dependent variable, q(4) lags for explanatory variablesCommand for non-linear Autoregressive Distributed Lag (NARDL) for fewer observations nardl y x1 x2 x3 x4The results include positive and negative coefficients otherwise asymmetric effectSteps for running Toda and Yamamoto Granger-non causality testAfter testing for unitrootEstimate var model to select appropriate lag as followsvar y x1 x2 x3 x4, lags(1/4)varsocAssuming lag 3 is selected for the model, then run var model to include exogenous variables: var y x1 x2 x3 x4, lags(1/2) exog(13.y 13.x1 13.x2 13.x3 13.x4)Then run Toda Yamamoto causality test as follows:vargranger。

STATA面板数据模型操作命令

STATA面板数据模型操作命令

STATA面板数据模型操作命令STATA是一个强大的统计分析软件,可以进行各种数据操作和模型建立。

对于面板数据,即具有时间序列和跨个体的数据,STATA提供了多种命令来进行数据的操作和模型的拟合。

以下是一些常用的STATA面板数据模型操作命令:1. xtset命令:用于设置数据集的面板结构,将数据按个体和时间次序排序。

例如,xtset country year可以将数据按照国家和年份排序。

2. xtreg命令:用于拟合面板数据的固定效应模型。

例如,xtreg y x1 x2, fe可以拟合一个包含固定效应的面板数据模型,其中y为因变量,x1和x2为解释变量。

3. xtfe命令:用于估计固定效应模型的固定效应,即个体固定效应模型。

例如,xtfe y x1 x2可以计算出个体固定效应。

4. xtgls命令:用于估计面板数据的一般化最小二乘回归模型。

例如,xtgls y x1 x2可以拟合一个包含一般固定效应的面板数据模型。

5. xtmixed命令:用于估计混合效应模型,即个体和时间固定效应模型。

例如,xtmixed y x1 x2 , country:, var(can)可以在个体和时间固定效应下估计一个模型。

6. xtreg, re命令:用于估计面板数据的随机效应模型。

例如,xtreg y x1 x2, re可以计算出随机效应模型。

7. xtivreg命令:用于估计面板数据的双向固定效应或双向随机效应的工具变量回归模型。

例如,xtivreg y (x1 = z1) (x2 = z2), fe可以计算出一个包含工具变量的双向固定效应模型。

8. xtdpd命令:用于估计面板数据的动态面板数据模型。

例如,xtdpd y x1 x2, lags(2)可以进行一个包含两期滞后的动态面板数据模型估计。

9. xtregar命令:用于估计拓展的面板数据模型。

例如,xtregar y x1 x2, fe(ec)可以在考虑了异方差和异方差的面板数据模型下进行估计。

stata命令大全(全)

stata命令大全(全)

********* 面板数据计量分析与软件实现 *********说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。

本人做了一定的修改与筛选。

*----------面板数据模型* 1.静态面板模型:FE 和RE* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验* 4.动态面板模型(DID-GMM,SYS-GMM)* 5.面板随机前沿模型* 6.面板协整分析(FMOLS,DOLS)*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(SFA)*** 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。

常应用于地区经济差异、FDI 溢出效应(Spillovers Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。

常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。

* ---------------------------------* --------一、常用的数据处理与作图-----------* ---------------------------------* 指定面板格式xtset id year (id为截面名称,year为时间名称)xtdes /*数据特征*/xtsum logy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h "人力资本"rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year<1992drop if id==2 /*注意用==*/*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel 格式,需要用egen命令)egen year_new=group(year)xtset id year_new**保留变量或保留观测值keep inv /*删除变量*/**或keep if year==2000**排序sort id year /*是以STATA面板数据格式出现sort year id /*是以DEA格式出现**长数据和宽数据的转换*长>>>宽数据reshape wide logy,i(id) j(year)*宽>>>长数据reshape logy,i(id) j(year)**追加数据(用于面板数据和时间序列)xtset id year*或者xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据/tsset*或者tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov**生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)**生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.ygen dy=D.y /*产生差分项*/*求出各省2000年以前的open inv的平均增长率collapse (mean) open inv if year<2000,by(id)变量排序,当变量太多,按规律排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档