浅析大数据的特点及未来发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析大数据的特点及未来发展趋势
摘要:随着二十一世纪的到来,人们已经进入了信息化的时代。计算机技术水平越来越先进,给人们的生活带来了极大的便利。在信息化的时代,人们每天接触的信息量成千上万。获取有用的数据,不仅可以有效缩短时间,而且可以满足具体需求。大数据技术正是适应现代社会的发展,从数据量巨大、结构复杂、类型众多的数据中,快速获取有价值的信息。因此本篇文章主要分析了大数据的特点,通过进一步探讨,并对其未来的发展趋势进行展望。
关键词:大数据;特点;发展趋势
大数据是继互联网、云计算技术后世界又一热议的信息技术,近几年来发展十分迅速。大数据技术的出现,给人们的生活带来了极大的便利。我们将生活中的东西数据化之后,就可以采用数据的格式对其进行存储、分析,从而获得更大的价值。
一、大数据技术的特点分析
1)开源软件得到广泛的应用
近几年来,大数据技术的应用范围越来越广泛。在信息化的时代,各个领域都趋向于智能化、科技化。大数据技术研发出来的分布式处理的软件框架Hadoop、用来进行挖掘和可视化的软件环境、非关系型数据库Hbase、MongoDb 和CounchDB等开源软件,在各行各业具有十分重要的意义。这些软件的研发,与大数据技术的发展是分不开的。
2)不断引进人工智能技术
大数据技术主要是从巨大的数据中获取有用的数据,进而进行数据的分析和处理。尤其是在信息化爆炸的时代,人们被无数的信息覆盖。大数据技术的发展显得十分迫切。实现对大数据的智能处理,提高数据处理水平,需要不断引进人工智能技术,大数据的管理、分析、可视化等等都是与人密切相关的。现如今,机器学习、数据挖掘、自然语言理解、模式识别等人工智能技术,已经完全渗透到了大数据的各个程序中,成为了其中的重要组成部分。
3)非结构化的数据处理技术越来越受重视
大数据技术包含多种多样的数据处理技术。非结构化的处理数据与传统的文本信息存在很大的不同,主要是指图片、文档、视频等数据形式。随着云计算技
术的发展,各方面对这类数据处理技术的需求越来越广泛。非结构化数据采集技术、NoSQL数据库等技术发展的越来越快。
4)分布式处理架构成为大数据处理的主要模式
大数据要处理的数据成千上万。数据的处理方法也需要不断地与时俱进。传统的数据处理方法很难满足巨大的数据的需求。随着人们的不断探索,在大数据技术的各个处理环节,分布式处理方式已经成为了主要的数据处理方法。这也是时代发展的必然。除了分布式处理方式,分布式文件系统、大规模并进行处理数据库、分布式编程环境等技术都得到了广泛的应用。
二、大数据技术的未来发展趋势分析
就现如今的发展趋势而言,大数据技术的发展如火如荼。在各个领域都得到了广泛的应用,而且就其目前的发展情况来看,大数据技术具有十分良好的发展前景。现在社会的大数据公司主要可以分为三大类,分别是技术型、创新型、数据型这三种,不论是哪一种类型的大数据公司,都是现代社会不可获缺的。人们熟悉的技术型的大数据公司通常是IT公司,这些公司十分看重数据的处理这一模块。创新型的大数据公司需要一些非常有想象力的人,对于相同的数据,他们往往有不同的见解,并发现其中的不同。而数据型的大数据公司,人们了解的比较多,如新浪、百度、网易、搜狐、淘宝等等,这些也是与人们的日常生活密切相关的,或者是一些零售的连锁企业、市政公司、金融服务公司等等,这些公司自身拥有较多的数据,也正是因为涵盖的数据较多,因而容易导致有价值的信息被忽略。在这三种不同的大数据公司中,技术型的大数据公司未来的发展将会使得技术趋向于多元化,制造出越来越多样的技术。不论是从哪个方面来说,大数据技术今后的发展都会越来越好。以下就主要分析几点发展趋势。
1)数据分析成为大数据技术的核心
数据分析在数据处理过程中占据十分重要的位置,随着时代的发展,数据分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。要想逐步实现这个功能,就必须对数据进行分析和挖掘。而数据的采集、存储、和管理都是数据分析步骤的基础,通过进行数据分析得到的结果,将应用于大数据相关的各个领域。未来大数据技术的进一步发展,与数据分析技是密切相关的。
2)广泛采用实时性的数据处理方式
在现如今人们的生活中,人们获取信息的速度较快。为了更好地满足人们的需求,大数据处理系统的处理方式也需要不断地与时俱进。目前大数据的处理系统采用的主要是批量化的处理方式,这种数据处理方式有一定的局限性,主要是用于数据报告的频率不需要达到分钟级别的场合,而对于要求比较高的场合,这种数据处理方式就达不到要求。传统的数据仓库系统、链路挖掘等应用对数据处理的时间往往以小时或者天为单位。这与大数据自身的发展有点不相适应。大数据突出强调数据的实时性,因而对数据处理也要体现出实时性。如在线个性化推荐、股票交易处理、实时路况信息等数据处理时间要求在分钟甚至秒极。要求极高。在一些大数据的应用场合,人们需要及时对获取的信息进行处理并进行适当的舍弃,否则很容易造成空间的不足。在未来的发展过程中,实时性的数据处理方式将会成为主流,不断推动大数据技术的发展和进步。
3)基于云的数据分析平台将更加完善
近几年来,云计算技术发展的越来越快,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大数据提供了分布式的计算方法、可以弹性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。此外,云计算具有十分丰富的IT资源、分布较为广泛,为大数据技术的发展提供了技术支持。随着云计算技术的不断发展和完善,发展平台的日趋成熟,大数据技术自身将会得到快速提升,数据处理水平也会得到显著提升。
4)开源软件的发展将会成为推动大数据技术发展的新动力
开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。虽然现如今商业化的软件也是发展十分迅速,但是二者之间并不会产生矛盾,可以优势互补,从而共同进步。开源软件自身在发展的同时,为大数据技术的发展贡献力量。
结语:综上所述,随着信息化时代的到来,大数据技术也已经成为了人们生活中不可或缺的重要组成部分,对各个领域的发展、人们的日常生活都具有十分