太阳能热利用原理与技术1

合集下载

太阳能热利用技术 太阳能热利用技术论文

太阳能热利用技术 太阳能热利用技术论文

太阳能热利用技术太阳能热利用技术论文在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。

下面是小编整理的太阳能热利用技术论文,希望你能从中得到感悟!太阳能热利用技术论文篇一太阳能热泵技术分析【摘要】文章论述了太阳能热泵的技术原理和特点以及在提供热水方面的应用。

【关键词】太阳能热泵Abstract :The paper mainly analyses the solar energy heat pump technology.1.热泵供热原理热泵是一反向使用的制冷机,与制冷机所不同的只是工作的温度范围。

蒸发器吸热后,其工质的高温低压过热气体在压缩机中经过绝热压缩变为高温高压的气体后,经冷凝器定压冷凝为低温高压的液体(放出工质的气化热等,与冷凝水进行热交换,使冷凝水被加热为热水供用户使用),液态工质再经降压阀绝热节流后变为低温低压液体,进入蒸发器定压吸收热源热量,并蒸发变为过热蒸气完成一个循环过程。

如此循环往复,不断地将热源的热能传递给冷凝水。

所有型式的热泵都有蒸发和冷凝两个温度水平,采用膨胀阀或毛细管实现制冷剂的降压节流,只是压力增加的不同形式,主要有机械压缩式、热能压缩式和蒸气喷射压缩式。

其中,机械压缩式热泵又称作电动热泵,目前已经广泛应用建筑采暖和空调,在热泵市场上占据了主导地位;热能压缩式热泵包括吸收式和吸附式两种型式,其中水溴化锂吸收式和氨水吸收式热水机组已经逐步走上商业化发展的道路,而吸附式热泵目前尚处于研究和开发阶段,还必须克服运转间歇性以及系统性能和冷重比偏低等问题,才能真正应用于实际。

根据热源形式的不同,热泵可分为空气源热泵、水源热泵、土壤源热泵和太阳能热泵等。

国外的文献通常将地下水热泵、地表水热泵与土壤源热泵统称为地源热泵。

2.太阳能热泵技术原理及其特点太阳能热泵一般是指利用太阳能作为蒸发器热源的热泵系统,区别于以太阳能光电或热能发电驱动的热泵机组。

太阳能的直接利用

太阳能的直接利用

太阳能的直接利用随着能源消耗量的不断增加和环境污染问题的日益严重,太阳能作为一种清洁、可再生的能源开始受到越来越多的关注。

太阳能的直接利用是指将太阳能转化为热能或电能,通过各种设备和技术直接应用于生产和生活中。

本文将介绍太阳能的直接利用以及其在不同领域的应用。

一、太阳能热利用太阳能热利用是指利用太阳辐射的热能,通过各种设备将其转化为热水、蒸汽或空调制冷等形式,直接应用于生产和生活中。

太阳能热利用的设备有太阳能热水器、太阳能空调、太阳能蒸汽发生器等。

1.太阳能热水器太阳能热水器是利用太阳能将水加热的设备,其原理是利用太阳辐射直接或间接将水加热,然后将加热后的水储存起来,供日常生活使用。

太阳能热水器的使用可以大大减少家庭的用水成本,同时也能减少对环境的污染。

2.太阳能空调太阳能空调是一种利用太阳能热能制冷的设备,其原理是利用太阳能将水加热,然后将加热后的水通过吸收式制冷循环制冷,从而实现空调制冷。

太阳能空调的优点是能够节约能源,减少对环境的污染。

3.太阳能蒸汽发生器太阳能蒸汽发生器是一种利用太阳能将水加热,产生蒸汽的设备,其原理是利用太阳能将水加热至沸腾,产生蒸汽,然后将蒸汽通过管道输送到需要的地方。

太阳能蒸汽发生器的使用可以大大减少工业生产中的能源消耗,同时也能减少对环境的污染。

二、太阳能光电利用太阳能光电利用是指利用太阳辐射的光能,通过光电转换技术将其转化为电能,直接应用于生产和生活中。

太阳能光电利用的设备有太阳能电池板、太阳能灯等。

1.太阳能电池板太阳能电池板是一种利用太阳辐射的光能将其转化为电能的设备,其原理是利用半导体材料的光电效应将太阳辐射的光能转化为电能。

太阳能电池板广泛应用于太阳能发电、太阳能路灯、太阳能船舶等领域,具有节约能源、环保等优点。

2.太阳能灯太阳能灯是一种利用太阳能光电转换技术将其转化为电能,然后通过电池储存,夜间发光的设备。

太阳能灯广泛应用于户外照明、道路照明等领域,具有节约能源、环保等优点。

太阳能光热利用技术研究

太阳能光热利用技术研究

太阳能光热利用技术研究太阳能光热利用技术作为可再生能源的一种重要形式,日益受到人们的关注和重视。

在当前全球温室气体排放增加,能源消耗急剧增长的背景下,太阳能光热利用技术被认为是解决能源危机和环境问题的有效途径之一。

本文将就太阳能光热利用技术的研究进展和应用前景展开讨论。

一、太阳能光热利用技术概述及原理太阳能光热利用技术是指利用太阳能的光热转换性质进行能量转换和利用的过程。

其原理基于太阳能的辐射和吸收。

太阳辐射穿过大气层到达地球表面后,可以通过吸收和反射产生热量。

太阳能光热利用技术主要包括太阳能热水器、太阳能供暖和太阳能发电等多个方面。

1. 太阳能热水器太阳能热水器是太阳能光热利用技术的一种常见应用形式。

其基本原理是通过太阳能热能将水加热到适宜的温度,供人们日常生活使用。

太阳能热水器由太阳能集热器、储存水箱和管道系统组成。

太阳能集热器将太阳辐射转化为热能,传递给水箱中的水,供人们使用时将热水抽出即可。

太阳能热水器广泛应用于房屋、酒店、游泳池等场所,具有绿色环保、经济实用的特点。

2. 太阳能供暖太阳能供暖是指利用太阳能光热转换为热能来供应室内供暖的一种技术。

其原理是通过太阳能集热器将太阳辐射转化为热能,然后通过热传导、辐射等方式将热能传递给室内。

太阳能供暖系统主要包括太阳能集热器、热传输管道和室内散热器等组成。

太阳能供暖技术可以在节能减排的同时为用户提供舒适的居住环境,对于大气污染和碳排放的减少具有重要意义。

3. 太阳能发电太阳能发电是太阳能光热利用技术中的重要领域,其原理是通过太阳能光照辐射使光伏电池中的太阳能光子产生光电效应,将光能转化为电能。

太阳能发电系统主要由太阳能光伏电池组件、负载调节器和储能装置等组成。

太阳能发电技术具有可持续发展、分布式供电等优势,能够广泛应用于农村地区、偏远地区以及电力不足的地方,为能源结构优化和能源供应问题提供新的解决方案。

二、太阳能光热利用技术的研究进展太阳能光热利用技术的研究在过去几十年取得了显著的进展。

太阳能热利用技术

太阳能热利用技术

用户指南农业和农村节能减排十大技术之三———太阳能热利用技术太阳能—热能转换利用技术和太阳能—电能转换利用技术是常见的太阳能利用方式。

其中,太阳能—热能转换利用技术主要包括太阳房、太阳热水器、阳光温室大棚、太阳灶等。

一太阳房(被动式太阳房)太阳房是一种利用太阳能采暖或降温的房子,用于冬季采暖目的的叫做“太阳暖房”,用于夏季降温或制冷目的的叫做“太阳冷房”。

人们常见加之利用的是“太阳暖房”。

按目前国际上的惯用名称,太阳房分为主动式和被动式两大类。

主动式太阳房的一次性投资大,设备利用率低,维修管理工作量大,而且需要耗费一定量的常规能源。

因此,对于居住建筑和中小型公共建筑已经为被动式太阳房所代替。

被动式太阳房具有构造简单,造价低,不需特殊维护管理,节约常规能源和减少空气污染等许多独特的优点。

被动式太阳房作为节能建筑的一种形式,集绝热、集热、蓄热为一体,成为节能建筑中具有广泛推广价值的一种建筑形式。

以下介绍这种太阳房的建造技术概要。

(一)结构类型被动式太阳房的基本结构类型包括直接受益式、集热蓄热墙式、附加阳光间式、贮热屋顶式和自然对流回路式等五类。

1.直接受益式太阳房这是被动式太阳房中最简单的一种,它是利用南窗直接接受太阳辐射能。

太阳辐射能通过窗户直接照射到室内地面、墙壁及其他物体上,使它们表面温度升高,通过自然对流换热,用部分能量加热室内空气。

另一部分能量则贮存在地面、墙壁等物体内部,当太阳辐射消失或室内温度下降时再向室内释放,使室温维持在一定水平。

2.集热蓄热墙式太阳房这种类型的太阳房是间接受益太阳能采暖系统。

阳光首先照射到置于太阳与房屋之间的一道带透明外罩的深色贮热墙上,加热墙体与盖板之间的空气,然后通过贮热墙上风口将热量导入室内,另一部分是通过墙体的导热向室内供热。

3.附加阳光间式太阳房该类型的太阳房是集热蓄热墙式太阳房系统的一种发展。

主要是将透明盖层与墙之间的空气夹层加一个通道,形成一个可以使用的空间———附加阳光间(也可以称附加温室)。

太阳能利用原理解析

太阳能利用原理解析

太阳能利用原理解析1. 引言太阳能作为一种清洁、可再生的能源,正在越来越多地被人们利用。

理解太阳能的利用原理对于推动可持续发展至关重要。

本文将深入解析太阳能的原理,包括太阳能的来源、捕捉和转换方式等。

2. 太阳能的来源太阳是地球上最重要的能源源头之一。

太阳能的来源是核聚变反应,太阳核心温度高达1500万摄氏度,核反应使得太阳产生大量的热能和能量。

这些能量以太阳辐射的形式传播到地球上。

3. 太阳能的捕捉太阳能的捕捉是指将太阳辐射能有效地转化为可用能源的过程。

目前常用的太阳能捕捉技术有:3.1 光伏发电光伏发电是利用光伏效应将太阳光直接转化为电能的过程。

光伏电池是光电转换装置的核心部件,当太阳光照射到光伏电池上时,光子激发电池中的电子,从而产生电流。

光伏发电系统通常用于户外路灯、太阳能电池板等场景。

3.2 太阳热利用太阳热利用是指将太阳能转化为热能的过程。

常见的太阳热利用技术有太阳能热水器和太阳能集热器。

太阳能热水器利用太阳能加热水,以满足人们在生活中的需要。

太阳能集热器通过收集太阳能,并将其转化为热能,用于供暖、蒸汽发生器等领域。

4. 太阳能的转换方式太阳能的转换方式主要有两种:4.1 直接转化直接转化是指将太阳能直接转化为其他形式的能量。

例如,光伏发电将太阳光转化为电能,太阳能热水器将太阳能转化为热能。

4.2 间接转化间接转化是指通过太阳能驱动其他能源的转换过程。

典型的例子是太阳能风力发电系统。

太阳能加热地球表面,产生的温差使得大气产生气流,进而驱动风力发电机产生电能。

5. 太阳能利用的环境影响太阳能作为一种清洁能源,相比传统能源有着许多优势。

太阳能利用过程中不会产生污染物,减少了对环境的影响。

但太阳能利用也存在一些挑战,如光伏电池制造过程的能源消耗、光伏电池的废弃物处理等。

6. 结论通过对太阳能的原理解析,我们可以更好地理解和应用太阳能技术。

太阳能的捕捉和转换为人们提供了一种可持续、清洁的能源选择,有助于减少对传统能源的依赖,推动可持续发展的进程。

太阳能利用原理与技术

太阳能利用原理与技术

太阳能利用原理与技术太阳能是指太阳辐射所带来的能量,从而转化为人类可利用的电力或热能。

太阳能利用的原理是通过太阳能电池板将太阳辐射转化为电能,或通过太阳能热水器将太阳辐射转化为热能。

太阳能利用技术主要包括太阳能发电和太阳能热利用。

太阳能发电是指利用太阳光的辐射能转化为电能的过程。

太阳能电池板是最常见的太阳能发电设备,它由光伏电池组成,光伏电池是一种将太阳能转化为直流电能的半导体材料。

当太阳光照射到光伏电池上时,光子的能量被电池中的半导体材料吸收,导致电子脱离原子获得自由电子,形成电流。

这个过程称为光电效应。

光伏电池通常由硅、镓等材料制成,其中硅材料最常用。

硅材料被分为P型和N型,并通过P-N结构连接起来形成半导体结构。

当光线照射到P-N结构上时,光伏电池中的电子会在P-N结界面上跃迁,从而产生电流。

这个电流经过逆变器进行转换,就可以变成交流电供应给家庭或工业使用。

太阳能发电的优点是环保、可再生,缺点是成本较高。

太阳能热利用是指利用太阳能的热辐射转化为热能的过程。

太阳能热水器是最常见的太阳能热利用设备之一、太阳能热水器由集热器、热水储存箱和管路系统组成。

太阳能集热器通常使用黑色吸热涂料和玻璃罩,吸收太阳光的热辐射。

当太阳光射到集热器上时,吸热涂料将太阳能转化为热量,热量通过传导和对流的方式传递到储热箱中的水,并加热水温。

太阳能热水器的优点是可靠、经济,适用于家庭和商业热水供应;缺点是需要一定的储热容量和保温材料,以及要考虑天气的影响。

除了太阳能发电和太阳能热利用,还有其他一些太阳能利用原理和技术。

太阳能光伏发电是指将太阳能转化为光能,并利用光能产生电能。

光伏发电的原理与太阳能发电类似,但光伏发电主要应用于小型光伏设备,如太阳能计算器、太阳能灯等。

太阳能空调是指利用太阳能的热辐射驱动制冷循环,实现空调供冷的设备。

太阳能空调利用太阳能热能的特点,可以降低电能的消耗,减少对传统电力系统的依赖。

总体而言,太阳能利用的原理和技术是通过将太阳的能量转化为人类可利用的能源,以满足电力和热能需求。

太阳能热能利用技术分析

太阳能热能利用技术分析

太阳能热能利用技术分析随着能源消耗和污染问题不断加剧,寻求替代能源成为全球共同关注的问题。

太阳能作为一种清洁且永续的可再生能源备受推崇。

在太阳能的利用中,太阳能热能技术是其中具有广泛实际应用前景的一种技术。

本文将着重探讨太阳能热能利用技术的原理及其应用情况。

太阳能热能利用技术的原理太阳能热能利用技术是将太阳产生的热量转换为可供人类使用的能量。

其原理就是利用太阳光辐射照射到地球上时,会产生热量。

热量转换分为三个步骤:光的吸收、热的传导和储存。

太阳能热能利用技术就是将这三个步骤融合在一起,实现太阳光能直接转换为热能,再通过热能转换为电能或其他能源。

太阳能热能利用技术的分类太阳能热能利用技术可分为两大类:太阳能热集热器和太阳能热发电系统。

其中,太阳能热集热器是太阳能热能利用技术中最简单和常见的形式之一;太阳能热发电系统则用于转化太阳能热量为电力,并有望成为未来清洁能源的最主要来源之一。

太阳能热集热器太阳能热集热器是一种将太阳能转换为热能的器具。

其主要工作原理是利用太阳能热集中器将阳光集中到集热器中心的管路上,并利用其制热的特性将其转换为热能,再通过与热寄存器的衔接,转化为蒸汽或热水等形式的能量。

太阳能热集热器技术优点在于不需要额外的燃料,且低维护成本,缺点为夜晚无法利用。

太阳能热发电系统太阳能热发电系统属于集热和光伏两种技术的结合型产品。

该系统由太阳能集热器、发电器、储能设备和电气控制系统等组成。

太阳能热发电系统的基本原理是,通过太阳能集热器将太阳热量集中,达到高温使水转化为蒸汽,再通过高温、高压的蒸汽驱动涡轮机,使发电机转动并产生电能,最终储存到电池组。

太阳能热发电系统技术优点在于发电成本低、资源充分、使用寿命长、环保性强等。

但其缺点在于需要足够的太阳能供应和占地面积较为宽敞,其技术需要成熟,SM1分靠前的沙漠天气特征为其适应的区域。

太阳能热能利用技术的应用情况太阳能热能利用技术的应用领域逐渐拓宽,主要应用于太阳能温泉、太阳能空调、工业生产的热水供给和暖房设备等领域。

太阳能热利用

太阳能热利用

• 盐水池中随着深度的增加温度也在增加,池底温度高于池 表面温度,因此可以利用池底这部分热能,使水分蒸发。
卤水、海水或含盐水浓缩到某一盐分达到该温度下条件下 的饱和度,甚至过饱和时,该组分以固体盐(或水和盐, 甚至水合复盐)的形式析出,达到从多组分复杂卤水、海 水或含盐水相中分离某种盐类。
二、太阳能热发电技术
2.2 太阳能热动力发电
• 太阳能热发电是利用集热器将太阳辐射能转换成热能并 通过热力循环过程进行发电,是太阳能热利用的重要方 面。
目前主要热力 发电装置: 槽式 塔式 碟(盘)式
太阳能高温利用示例——集中热动力发电
3.1 槽式太阳能热电系统
• 抛物柱面槽式反射器将阳光聚焦到管状的接收器 上,将管内的传热工质加热,产生高温水蒸气, 推动汽轮发电机发电。
带集热墙式的被动式太阳房
2 太阳能热水系统
• 太阳能热水系统主要讨论太阳能热水器。
• 太阳能热水器是目前太阳能热利用技术领域商业化程 度最高、推广应用最普遍的技术。 • 太阳能热水系统主要元件有三部分:集热器、蓄热器 (储能装置)和循环管路及控制系统。
• 按流体的流动方式可分为循环式、直流式和闷晒式系 统;按照形成水循环的动力,循环式又分为自然循环 式和强制循环式。
一、太阳能直接热利用
1 太阳能供暖技术
• 太阳能采暖技术直接利用太阳辐射能供暖,也称太阳房 (Solar House)。 • 现代技术不断扩展和完善太阳能的功能,新式太阳房具有 太阳能收集器、热储存器、辅助能源系统和室内暖房风扇 系统,可以节能75-90%。 • 太阳房具有良好的环境效益和经济效益,与建筑设计有机 结合,日益成为太阳能利用的重要领域。
图9 槽式太阳能热电系统原理图
槽式太阳能热电厂

太阳能光热原理

太阳能光热原理

太阳能光热原理
太阳能光热利用的原理是将太阳光转化为热能。

太阳发出的光线中包含大量的能量,当太阳光到达地球表面时,一部分被反射、散射或吸收,另一部分则被各种物体吸收转化为热能。

太阳能光热技术利用的主要原理是光吸收、热传导和热辐射。

光吸收是指太阳光照射到物体表面时,光能量被物体吸收并转化为热能。

太阳能热水器中的太阳能集热器就是利用光吸收原理,将太阳光能转化为热能,加热水或其他介质。

热传导是指热能在物体内部通过分子传导的过程。

太阳能集热器中的吸热管通过良好的导热材料来传导热能,使热能迅速传递到水或其他介质中。

热辐射是指物体在辐射热能时产生的辐射过程。

太阳能热发电系统中的太阳能热发电塔就是利用热辐射原理,太阳光照射到反射镜集中到热发电塔上的接收器上,通过高温运行的热发电塔将光能转化为热能,然后再将热能转化为电能。

太阳能光热利用技术的发展,大大提高了太阳能的利用效率和可靠性。

通过合理设计和选择材料,可以充分利用太阳能的热能,为人们提供清洁、可再生的能源。

太阳能的利用和发电原理

太阳能的利用和发电原理

太阳能的利用和发电原理太阳能是一种可再生能源,其利用和发电原理是基于太阳辐射的转化和利用。

本文将着重介绍太阳能的利用方式以及其发电原理。

一、太阳能的利用方式太阳能的利用方式多种多样,包括太阳能热利用、太阳能光利用以及太阳能光热利用等。

下面将逐个进行介绍。

1. 太阳能热利用太阳能热利用是指通过太阳能热能的收集和利用实现能源的供热需求。

这种方式主要包括太阳能热水器、太阳能房屋加热系统等。

太阳能热水器利用太阳能将水加热,为家庭供应热水。

太阳能房屋加热系统则通过太阳能集热器将太阳能转化为热能,并利用该热能为房屋供暖,实现节能环保。

2. 太阳能光利用太阳能光利用是指将太阳能转化为光能并直接利用。

这种方式主要包括太阳能光照供电、太阳能照明等。

太阳能光照供电是利用太阳能光能转化为电能,为电子产品供电。

太阳能照明则利用太阳能光能为室内和室外提供照明。

3. 太阳能光热利用太阳能光热利用则是将太阳能转化为光热能,并通过热能的利用来满足能源需求。

这种方式主要包括太阳能集热发电和太阳能蒸发发电。

太阳能集热发电利用太阳能对物体的热辐射将其转化为热能,再通过发电机将热能转化为电能。

太阳能蒸发发电则利用太阳能将水蒸发产生的蒸汽推动涡轮发电机发电。

二、太阳能发电原理太阳能发电主要是通过太阳能光照的转化来产生电能。

常见的太阳能发电方式有太阳能光伏发电和太阳能热发电。

1. 太阳能光伏发电太阳能光伏发电是指利用太阳能将光能转化为电能。

其原理基于光伏效应,即利用半导体材料在光照的作用下产生电能。

在太阳能光伏发电系统中,太阳能电池板负责将太阳光照射到半导体材料上,并将光能转化为电能。

随后,通过逆变器将直流电转化为交流电,以满足家庭或工业用电需求。

2. 太阳能热发电太阳能热发电是指利用太阳能光热能将热能转化为电能。

其原理是通过太阳能镜面反射聚焦光线,将光能集中在一个小区域,提高温度。

随后,利用高温工质产生的蒸汽驱动涡轮机运转,通过涡轮机带动发电机发电。

太阳能供暖系统的原理与应用

太阳能供暖系统的原理与应用

太阳能供暖系统的原理与应用太阳能是一种清洁、可再生的能源,具有广阔的应用前景。

太阳能供暖系统是利用太阳能将其转化为热能来供给室内供暖的一种系统。

本文将介绍太阳能供暖系统的原理以及在不同应用场景中的具体应用。

一、太阳能供暖系统的原理太阳能供暖系统的原理主要分为太阳能采集和热能分配两个部分。

1. 太阳能采集太阳能采集是指通过太阳能集热器将太阳辐射转化为热能的过程。

太阳能集热器通常由太阳能热水器、平板集热器、真空管集热器等组成。

这些集热器通过吸收太阳辐射散发的热量,将其转化为热能。

2. 热能分配太阳能采集的热能需要经过一系列的处理才能被有效地用于供暖。

热能分配包括热能储存、热能转换和热能传输三个过程。

热能储存:太阳能供暖系统一般采用蓄热式储能方式。

储能系统可以利用水箱、水井、石墨乳胶储热材料等储存热能,以便在夜间或阴天供暖。

热能转换:热能转换是指将储存的热能转化为可供暖的能源。

目前常用的热能转换方式包括水循环系统、空气循环系统和地板辐射系统等。

热能传输:热能传输是将转化后的热能传送到需要供暖的空间。

热能传输方式通常有水传输和空气传输两种,可以通过管道、散热器、换热器等设备将热能传输到不同的房间。

二、太阳能供暖系统的应用太阳能供暖系统可以广泛应用于家庭、商业以及工业领域。

具体应用场景包括以下几个方面。

1. 家庭供暖太阳能供暖系统在家庭供暖领域得到了广泛应用。

家庭太阳能供暖系统通常采用太阳能集热器进行热能采集,通过储热装置将热能储存起来,再通过管道将热能传输到不同的房间。

太阳能供暖系统不仅能满足家庭的供暖需求,还可以降低能源消耗,减少对传统能源的依赖。

2. 商业供暖太阳能供暖系统在商业领域也有广阔的应用前景。

商业建筑物通常需要大量的供暖能源,太阳能供暖系统可以为这些建筑物提供可持续的、清洁的热能来源。

例如,在酒店、写字楼、医院等场所,太阳能供暖系统可以减少对传统供暖方式的依赖,降低能源消耗,实现节能减排的目标。

太阳能热利用原理与技术

太阳能热利用原理与技术

太阳能热利用原理与技术太阳能热利用的原理是基于太阳辐射的能量转化。

太阳辐射主要包括短波辐射和长波辐射,其中短波辐射主要是太阳的光能,而长波辐射是地球表面通过向大气层辐射出去的热能。

太阳能集热器通过吸收和转换太阳辐射能,将其转化为高温热能。

太阳能集热器是太阳能热利用的核心设备。

一般来说,太阳能集热器包括吸收器、热介质管路和传热器。

吸收器是太阳辐射能的接收和转换部分,一般采用黑色吸热材料,如铜板、铝板等,以便于吸收和吸热。

热介质管路将吸收到的热能传输到传热器,通常使用金属管或聚合物管作为热能传输介质。

传热器将热介质中的热能传递给需要利用的对象,如热水、室内供暖等。

太阳能热水器是目前应用最广泛的太阳能热利用技术。

太阳能热水器以吸热板为主要组件,将太阳能辐射能转换为热能,加热水贮存器中的水。

太阳能热水器分为平板集热器和真空管集热器两种类型,平板集热器通过铜管将热能传递给水,真空管集热器通过内外管道将热能传递给水。

太阳能集中供热系统是利用太阳能对热能进行集中收集和储存,以供给工业或集体供热。

太阳能集中供热系统一般由太阳能集热器、储热设备和传热管道组成。

太阳能集中供热系统通过集中收集太阳能热能,储存并传输至需要供热的场所,实现供热的功能。

太阳能空调系统是利用太阳能热能提供制冷和供暖的系统。

太阳能空调系统一般由太阳能集热器、吸热剂、蒸发器、压缩机和冷凝器等组成。

太阳能集热器将太阳辐射能转化为热能,供给吸热剂蒸发,蒸发后气态吸热剂通过压缩机压缩成高温高压气体,然后通过冷凝器冷凝成液态吸热剂,释放出热能,实现供暖的功能。

总之,太阳能热利用是一种可再生、环保的能源利用方式,通过太阳能集热器将太阳辐射能转化为热能,实现热水、供热等需求。

太阳能热利用技术的应用可以降低能源消耗和环境污染,具有广阔的应用前景。

太阳能热利用技术的经济性与可行性分析

太阳能热利用技术的经济性与可行性分析

太阳能热利用技术的经济性与可行性分析1. 引言太阳能热利用技术是一种环保、可再生能源利用方式,近年来备受关注。

本文将对太阳能热利用技术的经济性与可行性展开深入分析,探讨其在目前社会背景下的发展前景。

2. 太阳能热利用技术的基本原理太阳能热利用技术是利用太阳能热量来提供热水、采暖等用途的一种技术。

其基本原理是通过太阳能集热器将太阳能转化为热能,然后通过热交换器传递到热载体中,最终实现能源利用。

这种技术不仅可以减少对传统能源的依赖,还能减少二氧化碳等温室气体的排放,对环境友好。

3. 太阳能热利用技术的经济性分析在当前环境问题日益严峻的大背景下,太阳能热利用技术的经济性备受关注。

首先,太阳能是一种免费的能源来源,相比于传统的化石能源,太阳能的成本更低廉。

其次,太阳能热利用技术在运行过程中几乎不需要额外的能源投入,所以维护成本也很低。

再者,太阳能热利用技术可通过相关部门补贴等方式获得一定的资金支持,使得投资回报更为可观。

因此,从经济角度出发,太阳能热利用技术具有较高的投资回报率,是一种值得推广的技术。

4. 太阳能热利用技术的可行性分析除了经济性,太阳能热利用技术在可行性方面也有许多优势。

首先,太阳能是一种广泛分布的能源,几乎全球各地都可以利用太阳能进行热能转换。

其次,太阳能热利用技术具有一定的适用性,不论是家庭还是工业用途,都能够满足需求。

再者,太阳能热利用技术具有良好的环保性,不会对环境造成污染,有助于改善大气质量和缓解能源危机。

因此,从可行性角度出发,太阳能热利用技术具有广泛的应用前景。

5. 太阳能热利用技术在不同领域的应用太阳能热利用技术在不同领域都有着广泛的应用。

在家庭方面,太阳能热水器可以替代传统的燃气热水器,降低生活成本同时保护环境。

在工业领域,太阳能热利用技术可以用于产生蒸汽、供暖等用途,为企业节约能源成本。

此外,太阳能热利用技术还可以应用于农业、温室大棚等领域,提高生产效率,减少对化肥等化学品的依赖,有利于农业可持续发展。

太阳能利用知识点

太阳能利用知识点

太阳能利用知识点太阳能作为一种可再生能源,近年来受到越来越多的关注和应用。

它具有广阔的应用前景,可以为人类提供清洁、可持续的能源。

本文将介绍太阳能利用的几个重要知识点。

一、太阳能发电原理太阳能发电是利用太阳辐射能转化为电能的过程。

太阳光中的光子通过光伏效应在光伏电池中产生电荷,形成直流电流。

光伏电池是由多个半导体材料组成的,当光照射到半导体上时,电子被激发并形成电流。

通过连接多个光伏电池,可以形成太阳能电池板,将直流电转化为交流电,供电给家庭和工业用途。

二、太阳能热利用太阳能热利用是指利用太阳能的热量进行采暖、供热或热水供应。

太阳能热利用系统包括太阳能集热器、热储罐和热交换器。

太阳能集热器通过吸收太阳辐射能将其转化为热能,热储罐用于储存热能,而热交换器则将热能传递给需要加热的介质。

太阳能热利用广泛应用于家庭、工业和农业领域,可以降低能源消耗,减少污染排放。

三、太阳能光热发电太阳能光热发电是利用太阳能的热量产生蒸汽,通过蒸汽驱动涡轮发电机组发电。

太阳能光热发电系统包括太阳能集热器、蒸汽发生器和发电机组。

太阳能集热器将太阳辐射能转化为热能,蒸汽发生器将水加热为蒸汽,而发电机组则将蒸汽的能量转化为电能。

太阳能光热发电具有高效、稳定的特点,是一种可持续发展的能源解决方案。

四、太阳能光伏发电太阳能光伏发电是利用太阳光的辐射能直接转化为电能。

光伏电池是太阳能光伏发电的核心组件,它由多个半导体材料层叠而成。

太阳光照射到光伏电池上时,光子与半导体材料相互作用,形成电子和空穴。

通过连接多个光伏电池,可以形成太阳能电池板,将直流电转化为交流电。

太阳能光伏发电具有无噪音、无污染、可靠性高的特点,广泛应用于家庭和商业领域。

五、太阳能储能技术太阳能储能技术是解决太阳能发电不稳定性的重要手段。

太阳能发电系统在夜间或阴天无法正常发电,因此需要将多余的电能储存起来,以备不时之需。

目前常用的太阳能储能技术包括电池储能、压缩空气储能和水泵储能。

太阳能热利用太阳能制冷

太阳能热利用太阳能制冷
集中供暖系统
集中供暖系统主要由集热器、储水箱、连接管路和控制装置等组成。其工作原理是利用集 热器收集太阳辐射能,通过连接管路将热能传递给储水箱,再通过控制装置调节水温,以 满足供暖需求。
太阳能热利用的应用场景
家庭热水供应
太阳能热水器是太阳能热利用最 常见的应用场景之一,可为家庭 提供热水供应,如洗澡、洗衣等。
需求。
野外和移动设施
用于野外考察、探险、野营等 场所的临时住宿和冷藏等需求

04
太阳能热利用与太阳能制 冷的结合
技术结合的必要性
能源危机
随着化石能源的逐渐枯竭,可再生能源的需求日益增长,太阳能热利用与太阳能制冷技术的结合能够提供一种可持续 的能源解决方互补性,前者主要利用太阳辐射的热量,后者则利用太阳辐射的能量进行制冷, 结合使用可以更好地满足不同季节和气候条件下的能源需求。
农业灌溉
太阳能灌溉系统可以利用太阳能为 农业灌溉提供动力,特别是在偏远 地区,太阳能灌溉具有广阔的应用 前景。
工业用热
太阳能热利用技术可以为工业生产 提供所需的热量,如用于熔炼金属、 生产玻璃等。
03
太阳能制冷技术
太阳能制冷原理
太阳能制冷原理基于热力学的 基本原理,通过吸收太阳辐射 能并将其转化为热能,再利用 热能驱动制冷循环,从而实现
利用热电效应,将太阳能转换 为电能,再利用电能驱动半导
体制冷器实现制冷。
太阳能制冷的应用场景
01
02
03
04
家庭和办公场所
用于空调和冷藏保鲜等需求, 提供舒适的生活和工作环境。
农业领域
用于温室大棚、果蔬储存等, 提高农产品的品质和产量。
公共设施
用于图书馆、博物馆、医院等 公共场所的空调和空气净化等

太阳能技术的原理与利用方式

太阳能技术的原理与利用方式

太阳能技术的原理与利用方式太阳能是指从太阳辐射中获取能量和利用太阳能来产生电力或热能的技术。

太阳能技术是一种可再生能源技术,具有低污染、长寿命和广泛的应用前景。

下面将详细介绍太阳能技术的原理和利用方式。

一、太阳能技术的原理太阳能技术的原理是利用太阳辐射中的光能来产生电力或热能。

太阳光是一种电磁辐射,具有波粒二象性,既可以作为波动传播,也可以作为微粒(光子)进行能量传递。

太阳光中包含着大量的能量,其中最常见的是可见光和热辐射。

太阳能技术利用太阳光中的能量主要有两种方式:光伏发电和太阳能热利用。

1.光伏发电(Photovoltaic,简称PV)光伏发电是将太阳光直接转化为电能的过程。

光伏发电是通过光伏效应实现的,即在一些特殊的半导体材料中,遇到光子时会产生电子-空穴对。

光子的能量被电子吸收后会提高电子的能量,使其跃迁到能带中的导带,形成电子-空穴对。

然后,这些电子-空穴对会在材料的导体中被分离和移动,从而产生电流。

光伏发电系统由太阳能电池板阵列、直流-交流逆变器、电网接入装置等组成。

太阳能电池板的阵列将太阳光转化为直流电能,然后通过逆变器将直流电转化为交流电以供使用或向电网输送。

光伏发电技术具有灵活性高、维护成本低、适应性强等优点,广泛应用于建筑、交通、电力等领域。

2.太阳能热利用(Solar Thermal Utilization)太阳能热利用是将太阳能热辐射转化为热能的过程,常用于供热和供热水。

太阳能热利用主要有两种方式:太阳能热水器和太阳能集热系统。

太阳能热水器利用太阳能的热辐射,通过热辐射集热器将太阳能转化为热能,然后将热能传递给水,使其升温。

太阳能热水器一般包括集热器、储水装置和辅助加热系统。

其中,集热器是太阳能热水器的关键部分,它通常由黑色涂层玻璃、集热板和管道组成,具有较高的热吸收和传导能力。

太阳能集热系统包括平板式太阳能集热器和聚光式太阳能集热器。

平板式太阳能集热器是将太阳光集中在平板集热器上,采用导热液循环或空气对流的方式将热能传递到热水或蒸汽中。

《太阳能热利用基础》课件

《太阳能热利用基础》课件

市场前景
全球市场需求
随着环保意识的提高和可再生能源的推广,全球市场对太 阳能热利用技术的需求将会持续增长。
技术创新和应用领域拓展
随着技术的不断进步和应用领域的拓展,太阳能热利用技 术的应用前景将会更加广泛。
政策支持和投资环境
各国政府对可再生能源的支持力度不断加大,同时投资环 境也在不断改善,为太阳能热利用技术的发展提供了良好 的机遇。
政策支持与推动
政府补贴和奖励政策
政府可以通过提供补贴和奖励政策来鼓励太阳能热利用技术的发 展和应用。
政府采购政策
政府可以制定采购政策,优先采购太阳能热利用技术产品和服务 。
法律法规和标准制定
政府可以通过制定相关法律法规和标准来规范和推动太阳能热利 用技术的发展和应用。
05 太阳能热利用的案例分析
段。
系统设计流程
需求分析
明确系统设计的目的和要求,分析用户需求 和市场状况。
详细设计
对系统各部分进行详细设计,包括结构设计 、热力设计、控制设计等。
方案制定
根据需求分析,制定系统设计的初步方案和 构想。
优化与改进
根据详细设计的结果,对系统进行优化和改 进,提高性能和降低成本。
系统优化与改进
优化能源转换效率
04 太阳能热利用的挑战与前 景
ቤተ መጻሕፍቲ ባይዱ
技术挑战
太阳能热利用技术的效率提升
01
目前太阳能热利用技术的效率相对较低,需要进一步研究和改
进以提高其效率。
太阳能热利用技术的稳定性
02
由于太阳能热利用技术受到天气、季节和地理位置等因素的影
响,其稳定性有待提高。
太阳能热利用技术的可靠性
03
太阳能热利用技术的可靠性是影响其大规模应用的重要因素,

太阳能热利用技术

太阳能热利用技术

太阳能热利用技术引言随着全球对可再生能源的需求不断增加,太阳能作为一种无污染、可再生的能源,受到了广泛关注。

太阳能热利用技术是指通过利用太阳辐射产生的热能来满足人类的供热、供暖和供热水等需求。

它不仅可以减少对传统化石能源的依赖,还可以降低温室气体排放,对于解决能源和环境问题具有重要意义。

太阳能热利用技术的原理太阳能热利用技术主要通过太阳辐射的吸收、转换和储存来实现。

其主要原理如下:1.太阳辐射吸收:太阳辐射中的可见光被吸收后转化为热能,这是太阳能热利用技术最基本的步骤。

吸收材料通常是黑色或暗色物质,如黑色涂层、黑色液体或固体等。

2.热量传导:吸收到的热量通过导热材料传导到需要加热的物体或介质中,如水、空气或热储存材料等。

3.热能转换:吸收到的热能可以通过不同的方式进行转换,常见的转换方式包括传导、对流、辐射和相变等。

4.热能储存:当太阳辐射不足时,可以将多余的热能储存起来以供后续使用。

常见的储热材料包括水、岩盐、沸石等。

太阳能热利用技术的应用太阳能热利用技术广泛应用于以下几个领域:1. 太阳能集热器太阳能集热器是太阳能热利用技术最常见和成熟的应用之一。

它主要由集热器、传导管道和储存装置组成。

通过吸收太阳辐射产生的热量,将其转化为可供人们使用的温水或蒸汽。

太阳能集热器广泛应用于供暖、供热水和工业生产等领域。

2. 太阳能空调系统太阳能空调系统是一种利用太阳能进行制冷和供冷的技术。

它通过太阳能集热器将太阳辐射转化为热能,再通过吸收式制冷机或吸附式制冷机等装置将热能转化为冷能。

太阳能空调系统在节约能源、减少污染和改善室内环境等方面具有重要意义。

3. 太阳能温室太阳能温室是一种利用太阳辐射进行温室种植的技术。

它利用太阳能集热器将太阳辐射转化为热量,提供适宜的温度和光照条件,从而促进植物生长和增加产量。

太阳能温室在解决粮食安全和提高农业生产效益方面具有重要作用。

4. 太阳能工业加热太阳能工业加热是一种利用太阳能进行工业生产加热的技术。

太阳能利用的原理及方式

太阳能利用的原理及方式

太阳能利用的原理及方式光电转换原理是利用光电效应将太阳能转化为电能。

太阳能光子照射到半导体材料上时,将激发半导体中的电子,使其从价带跃迁到导带,形成电子-空穴对。

通过半导体材料的pn结形成的电场,将电子和空穴分离,并引导流向外部电路,从而产生电流。

利用这种原理,可以制造太阳能电池,将光能转化为电能。

光热转换原理是利用太阳光的热效应将太阳能转化为热能。

太阳能光子照射到吸热体上时,将被吸收并转化为热能。

吸热体通常采用具有高吸收率和低反射率的材料,如黑色涂层或具有特殊表面形态的材料。

热能将被吸热体吸收后,通过导热、对流或辐射等方式传输到负载介质,用于供热、发电、热水等。

光化学转换原理是指利用太阳光的光化学反应将太阳能转化为化学能。

光化学转换主要应用于光合作用中的植物和微生物,通过光能驱动化学反应,将二氧化碳和水转化为有机物质和氧气。

光合作用不仅可以为植物提供生长所需的能量,也可以为人类提供食物、药物和化学品等有机物质。

太阳能热利用是指利用太阳能的热效应将太阳能转化为热能。

常见的太阳能热利用方式有:1.太阳能热水器:利用太阳能将水加热,用于洗浴、清洁、供暖等。

2.太阳能空调:通过太阳能热水或太阳能吸热体将室内空气或制冷剂加热,实现制冷、供暖和通风等功能。

3.太阳能干燥:利用太阳能热源将农产品、粮食等进行干燥,提高保存和加工的效率。

4.太阳能蓄热墙体:利用太阳能吸热体将阳光辐射吸热并储存起来,供室内供暖。

太阳能光利用是指利用太阳能的光效应将太阳能转化为电能。

常见的太阳能光利用方式有:1.太阳能电池板:将太阳能光子转化为电能,用于发电。

2.光伏发电站:大规模建设的太阳能电池阵列,用于集中发电。

3.太阳能光热发电:利用太阳能热性质将水加热为蒸汽,驱动汽轮机发电。

4.太阳能光化学发电:利用太阳能驱动光化学反应将太阳能转化为化学能,用于发电。

总结起来,太阳能利用的原理主要包括光电转换、光热转换和光化学转换,利用方式包括太阳能热利用和太阳能光利用。

太阳能利用技术介绍

太阳能利用技术介绍

太阳能利用技术介绍随着人们对可再生能源的需求不断增加,太阳能作为一种清洁、可再生的能源资源,受到了越来越多的关注和重视。

太阳能利用技术经过多年的发展与完善,已经具备了较高的成熟度和广泛的应用领域。

本文将介绍太阳能利用的原理、技术及其应用领域,以及未来的发展趋势。

一、太阳能利用的原理太阳能利用的基本原理是利用太阳辐射中的光能和热能,将其转化为电能或热能。

太阳光中的光子可以被光伏电池吸收并转化为电能,而太阳能热则可以通过太阳能热水器、太阳能集热器等设备将其转化为热能。

这些技术的应用,能够有效提供清洁、稳定并且可再生的能源。

二、太阳能利用技术1.光伏发电技术光伏发电技术是利用光伏电池将太阳能转换为电能的技术。

光伏电池的工作原理是利用半导体材料的光电效应,将太阳光的能量转化为电能。

目前,常见的光伏电池类型主要包括多晶硅、单晶硅和薄膜太阳能电池等,它们在不同的应用场景下拥有不同的优势。

光伏发电技术已经在全球范围内得到了广泛的应用,被广泛用于家庭、工业和商业领域的电力供应。

2.太阳能热利用技术太阳能热利用技术是利用太阳能将其转化为热能的技术。

常见的太阳能热利用设备包括太阳能热水器、太阳能空调和太阳能集热系统等。

太阳能热水器通过太阳能集热器将太阳能热转化为热水,为家庭供应热水;太阳能空调则通过太阳能集热系统对空气进行加热或制冷,实现空调效果。

3.太阳能光热利用技术太阳能光热利用技术是利用太阳能将其转化为光热能的技术。

太阳能光热利用技术通常应用于太阳能发电站和工业生产等领域。

通过太阳能集热器收集太阳能,并将其转化为高温热能,用于产生蒸汽驱动涡轮发电机,从而产生电能。

三、太阳能利用的应用领域1.家庭及商业用途太阳能在家庭及商业用途方面有着广泛的应用。

家庭用户可以通过安装太阳能光伏发电系统和太阳能热水器,实现自家的电力供应和热水供应。

商业领域也可以通过太阳能光伏系统来减少能源成本,提高能源利用效率。

2.工业生产太阳能在工业领域也有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳辐射光谱
各种颜色的光都有相应的波长范围。红色光的 波长为700nm,光谱范围为640~750 nm;橙 色光的波长为620 nm,光谱范围为600~640 nm;黄色光的波长为580 nm,光谱范围为 550~600 nm;绿色光的波长为510 nm,光谱 范围为480~550 nm;蓝色光的波长为470 nm, 光谱范围为450~480 nm;紫色光的波长为420 nm,光谱范围为400~450 nm。通常人们把太 阳光的各色光按频率或波长大小的次序排列成 的光带图,叫做太阳光谱。
E mc2 0.0481024 (31010 )2 erg 0.000 043 erg 4.31012 J
太阳的辐射区
• 辐射区的范围约从0.25 R⊙到0.8 R⊙,密 度和温度都很快向外减小,核反应区产 生的能量经此区以辐射转移的方式向外 传输,从核反应区出来的是高能γ射线光 子,经辐射区物质接连地吸收并再辐射 出较低能量的光子,自内向外依次变为X 射线、远紫外、紫外、可见光光子,最 后以可见光光子及其他形式辐射出来。
太阳能的一般情况
世界上最丰富的永久性能源是太阳能。地 球截取的太阳辐射能通量为:1.7×1014kW。 其中:约30%被直接反射回宇宙空间;47% 转变为热,以长波辐射形式再次返回太空; 约23%是水蒸发、凝结的动力和风与波浪 的动能;植物通过光合作用吸收的能量不 到0.5%。
s
地球每年接收的太阳能总量为 1×1018kW· h,相当于5×1014桶原油, 是探明原油储量的几百倍,是世界 年耗能总量的一万余倍。
到了近代和现代:
• 1920~1930年,美国加州地区开始用太阳能集 热器为用户供应热水。 • 1938年美国麻省理工学院建成了第一座太阳能 采暖建筑。 • 1973年爆发能源危机,进一步促进了新能源的 研究与发展,许多国家把重视太阳能的开发利 用放在了战略地位上考虑。一大批太阳能利用 示范工程被建立。
当今 热传递问题(传热学)
如何提高效率
间接利用(工程热力学)
我国目前的各种用能的比例见下图:
美国目前的各种用能的比例见下图:
开发可再生能源的必要性

但化石能源是短时间不可再生的,叫做一次 性能源。这些能源的藏量有限,很快就会枯 竭,而且在使用时带来严重的环境污染。因 此,探索使用可再生的能源是十分必要的, 太阳能、生物质能、风能等是可再生能源的 主体,特别是太阳能:取之不尽,用之不竭, 清洁可靠、免费供应、人人均等。
二.我国近年太阳能利用的发展
• 目前,我国已经成为世界上最大的太阳 能利用大国,但不是强国。我国上规模 的厂家有120多家,小厂家一起,超过 5000家,年产值400多亿元。这些成绩 的取得都是与我国科学工作者和太阳能 专家分不开的。
第二章 太阳辐射
一.太阳
太阳是离地球最近的一颗恒星。它是一 个巨大而炽热的等离子体,主要成份为 氢和氦元素。太阳几乎为球形,直径为 1.392×109m,是地球直径的109倍,体 积比地球大130万倍。日地平均距离为 1.5×108km,从太阳发出的光线到达地 球需要8分钟。

美国建立了首座5000kW的塔式热发电厂;
• •
美国建立了首座大型太阳能热泵采暖系统(供 暖面积27870 m2 ,平板集热器面积3344 m2) 1984的太阳能光电池的定单量已达18.5MW
二.我国近年太阳能利用的发展
• 我国能源从总体上相当丰富,水力资源含 量居世界第1位,煤碳居第3位,石油居第 8位,天然气居第16位。但我国人口众多, 按人均分配看,却是一个真正能源缺口大 国,人均拥有的能量储量仅有美国的十七 分之一。因此我国在太阳能利用方面有强 烈的愿望和需求。
一年中某日的赤纬可由下式计算:
284 n 23.45sin(3 60 ) 365
o
n是所求当日在一年中的日子数 (从一月一日算起)。
2.地球的自转与太阳时
• 地球自转一周360°,所需时间24小时; 因此相当于每小时转15°。由于各地所 采用的时间标准不一样,所以我们生活 中的时间并不是真正太阳升起降落的时 间(称为太阳时)。太阳时的午时(中 午12时)太阳光线正好通过当地的子午 线。(或简单地说,正好在南北方向上)
• 在国外,第一个大规模应用太阳能的人,是希 腊的著名科学家阿基米德。公元前212年,他 用许多平面镜将阳光聚集起来,烧毁了攻击西 西里岛西拉修斯港的罗马舰队。 • 15世纪一名阿拉伯炼丹术士就使用了大马士革 镜进行了太阳能蒸馏。实现了人工的海水淡化 过程。 • 18世纪初发明了第一架用太阳能驱动的发动机; 1874年在智利北部Las Salinas建造了第一个大 型(4700m2)的太阳能蒸馏水厂;埃及成功地 运行了灌溉用的太阳能水泵。
测量辐射量一般有:
• 直 太阳辐照度,W/m2 • H —— 一天的辐照量,J/m2· d • I —— —小时的辐照量,J/m2· h
五.集热表面太阳入射角的计算
• 太阳集热器所截取的太阳直射辐射能量, 主要取决于太阳入射角θ。 • 而入射角θ与太阳赤纬角δ、地理纬度 、 集热器倾角β和方位角γ以及太阳时角ω有 关。
θ
β
• 赤纬角δ——太阳光线垂直照射在地球表面处 的地理纬度。 • 太阳时角ω——用角度表示太阳时,叫太阳时 角,15°/h,上午取负,下午取正。 • 太阳入射角θ——太阳光线与集热器表面法线 之间的夹角。 • 实际使用时应使入射角θ越小越好。(不是光 线与集热器平面的夹角)。 • 集热器的倾角β——集热器平面与地平面的夹 角。
2
3
4
6 7 8 月份/月 图 2-3 时差曲线
5
9
10
11
12
一年中时差变化曲线
太阳时角
• 用角度表示的太阳时叫太阳时角,以ω 表示。太阳午时ω=0°,上午取负值, 下午取正值。每昼夜变化为±180°,每 小时15°。例如上午10点钟时
ω=-30°;下午3点钟时,ω=45°。
三.太阳辐射光谱
• 在平均日地距离处,大气层外垂直于辐 射传播方向上单位面积上的太阳辐射照 度为1353W/m2,称为太阳常数,用G表 示:即 G=1353W/m2 • 太阳常数是太阳光中所包含的总能量, 但太阳光中各种波长的辐射都有,描述 各种波长的光在总能量中的比重关系称 为光谱。
太阳辐射光谱
• 太阳不仅发射可见光,同时还有不可见光。整 个太阳光谱包括紫外区、可见区和红外区3个 部分。但其主要部分,是由0.3~3.0μm的波长 所组成的。其中,波长小于0.4μm的紫外区和 波长大于0.76μm的红外区,则是人眼看不见的 紫外线和红外线;波长为0.4μm~0.76μm的可 见区,就是我们所看到的白光。在到达地面的 太阳光辐射中,紫外区的光线占的比例很小, 大约为8.03%;主要是可见区和红外区的光线, 分别占46.43%和45.54%。
二.地球绕太阳的运行规律
1.地球的公转与赤纬角 • 贯穿地球中心与南、北两极相连的线称为地 轴。地球除了绕地轴自转外(自转一周约24 小时),还在椭圆形轨道上围绕太阳公转, 运行一周为1年,约365天。 • 地球自转轴与椭圆轨道平面(称黄道平面) 的夹角为66°33′。地轴在空间的方位始终 不变,因而赤道平面与黄道平面的夹角为 23°27′。这就造成了太阳光线垂直照射在 地球表面的位置一年中在± 23°27′ 纬度之 间变化,这就是地球上形成四季的原因。
紫外线 波长范围/μm 所占总能量百分率/% 相应范围的辐照度/W/m2 0~0.38 可见光 0.38~0.78 47.29 红外线 0.78~∞ 45.71 618
7 95
640
四.太阳辐射的测量
• 太阳辐射可分为:直射辐射、散射辐射。 • 直射辐射——直接来自太阳而没有改变方向的 太阳辐射。 • 散射辐射——太阳光受大气层散射影响而改变 方向的太阳辐射。 • 太阳总辐射——接收到的太阳辐射总和,直射 辐射+散射辐射。 • 长波辐射——任何物体当温度高于绝对零度时, 都会发出辐射能,温度不高时,辐射波长一般 大于3μm。
地球在一年中相对太阳的位置
3月21日 春分
6月22日 夏至 9月23日 秋分
12月23日 冬至
在北半球
春分及秋分时,太阳光线正射(垂直照 射)在赤道上,赤纬角都为零,昼夜时 间相等。 • 夏至(6月22日),太阳光线正射在北回 归线上,δ= 23°27′。 • 冬至(12月22日),太阳光线正射在南 回归线上,δ= -23°27′。
E 9.87 sin 2 B 7.53 cos B 1.5 sin B
360 ( n 81) B 364
n是所求日期在一年中的日子数 (从一月一日算起)。
0 15 10 5 0 -5 -10 -15 1
30
60
90
日子数/日 120 150 180 210 240 270 300 330 360
• 集热器方位角γ——集热器表面法线在地平面 上的投影与正南方的夹角。 • 太阳高度角α——太阳光线与其在地平面上的 投影线组成的夹角。(亦即太阳光线与地平面 的夹角)。 • 太阳方位角γs——太阳光线在地上的投影线与 正南方向线的夹角。正南方为0°,向西为正, 向东为负。(-180°<γs<180°) • 太阳天顶角θz——太阳光线与地平面法线之间 的夹角,与α互为余角,即θz+α=90°
地球与太阳的相对大小
太阳 地球
太阳常数 G=1353W/ m2 直 径 9 1.39×10 m
32°
直 径 1.27×107m
1.495×1011m (±1.7%)
• 太阳发出巨大能量向宇宙辐射,到达地球大气 层上界的太阳能量只占太阳总功率的1/20亿, 即180×1012kW。到达地球外表高层的太阳能 中,30%被大气层反射,23%被吸收,47%左 右可到达地面。尽管只有47%到达地面,其功 率已达85×1012kW。相当于全世界发电量的几 十万倍。 • 太阳表面的温度是变化的,在一般的太阳能热 利用中,可将太阳表面温度看成固定温度 6000K(5700K)。 • 太阳光中有各种波长的光线,一般取0.3~3μm。 已占太阳光的98%以上。
相关文档
最新文档