BP神经网络的几种改进方法参考PPT
最新 BP神经网络算法及其改进的几个方法-精品
BP神经网络算法及其改进的几个方法1 概述人工神经网络(Artificial Neural Networks,ANN),是基于人类大脑的生物活动所提出的,是一个模型。
它由众多节点通过一定的方式互联组成,是一个规模巨大、自适应的系统。
其中有一种学习算法是误差传递学习算法即BP 算法。
BP算法是人工智能最常用到的学习方法,从一定意义上来讲,BP算法的提出,终结了多层网络在学习训练算法上的空白史,是在实际应用中最有效的网络训练方法,对ANN的应用和发展起到了决定性的作用。
BP算法是使用从输出层得到的误差来估算前一层的误差,再利用该误差估算更前一层的误差。
依次进行,就会获得其他所有各层的估算误差。
这样就实现了将从输出层的得到误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程[1]。
但是,BP算法也存在着不可忽视的缺陷。
基于此,该文总结介绍了BP的改进方法。
2 BP算法的基本思想2.1 BP算法的基本原理BP算法是有监督指导的算法,它的学习训练过程一般分为两步:首先是输入样本的正向传递;第二步误差的反向传递;其中信号正向传递,基本思想是样本值从输入层输入,经输入层传入隐藏层,最后通过输出层输出,中间层对样本数据进行处理操作,利用各层的权值和激活函数对数据进行操作然后在输出层获得输出[2];接下来就是反向传递,算法得到的实际输出值与期望目标输出之间必然会有误差,根据误差的大小来决定下一步的工作。
如果误差值较小满足训练的精度要求,则认为在输出层得到的值满足要求,停止训练;反之,则将该误差传递给隐藏层进行训练,按照梯度下降的方式,对权值和阈值进行调整,接着进行循环,直到误差值满足精度要求停止训练[3]。
3 BP算法的缺陷尽管BP算法有着显著的优点,但是在实际应用过程中,BP算法会出现很多问题。
尤其是下面的问题,对BP神经网络更好的发展有很大影响。
有的甚至会导致算法崩溃。
3.1 收敛速度的问题BP算法在进行训练学习时,收敛速度慢,特别是在网络训练达到一定的精度时,BP算法就会出现一个长时间的误差“平原”,算法的收敛速度会下降到极慢[4]。
神经网络方法-PPT课件精选全文完整版
信号和导师信号构成,分别对应网络的输入层和输出层。输
入层信号 INPi (i 1,根2,3据) 多传感器对标准试验火和各种环境条件
下的测试信号经预处理整合后确定,导师信号
Tk (k 1,2)
即上述已知条件下定义的明火和阴燃火判决结果,由此我们
确定了54个训练模式对,判决表1为其中的示例。
15
基于神经网络的融合算法
11
局部决策
局部决策采用单传感器探测的分析算法,如速率持续 法,即通过检测信号的变化速率是否持续超过一定数值来 判别火情。 设采样信号原始序列为
X(n) x1 (n), x2 (n), x3 (n)
式中,xi (n) (i 1,2,3) 分别为温度、烟雾和温度采样信号。
12
局部决策
定义一累加函数 ai (m为) 多次累加相邻采样值 的xi (差n) 值之和
样板和对应的应识别的结果输入人工神经网络,网络就会通过
自学习功能,慢慢学会识别类似的图像。
第二,具有联想存储功能。人的大脑是具有联想功能的。用人
工神经网络的反馈网络就可以实现这种联想。
第三,具有容错性。神经网络可以从不完善的数据图形进行学
习和作出决定。由于知识存在于整个系统而不是一个存储单元
中,一些结点不参与运算,对整个系统性能不会产生重大影响。
18
仿真结果
19
仿真结果
20
2
7.2 人工神经元模型—神经组织的基本特征
3
7.2 人工神经元模型—MP模型
从全局看,多个神经元构成一个网络,因此神经元模型的定义 要考虑整体,包含如下要素: (1)对单个人工神经元给出某种形式定义; (2)决定网络中神经元的数量及彼此间的联结方式; (3)元与元之间的联结强度(加权值)。
BP神经网络基本原理与应用PPT
BP神经网络的学习
• 网络结构 – 输入层有n个神经元,隐含层有q个神经元, 输出层有m个神经元
BP神经网络的学习
– 输入层与中间层的连接权值: wih
– 隐含层与输出层的连接权值: – 隐含层各神经元的阈值: bh
who
– 输出层各神经元的阈值: bo
– 样本数据个数: k 1,2, m
– 激活函数:
(二)误差梯度下降法
求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负 梯度方向走,可使得J(a)下降最快。 s(0):点a0的搜索方向。
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
直观解释
当误差对权值的 偏导数大于零时,权 值调整量为负,实际 输出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。当误 差对权值的偏导数小 于零时,权值调整量 为正,实际输出少于 期望输出,权值向增 大方向调整,使得实 际输出与期望输出的 差减少。
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的网络
人工神经网络(ANN)
c
k l
c
k j
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
式中: —学习率 最终形式为:
BP神经网络的学习
(三) BP算法调整,隐藏层的权值调整
隐层各神经元的权值调整公式为:
BP神经网络模型PPT课件
激活函数: f()
误差函数:e
1 2
q o1
(do (k )
yoo (k ))2
BP网络的标准学习算法
第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值 和最大学习次数M。
第二步,随机选取第 k个输入样本及对应 期望输出
修正各单元权 值
误差的反向传播
BP网络的标准学习算法-学习过程
正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
x(k) x1(k), x2(k), , xn(k)
do (k) d1(k),d2(k), ,dq(k)
BP网络的标准学习算法
第三步,计算隐含层各神经元的输入和
输出
n
hih (k ) wih xi (k ) bh
i 1
h 1, 2, , p
hoh (k) f(hih (k)) h 1, 2, , p
f(
yio (k)))2)
hoh (k)
hoh (k)
hih (k)
( 1 2
q
((do (k)
o1
p
f(
h1
whohoh (k)
bo )2 ))
hoh (k)
hoh (k)
hih (k)
q o1
(do (k )
神经网络BP网络课堂PPT
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生
《神经网络优化计算》PPT课件
l k
1
y
l j
y
l j
l j
f
' (v)
k k
k
l k
1
[(dk Ok ) f '(vk )]
f '(vk )
O
d O d
前向计算
反向传播
智能优化计算
3.3 反馈型神经网络
一般结构 各神经元之间存在相互联系
分类 连续系统:激活函数为连续函数 离散系统:激活函数为阶跃函数
3.2 多层前向神经网络
3.2.1 一般结构 3.2.2 反向传播算法
3.3 反馈型神经网络
3.3.1 离散Hopfield神经网络 3.3.2 连续Hopfield神经网络 3.3.3 Hopfield神经网络在TSP中的应用
智能优化计算
3.1 人工神经网络的基本概念
3.1.1 发展历史
“神经网络”与“人工神经网络” 1943年,Warren McCulloch和Walter Pitts建立了
ym 输出层
智能优化计算
3.1 人工神经网络的基本概念
3.1.3 网络结构的确定
网络的拓扑结构
前向型、反馈型等
神经元激活函数
阶跃函数
线性函数
f (x) ax b
Sigmoid函数
f
(
x)
1
1 e
x
f(x)
+1
0
x
智能优化计算
3.1 人工神经网络的基本概念
3.1.4 关联权值的确定
智能优化计算
第三章 神经网络优化计算
标准BP算法及改进的BP算法课件
2. 计算网络的输出和误差。
动量项BP算法的流程和公式
01
3. 更新权重和偏置,同时考虑动 量项。
02
4. 重复执行步骤2和3,直到达到 预设的迭代次数或满足收敛条件 。
动量项BP算法的流程和公式
公式 1. 计算输出:`y = sigmoid(Wx + b)`
2. 计算误差:`E = d - y`
标准BP算法的优缺点
优点 适用于多类问题:标准BP算法可以解决回归和分类问题。
灵活性强:可以自由设计神经网络的架构和激活函数等元素。
标准BP算法的优缺点
• 自适应能力强:能够自适应地学习和调整权重和 偏置等参数。
标准BP算法的优缺点
01 02 03 04
缺点
易陷入局部最小值:标准BP算法使用梯度下降算法优化权重和偏置 ,可能会陷入局部最小值,导致无法获得全局最优解。
神经网络的基本元素
神经元是神经网络的基本元素,每个神经元接收输入信号,通过激 活函数进行非线性转换,并输出到其他神经元。
神经网络的结构
神经网络由输入层、隐藏层和输出层组成,每一层都包含若干个神 经元。
BP算法简介
BP算法的定义
BP算法是一种通过反向传播误差 来不断调整神经网络权重的训练
算法。
BP算法的原理
动量项BP算法的流程和公式
3. 更新权重:`W = W - α * E * x - β * ΔW`
ቤተ መጻሕፍቲ ባይዱ
4. 更新偏置:`b = b - α * E - β * Δb`
其中,α和β分别是学习率和动 量项系数,ΔW和Δb是上一次更
新的权重和偏置。
动量项BP算法的实例
BP神经网络PPTppt课件
输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl
该
单
元
的
净
输
入
实
际
输
出
n l1
n
e
t
l j
Ol l 1 ij i
i 1
O
l j
f
n
e
t
l j
1
=
1+
e
➢ 可见层
输入层 (input layer) 输入节点所在层,无计算能力
输出层 (output layer) 节点为神经元
➢ 隐含层( hidden layer) 中间层,节点为神经元
可编辑课件PPT
20
具有三层计算单 元的前馈神经网络结 构
可编辑课件PPT
21
2. 感知器神经网络(感知器)、感知器神经元
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;
双
极
函
数
f
net
=
sgn
net
=
1
-
1
net 0 net < 0
m atlab函 数 hardlim s
D .阈 值 函 数
f
net
=
-
net net <
其 中 , , 非 负 实 数
可编辑课件PPT
单层感知器网络
感知器神经元
可编辑课件PPT
22
2. 感知器神经网络、感知器神经元(续)
感知器神经元的传递函数
神经网络PPT课件-基于MATLAB算法(BP.遗传算法.RBF.小波)
正因为人工神经网络是对生物神经网络的模仿,它具有一些传统 逻辑运算不具有的优点。主要包括: 一、非线性。非线性是自然界的普遍特性。人脑的思考过程就是 非线性的。人工神经网络通过模仿人脑神经元结构的信息传递过 程,可以进行线性或者非线性的运算,这是人工神经网络的最特 出的特性。
二、自适应性。神经网络的结构中设置了权值和阈值参数。网络 能够随着输入输出端的环境变化,自动调节神经节点上的权值和 阈值。因此,神经网络对在一定范围变化的环境有பைடு நூலகம்强的适应能 力。适用于完成信号处理、模式识别、自动控制等任务。系统运 行起来也相当稳定。
③引入陡度因子
误差曲面上存在着平坦区域。权值调整进入平坦区的原因是神经元输出进入了转 移函数的饱和区。如果在调整进入平坦区域后,设法压缩神经元的净输入,使其 输出退出转移函数的饱和区,就可以改变误差函数的形状,从而使调整脱离平坦 区。实现这一思路的具体作法是在原转移函数中引入一个陡度因子。
BP神经网络的MATLAB算法
BP神经网络模型
• BP (Back Propagation)神经网络,即误差反向传播算法的学习过 程,由信息的正向传播和误差的反向传播两个过程组成。输入 层各神经元负责接收来自外界的输入信息,并传递给中间层各 神经元;中间层是内部信息处理层,负责信息变换,根据信息 变化能力的需求,中间层可以设计为单隐含层或者多隐含层结 构;最后一个隐含层传递到输出层各神经元的信息,经进一步 处理后,完成一次学习的正向传播处理过程,由输出层向外界 输出信息处理结果。
l n 1 l
m n a
l log 2 n
步骤2:隐含层输出计算 根据输入变量 X,输入层和隐含层间连接权值 ij 以及隐含层阈值 a, 计算隐含层输出H。
BP神经网络 PPT课件
好的网络进行预测
• (6)利用训练好的BP网络对新数据进行仿真,具体程序为
• %利用训练好的网络进行预测 • %当用训练好的网络对新数据pnew进行预测时,也应作相应的
9145
0.20
10460
0.23
11387
0.23
12353
0.32
15750
0.32
18304
0.34
19836
0.36
21024
0.36
19490
0.38
20433
0.49
22598
0.56
25107
0.59
33442
0.59
36836
0.67
40548
0.69
42927
0.79
43462
公路货运量/万吨
• sqrs = [20.55 22.44 25.37 27.13 29.45 30.1 30.96 34.06 36.42 38.09 39.13 39.99 41.93 44.59 47.3 52.89 55.73 56.76 59.17 60.63]
• %机动车数(单位:万辆)
• Sqjdcs = [0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6 2.7 2.85 2.95 3.1]
5、BP神经网络的优缺点
优点:
•非线性映照能力:神经网络能以任意精度逼近任何非线性连续函 数。在建模过程中的许多问题正是具有高度的非线性。 •并行分布处理方式:在神经网络中信息是分布储存和并行处理的, 这使它具有很强的容错性和很快的处理速度。 •自学习和自适应能力:神经网络在训练时,能从输入、输出的数 据中提取出规律性的知识,记忆于网络的权值中,并具有泛化能 力,即将这组权值应用于一般情形的能力。 •数据融合的能力:神经网络可以同时处理定量信息和定性信息, 因此它可以利用数值运算和人工智能技术(符号处理)。 •多变量系统:神经网络的输入和输出变量的数目是任意的,对单 变量系统与多变量系统提供了一种通用的描述方式,不必考虑各 子系统间的解耦问题。
神经网络优化方法bp算法缺陷培训课件
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之 处,请联系网站或本人删除。
3.1.7 基于Levenberg-Marquardt法的改进算法
梯度下降法在最初几步下降较快,但随着接近最优值, 由于梯度趋于零,致使误差函数下降缓慢,而牛顿法则 可在最优值附近产生一个理想的搜索方向。
➢ 导致的结果:
➢ 使得训练经常陷入某个局部极小点而不能 自拔,从而使训练无法收敛于给定误差。
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之
3.1 处B,P请网联络系网学站或习本人算删除法。的改进
BP算法缺陷小结
➢ ⑴ 易形成局部极小而得不到全局最优; ➢ ⑵ 训练次数多使得学习效率低,收敛速度慢; ➢ ⑶ 隐节点的选取缺乏理论指导; ➢ ⑷ 训练时学习新样本有遗忘旧样本的趋势。
yoo ( k)
各节点的净输入过大
1.0
0.5
yi 0
本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿;如有不当之
3.1 处B,P请网联络系网学站或习本人算删除法。的改进
存在多个极小点
➢影响------易陷入局部最小点
原因:
以误差梯度下降为权值调整原则,
误差曲面上可能存在多个梯度为0的点,多数极小点都是 局部极小,即使是全局极小往往也不是唯一的,使之无 法辨别极小点的性质
3.1 B处P,网请联络系网学站或习本人算删除法。 的改进
存在平坦区域的原因分析:
➢ 第一种可能是 y o o ( k ) 充分接近 d o ( k ) 对应着误差的某个谷点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢大家!
11
状态,尤其下降趋势明显时, 则说明此时学习率可以按一定比 例增大.
8
BP神经网络的几种改进方法
与其他优化算法的结合:
遗传算法、利用混沌运动遍历的特点的混沌算法、模拟退 火算法 其中与遗传算法结合的论文相对较多,两者算法特性存在 明显互补性,前者利用梯度下降法,使权值向它的误差函 数负梯度方向进行调整, 以实现最快减少误差,局部微调 性强,但容易陷于局部最优点。后者主要特点是群体搜索 策略和群体中个体之间的信息交换,搜索不依赖于梯度信 息,算法鲁棒性强,不易陷于局部最优,但是收敛到全局 最优解所需的时间可能很长
9
BP神经网络的几种改进方法
发展趋势:
人工神经网络正向模拟人类认知的道路上更加深入发展,与 模糊系统、遗传算法、进化机制等结合,形成计算智能,成 为人工智能的一个重要方向,将在实际应用中得到发展。 随着神经网络理论研究的深入以及网络计算能力的不断提 高, 神经网络的应用领域将会不断扩大, 应用水平将会不断提 高, 最终达到神经网络系统可用来帮人做事的目的, 这也是神 经网络研究的最终目标。
隐含层的神经元数可用以下公式计算:
式中k为隐含层节点数,n为输入层节点数,m为输 出 层节点数,公式计算值需要用四舍五入法进行取整,在 考虑上述公式和比较仿真的效果后确定隐含层的节点数。
7
BP神经网络的几种改进方法
4.改进的BP网络学习率
其中0.0001 ≦ λ≦0.001,此算法认为,如果ห้องสมุดไป่ตู้络误差处于下降
5
BP神经网络的几种改进方法
2.网络初始参数归一化处理
由于输入样本属于不同量纲,故对所有的输入样本,( 如: 网络初始数据)进行归一化处理并使之转化到[0,1]之间。 这里利用比例压缩法,具体公式为:
训练完成后,将最终得到的数据进行还原处理;其公式为
6
BP神经网络的几种改进方法
3.隐含层节点数选择方法的改进
▪ 1.算法自身的改变 ▪ 2.与其他优化算法的结合
3
BP神经网络的几种改进方法
提高BP网络收敛速度的方法归纳为三类:
优化网络学习率的变化方式来提高训练速度的方法。 如:动量项法、自适应学习率法、共轭梯度法、牛顿 迭代法等
优化网络初始参数方式来提高训练速度的方法。如: 对输入初始参数和网络连接权重参数进行归一化等
优化网络学习结构的参数来提高训练速度的方法。 如 :误差函数修正法、激励函数选取法等
4
BP神经网络的几种改进方法
一些具体改进方法:
1.修正BP算法的误差函数和激励函数
等效误差分量和的大小和正负的变化对收敛速度存在影 响,修正误差函数可以定义为:
激励函数也是BP算法中影响收敛的重要因素,激励函数 的选取影响着BP算法的收敛速度
BP神经网络的几种改进方法
研一队:张之武 2010年6月8日
1
BP神经网络的几种改进方法
B P网络存在的问题 :
1.对初始权值的选取很敏感 2.网络隐含层节点数选择的盲目性 3.收敛速度慢容易陷入局部极小而无法得到全局最优解 4.泛化能力较差
2
BP神经网络的几种改进方法
主要的改进策略: