第六章+样本及抽样分布

合集下载

概率论与数理统计 第六章 样本及抽样分布

概率论与数理统计 第六章 样本及抽样分布

x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n

X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )



F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]

z
(1)标准正态分布分位点

(x)
( x)dx 1 ( x)dx


z
z1
( x)
Pr[ X z ]

6教育统计学第六章

6教育统计学第六章
S
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2

SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。

统计学第6章统计量及其抽样分布

统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布

X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:

第六章样本及样本函数的分布

第六章样本及样本函数的分布

∼ t(n −1). .
Sn
177
概率论与数理统计全程学习指导
∑ = ∑ 【评注】 10
1 统计量 σ 2
n
(X i

μ)2

i =1
(n −1)S2 σ2
1 σ2
n
(X i

X )2
的分布在自由度上是
i =1
∑ ∑ 1
有差别的,这是因为在 σ2
n
(X i

X )2
中有一个约束条件
X
i =1
=1 n
x(1) ≤ x(2) ≤
≤x (k)
,并假设
x( i )
出现的频数为
ni
,那么
x( i )
出现的频率为
i = 1, 2, , k, k ≤ n . 函数
fi
=
ni n

⎧ 0,

∑ Fn (x)
=
⎪ ⎨
i
fj,
⎪ j=1
⎪⎩ 1,
x < x(1),
x(i) ≤ x < x(i+1), i = 1, 2, , k −1, x ≥ x(k).
③ χ2 分布的性质
10 若 χ2 ∼ χ2 (n) ,则 E(χ2 ) = n , D(χ2 ) = 2n ;
20
(可加性)若
χ
2
1

χ2 (n1) ,
χ
2
2

χ2 (n2 )
,且
χ
2
1

χ
2
2
相互独立,则
χ
2
1
+
χ
2

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

样本及抽样分布

样本及抽样分布

样本及抽样分布§6.1 基本概念一、总体:在统计学中, 我们把所研究的全部元素组成的集合称作母体或总体, 总体中的每一个元素称为个体。

我们只研究感兴趣的某个或者几个指标(记为X),因此把这些指标的分布称为总体的分布,记为X~F(x)。

二、样本:设总体X具有分布函数F(x),若X1, X2,…,Xn是具有分布函数F(x)的相互独立的随机向量,则称其为总体F(或总体X )的简单随机样本, 简称样本,它们的观察值x1,x2, …, xn称为样本观察值, 又称为X 的n 个独立的观察值。

三、统计量:设X 1, X 2, …, X n 是来自总体X 的一个样本, g (X 1, X 2, …, X n )是一个与总体分布中未知参数无关的样本的连续函数,则称g (X 1,X 2,…,X n )为统计量。

统计量是样本的函数,它是一个随机变量,如果x 1, x 2, …, x n 是样本观察值, 则g (x 1, x 2, …, x n )是统计量g (X 1, X 2, …, X n )的一个观察值.四、 常用的统计量:, ,)(x 11s ,,x 1x 1. n12i2n1i 称为样本方差均值仍称为样本它们的观察值为∑∑==--==i i x n n .B ,,1,2,X A ,1k 2.22221S S nn B k ≈-====当样本容量很大时时当时当3.kkkk若总体X 的k 阶矩E(X )存在,则当n时, A .P注:ni i 111. X X ;n ==∑样本均值2n 2i i 112. S (X );n-1X ==-∑样本方差n kk i 113. k A X , k 1, 2,;n i ===∑样本阶原点矩nk i i 114. k B (X ) , k 2, 3,.n k X ==-=∑样本阶中心矩4.样本的联合分布:2) 若总体X 是离散型随机变量,其分布律为 p x =P (X=x ) , x=x 1,x 2,… 则样本X 1, X 2, …, X n 的联合分布:11112(,,)(),,;(1,2,,)nn n i i i i P X y X y P X y y x x i n =======∏其中12n *12i 13)(), ,X , (, ,)()n n i X f x X X f x x x f x ==∏若具有概率密度则的联合概率密度为12121211)(),,,,, ,,,:()()n n n*n i i X ~F x X X X F X X X F x , x ,x F x ==∏若为的一个样本则的联合分布函数为例1:X~U (0,θ),X 1, X 2, …, X n 是来自X 的样本,求(X 1, X 2, …, X n )的联合密度函数。

概率论与数理统计-第六章

概率论与数理统计-第六章
大街上随机抽取200人,进行调查。记录了
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi

i 1, 2,
,n
,n
于是 (

) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2

管理统计学(李金林版教材)课后习题答案~~~第六章

管理统计学(李金林版教材)课后习题答案~~~第六章

管理统计学(李金林版教材)课后习题答案~~~第六章基础习题1. 解释总体分布、样本分布和抽样分布的含义。

答:总体分布:整体取值的概率分布规律,即随机变量X 服从的分布;样本分布:从总体中按照一定的抽样规则抽取的部分个体的分布,若从总体中简单随机抽取容量为n 的样本,则样本分布为(X 1,X 2,...,X n );抽样分布:样本统计量的分布。

2. 简述卡方分布、t 分布、F 分布及正态分布之间的关系,它们的概率密度曲线各有什么特征?答:若随机变量X 服从N(μ,σ2),则Z =X−μσ服从N(0,1);若随机变量X 服从N(0,1),则Y =∑(X i )2n i=1服从自由度为n 的χ2分布;若随机变量X~N(0,1),随机变量Y~χ2(n),且X 与Y 相互独立,则称随机变量T =√Y n⁄服从自由度为n 的t 分布;若随机变量X~χ2(n),若随机变量Y~χ2(m),且X 与Y 相互独立,则称随机变量F n,m =X n ⁄Y m ⁄服从第一自由度为n ,第二自由度为m 的F 分布,记为F n,m ~F(n,m)。

χ2分布的概率密度曲线分布在第一象限内,随着自由度n 的增大,曲线向正无穷方向延伸,并越来越低阔,越来越趋近于正态分布的曲线形态。

t 分布的概率密度曲线以0为中心,左右对称,随着自由度n 的增大,t 分布的概率密度曲线逐渐接近标准正态分布的概率密度曲线。

F 分布的概率密度曲线分布在第一象限内,当第一个自由度不变,第二个自由度增大时,曲线越来越向右聚拢,当两个自由度都增加时,F 分布概率密度曲线逐渐接近正态分布的概率密度曲线。

3. 解释中心极限定理的含义。

从均值为μ,方差为σ2的任意一个总体中抽取样本容量为n 的随机样本,则当n 充分大时,样本均值x̅的抽样分布近似服从均值为μ,方差为σ2n ⁄的正态分布,即x̅~N(μ, σ2n ⁄)。

4. 某公司有20名销售员,以下是他们每个人的销售量:3,2,2,3,4,3,2,5,3,2,7,3,4,5,3,3,2,3,3,4。

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .

概率论第六章样本及抽样分布

概率论第六章样本及抽样分布
2 1 2 2
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12

2 1

2 (n2 1) S2

2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2

2
~ (n 1)
2
X n1 X n
故 Y

(n 1) S 2
n n 1 ~ t (n 1) /(n 1)

2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1

概率论与数理统计基本概念及抽样分布PPT课件

概率论与数理统计基本概念及抽样分布PPT课件

~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,

2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α

( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2

E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)

(完整版)样本及抽样分布

(完整版)样本及抽样分布

第六章样本及抽样分布【基本要求】1、理解总体、个体和样本的概念;2、理解样本均值、样本方差和样本矩的概念并会计算;3、理解统计量的概念,掌握几种常用统计量的分布及其结论;4、理解分位数的概念,会计算几种重要分布的分位数。

【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布,F分布;分位数的理解和计算。

【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。

【学时分配】4学时【授课内容】§6.0 前言前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。

它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。

所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。

其研究方法是归纳法(部分到整体)。

对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。

数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。

§6.1 随机样本一、总体与样本1.总体、个体在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。

例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。

但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。

在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。

在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。

第六章 样本及抽样分布

第六章 样本及抽样分布


n
i =1
X i , k = 1,2 , L
k
( 5 ) 样本 k 阶(中心)矩 中心)

n
i =1
( X i − X ) k , k = 1,2 , L
常用统计量的性质
以下约定: 表示总体的均值, 表示总体的方差, 以下约定: µ 表示总体的均值, σ 2 表示总体的方差, α k 表示 总体的 k阶原点矩, µ k 表示总体的 k阶中心矩,即记 阶原点矩, 阶中心矩, EX = µ , D ( X ) = E ( X − µ ) 2 = σ 2 EX k = α k , E ( X − µ ) k = µ k 并且约定, 并且约定,在我们用到 α(或 µ k)时,假定它是存在的 。 k 定理 1 设总体 X 服从分布 F ( x ), X = ( X 1 , X 2 , L , X n )是从该总体
第六章 样本及抽样分布
数理统计的基本概念 抽样分布
退出 返回
Байду номын сангаас
数理统计的基本概念
总体和样本 统计量 顺序统计量和经验分布函数
继续
返回
总体、 总体、个体
总体:在统计学中, 总体:在统计学中,把所研究的全部元素组成 的集合称为母体, 总体。 的集合称为母体,或总体。 个体:而把组成母体的每个元素称为个体, 个体:而把组成母体的每个元素称为个体, 个体 例如:灯泡的平均寿命, 例如:灯泡的平均寿命,该批灯泡的全体就组 成了母体,而其中每个灯泡就是个体。 成了母体,而其中每个灯泡就是个体。但是在统 计里, 计里,由于我们关心的不是每个个体的种种具体 特性,而仅仅是它的某一项或某几项数量指标X 特性,而仅仅是它的某一项或某几项数量指标 和该数量指标X在总体中的分布情况 和该数量指标 在总体中的分布情况

概率课件-样本及抽样分布

概率课件-样本及抽样分布
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估計法的 理論根據
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,
.
(3)证明:E(S2 )
2. 樣本
• 總體分佈一般是未知,或只知道是包含未知參 數的分佈。
• 為推斷總體分佈及各種特徵,按一定規則從總 體中抽取若干個體進行觀察試驗,以獲得有關 總體的資訊,這一抽取過程稱為 “抽樣”。
• 所抽取的部分個體稱為樣本。 • 樣本中所包含的個體數目稱為樣本容量。
对总体X在相同的条件下,进行n次重复、独立 观察,其结果依次记为X1,X2,,Xn .
概率論與數理統計的區別: • 概率論所研究的隨機變數,其分佈都是假設已知
的,在這個前提下研究其性質、特點和規律性。 • 數理統計所研究的隨機變數,其分佈是未知或不
完全知道的。需要通過獨立重複的觀察並對觀察 數據進行分析,來推斷其分佈。
數理統計的任務就是研究有效地收集、整理、 分析所獲得的有限的資料,對所研究的問題, 盡 可能地作出精確可靠的結論.
Y ( X1 X2 X3 )2 ( X4 X5 X6 )2
试决定常数C,使随机变量CY 服从 2分布.
解: 因为 X1 X2 X3 ~ N (0,3) 所以 X1 X2 X3 ~ N (0,1) 3
从而
X1
X2 3
X3
2
~
2 (1)
同理可知
X4
X5 3
X6
2

数理统计第六章

数理统计第六章
i =1 iid n
称为自由度为n的χ 2 − 分布.
2.χ 分布的密度函数f(y)曲线 分布的密度函数f(y) 2.χ2—分布的密度函数f(y)曲线
n −1 − y 1 n/2 y2 e 2, y > 0 f ( y ) = 2 Γ(n / 2) 0, y≤0
3. 分位点 设X ~ χ2(n),若对于α:0<α<1, α α , 存在
不是
1 2 2 2 T6 = 2 ( X 1 + X 2 + X 3 ). σ
2. 几个常用统计量的定义
设 X 1 , X 2 ,L, X n 是来自总体的一个样本 , x1 , x2 ,L, xn 是这一样本的观察值 . 1 n (1)样本平均值 样本平均值 X = ∑ Xi; n i =1 1 n 其观察值 x = ∑ x i . n i =1
设 x1 , x2 ,L, xn 是相应于样本 X 1 , X 2 ,L, X n 的样本值 , 则称 g ( x1 , x2 ,L, xn ) 是 g ( X 1 , X 2 ,L, X n ) 的观察值 .
实例1 实例 设 X 1 , X 2 , X 3是来自总体 N ( µ ,σ 2 )的一个
2.基本性质 2.基本性质: 基本性质 f(t)关于t=0(纵轴 对称。 关于t=0(纵轴) (1) f(t)关于t=0(纵轴)对称 f(t)的极限为N(0,1)的密度函数 的极限为N(0 的密度函数, (2) f(t)的极限为N(0,1)的密度函数,即
lim f ( t ) = ϕ ( t ) =
f * ( x1 , x 2 , L , x n ) =
例1 设总体 X 服从参数为 λ (λ > 0) 的指数分

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 6 章 样本及抽样分布
6.1 复习笔记
一、抽样分布 1.样本统计量 (1)常用的统计量(见表 6-1-1)
表 6-1-1 常用统计量
2.经验分布函数 设 x1,x2,…, xn 是总体 F 的一个容量为 n 的样本值,将 x1,x2,…,xn 按从小到大的
1
4 / 5 4 / 5
0.2628
(2)记 M=max{X1,X2,X3,X4,X5},因 Xi X i 的分布函数为Φ((x-12)/2),则
M 的分布函数为
FM(m)=[Φ((m-12)/2)]5
因而
P{max{X1,X2,X3,X4,X5}>15}=P{M>15}=1-P{M≤15}=1-FM(15)=1-[Φ ((15-12)/2)]5=0.2923
①定理一
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本,其样本均值和样本方差为
X
1 n
n i 1
Xi,S2
1 n 1
n i 1
Xi X
2
a.
(n 1)S 2 2
~
2 (n 1)
b. X ~ N (, 2 ) n
c. X 与 S2 相互独立。
③定理二
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本, X ,S2 分别是该样本的均值和
且两者是相互独立,因此
X1 X 2 X3 ~ N 0,1 , X 4 X5 X 6 ~ N 0,1
3
3
又两者相互独立,按χ2 分布的定义
(X1+X2+X3)2/3+(X4+X5+X6)2/3~χ2(2)
即 1/3Y~χ2(2),因此所求常数 C=1/3。

概率论与数理统计6.第六章:样本及抽样分布

概率论与数理统计6.第六章:样本及抽样分布

),
,
,
,
是来
Z=
(

证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据简单随机样本定义得:
若 x1, x2, , xn 为具有分布函数F(x)总体X 的一个样本,
则 x1, x2, , xn 的联合分布函数为
n
F (x1, x2 , , xn ) F (xi )
又若X 具有概率密度f ,
i 1
样本分布是指
则 x1, x2 , , xn 的联合概率密度为 样本的联合分布 n f (x1, x2 , , xn ) f (xi ).
i 1
又若X为离散型随机变量,
则 x1, x2 , , xn 的联合概率函数为 n p(x1, x2, , xn ) P(X x1, X x2, , X xn ) P(X xi ) i1
例6-6 设总体 X 服从参数为 ( 0) 的指数分
布, ( x1 , x2 , , xn ) 是来自总体的样本, 求样本
2. 简单随机抽样的定义
最常用的“简单随机抽样”有如下两个要求:
(1)样本具有随机性
即要求总体中每一个个体都有同等机会被选入样本,
这便意味着每一个样品 x1与总体 X有相同的分布 .
(2)样本要有独立性
即要求样本中每一样品的取值不影响其他样品的取值,
这意味着
x1, x2 , 相, x互n 独立.
用简单随机抽样方法得到的样本称为简单随机样本, 简称样本
( x1 , x2 , , xn ) 的概率密度.
ex ,
解 总体 X 的概率密度为 f ( x) 0,
x 0, x 0,
因为 x1, x2 , , xn 相互独立, 且与 X 有相同的分布,
所以 ( x1 , x2 , , xn )的概率密度如下
fn( x1, x2, , xn )
当有限总体包含的个体的 总数很大时, 可近似地将它看 成是无限总体.
4. 总体分布
实例3 在2000名大学一年级学生的年龄中, 年 龄指标值为“15”,“16”,“17”,“18”, “19”,“20” 的依次有9,21,132,1207, 588,43 名, 它们在总体中所占比率依次为
9 , 21 , 132 , 1207 , 588 , 43 , 2000 2000 2000 2000 2000 2000
第六章 样本及抽样分布
第一节 引言
在概率论中,概率分布通常被假定为已知的,而一 切问题的解决均基于已知的分布进行的。 但在实际问题中,情况往往并非如此。 例 6-1
第二节 总体与样本
一、总体与个体 二、样本 三、小结
一、总体与个体
1. 总体
研究对象的全体称为总体.
2. 个体 构成总体的每个成员称为个体.
解 总体 X 的分布律为
P{ X x} px (1 p)1x ( x 0, 1) 因为 X1, X2 ,, Xn相互独立, 且与 X 有相同的分布, 所以 ( X1, X2 ,, Xn )的分布律为
P{ X1 x1, X 2 x2 , , X n xn }
P{ X1 x1}P{ X2 x2 } P{ Xn xn }
即学生年龄的取值有一定的分布.
一般地, 我们所研究的总体, 即研究对象的某项数量 指标 X , 其取值在客观上有一定的分布, 是一个随机 变量. 总体分布的定义
我们把数量指标取不同数值的比率叫做总体分布.
如实例3中, 总体就是数集 {15, 16, 17, 18, 19, 20}. 总体分布为
年龄 15 16 17 18 19 20 比率 9 21 132 1207 588 43
x!
因此简单随机样本x1, x2,…,xn的样本分布为
p( x1, x2 ,
n
, xn ) P( X xi )
n
i 1
n xi e i1 xi !
xi
i1
n
e n
xi !
i 1
练习 设总体 X 服从两点分布B(1, p), 其中0 p 1, ( X1, X 2 ,, X n )是来自总体的样本, 求样本 ( X1, X 2 , , X n )的分布律.
n
f
பைடு நூலகம்
(
xi
)

ne
n

i 1
xi
,
i 1
0,
xi 0, 其他.
例6-7 考虑电话交换台1小时内的呼唤次数X,求来自 这一总体的简单随机样本x1, x2,…,xn的样本分布。
解 由概率论知识,X服从泊松分布P(),其概率函数为
p( x) P{ X x} x e
第三节 统计量及其分布
一、基本概念 二、常见分布 三、小结
一、基本概念
1. 统计量的定义
设 x1, x2 , , xn 是来自总体 X 的一个样本,
若样本函数T=T (x1, x2 , , xn ) 不含未知参数, 则
称T 是一个统计量.统计量的分布称为抽样分布.
n
n
设 x1, x2 , , xn 是样本,则 xi, xi2都是统计量.
n
n
xi
n xi
pi1 (1 p) i1
其中 x1, x2, , xn 在集合{0,1}中取值.
三、小结
基本概念: 个体 总体无有限限总总体体 样本 说明1 一个总体对应一个随机变量X, 我们将不 区分总体和相应的随机变量, 统称为总体X.
说明2 在实际中遇到的总体往往是有限总体, 它 对应一个离散型随机变量; 当总体中包含的个体 的个数很大时, 在理论上可认为它是一个无限总 体.
2000 2000 2000 2000 2000 2000
二、样本
1. 样本的定义
从总体 中随机抽取n个个体,记其指标值为x1,x2 , xn, 称为总体的一个样本,n称为样本容量或样本量, 样本中的个体称为样品.
注;样本具有二重性:无论是样本还是观察值,本书中 样本 一般均用x1, x2, , xn 来表示.
实例1 在研究2000名学生的 年龄时, 这些学生的年龄的全 体就构成一个总体, 每个学生 的年龄就是个体.
3. 有限总体和无限总体
实例2 某工厂10月份生产的灯泡寿命所组成的 总体中, 个体的总数就是10月份生产的灯泡数, 这是一个有限总体; 而该工厂生产的所有灯泡寿 命所组成的总体是一个无限总体, 它包括以往生 产和今后生产的灯泡寿命.
相关文档
最新文档