高级中学物理竞赛的数学基础学习知识(自用)

合集下载

想走上物竞之路进入清华北大?你还差这些数学知识!

想走上物竞之路进入清华北大?你还差这些数学知识!

想走上物竞之路进入清华北大?你还差这些数学知识!近期,很多刚刚入坑物竞的同学们询问这样一个问题:搞物竞需要哪些数学知识?关于这个问题,质心教育黄俏老师写了一篇关于物竞中需要掌握的数学知识的文章,供大家参考。

1参加物竞需要哪些高中知识基础?高中物理竞赛所需要的无论从知识上的广度还是思维上的难度都大于高考。

按照全天高强度学高中物理竞赛的力度来学高考物理的话,一个月就能学完了。

事实上,学习高中物理竞赛,更需要准备的是高中数学知识。

2哪些高中数学知识物竞会用到?物理竞赛需要用到的重要高中数学知识有:函数(包括三角函数、幂函数、对数函数、指数函数等),不等式(包括柯西不等式、均值不等式等),向量,多元线性方程,二次方程。

都是高中高考范围内会学到的,但同学最好在数学老师讲到这些部分之前,提前自学。

这部分翻翻高考数学参考书,稍微做做高考数学题就可以了。

当然质心教育帮大家将矢量和三角函数等内容录成了免费视频方便同学们学习(登录质心官网,点击学习——知识点——数学基础)。

物理竞赛需要的高等数学就比较零散了,初学的时候推荐买一本名字含“微积分”的书(注意不要是“数学分析”的书),重点看里面公式的应用而不是对其存在性、正确性和唯一性的证明,同样质心教育帮大家将单元函数的积分录成了免费视频(登录质心官网,点击学习——知识点——单元函数微积分)。

后续我们还会上线更多的关于数学工具的免费视频。

3高数怎么学?需要掌握哪些知识?新入坑的同学们可以看看高数教材,《高数》建议大家使用李忠老师写的、北京大学出版社出的这本书。

这本《高数》分上、下册,大部分同学只会用到上册,李忠老师是数学学院的老院长,专门为物理系的同学编写了这本教材,可以仔细读一下。

就是这本《高数》这本书使用方法是这个样子的,我们重点要掌握的是其中的概念和简易的运算,特别复杂的运算是可以不用掌握的。

这本书里面特别复杂的概念也都已经去掉了,所以这本书看起来还是挺好的。

我们至少需要掌握其中的极限、单元函数的导数、单元函数的定积分、不定积分(不用掌握特别复杂的方法),泰勒展开以及简易的微分方程(可分离变量的微分方程)就可以了,至于后面的更复杂的东西遇到的时候再看,不遇到的时候就把书放在这儿,把它当工具书来用。

中学物理必会数学知识大全

中学物理必会数学知识大全

中学物理必会数学知识大全
物理和数学是联系最紧密的两门学习,运用物理工具解决物理问题,是最基本和重要的能力。

以下是中学物理常用的数学知识总结,非常全面哦。

1、有效数字——读数、计算时常用
2、常用三角函数及关系,力的合成和分解中常用
常用特殊角
3、斜率——图像题常用
4、常见的面积和体积——图像、计算题常用
5、向量——矢量计算时常用
6、角度的另一单位:弧度——圆周运动中常用
7、因式分解和均值定理——计算、求最值时常用
8、一元二次方程与不等式——综合计算题常用
有些复杂的二次函数,可以采用配方法去找规律,从而求最值和变化规律。

9、一般正弦和余弦函数及诱导公式——交变场、振动和波常用
以下数学知识在物理竞赛中常用10、三角函数的两个重要定理
11、三角恒等变换
12、导数和微分
13、基本积分公式。

物理竞赛微积分知识点总结

物理竞赛微积分知识点总结

物理竞赛微积分知识点总结1.导数与微分导数是微积分的重要概念,它描述了函数在某一点处的变化率。

对于物理竞赛而言,导数在描述速度、加速度等动力学量时有着重要的应用。

另外,在曲线的切线方程、求解最值等问题中,导数也发挥着重要作用。

微分是导数的一种运算形式,它可以捕捉函数在某一点附近的局部线性变化。

在物理问题中,微分常用于描述微小的变化量,比如位移、速度、加速度等。

2.积分与定积分积分是导数的逆运算,它可以用来求解函数的原函数或不定积分。

在物理竞赛中,积分常用于计算曲线下的面积、求解物理问题中的总量、平均值等。

定积分是对指定区间上的函数值进行积分,它可以用于求解质点在一段时间内的位移、速度、加速度等物理量,还可以用于计算某些物理量的平均值、总量等问题。

3.微积分基本定理微积分基本定理是微积分的核心定理,它建立了积分与导数之间的联系。

第一积分基本定理将不定积分与定积分联系起来,可以将积分问题转化为求解原函数的问题。

第二积分基本定理则给出了定积分的计算方法,它将定积分与不定积分联系在一起,为求解定积分提供了便利。

在物理竞赛中,微积分基本定理在积分问题的求解中起着十分重要的作用。

4.微分方程微分方程是描述变化规律的数学工具,在物理竞赛中经常出现。

一阶微分方程描述了变量的变化率与变量本身之间的关系,它常用于描述弹簧振子、RC电路、衰减问题等。

对于线性微分方程,可以通过特征方程的求解来求解微分方程的通解。

在物理竞赛中,熟练掌握微分方程的解法对于解决物理问题是十分重要的。

5.级数与收敛性级数是无穷个数项的和,它在物理问题中也常常出现。

级数的收敛性是级数是否有意义的重要标志,熟练掌握级数的收敛性判别方法对于求解物理问题十分重要。

常见的级数有等比级数、调和级数、幂级数等,在物理竞赛中需要能够熟练应用级数的性质及收敛性的判别方法。

6.多元函数微积分多元函数微积分是微积分的拓展,它描述的是多元函数的变化规律。

对于物理竞赛而言,多元函数微积分在描述多变量物理量之间的关系、求解多元函数的极值等问题中有着重要的应用。

高中物理奥赛常用数学公式

高中物理奥赛常用数学公式

中学物理奥赛常用数学公式一、等差、等比数列1.定义:{}1n n n a a d a +-=⇔是等差数列{}1,(0,0)n n n n a q a q a a +=≠≠⇔是等比数列,, (,)2a b a b a b +±等差中项等比中项同号2.公式(1)通项1(1)()n m a a n d a n m d =+-=+- 11n n m n m a a q a q --==(2)前n 项和 11(1)(1)()222n n n a a n n n n s n na d na d +--==+=+- 1(1)2n s d a n n =+-也是等差数列 111(1)1111n n n a a q a q q qq s na q ⎧--=≠⎪--=⎨⎪=⎩二.数列求和 (1)2222(1)(21)123...6n n n n ++++++=(2) 223332(1)12(12)4n n n n ++++=+++= 三、三角公式1、和差角公式 ()()()sin sin cos cos sin cos cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )sin cos a b αβαβαβαβαβαβαβαβαβαβαβαβαααϕ±=±±=±±=±=±+=+ 2、倍角公式 万能公式22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+23332tan tan 21tan sin 33sin 4sin cos 4cos 3cos ααααααααα=-=-=- 3、半角公式,升降幂公式22221cos 1cos 1cos 1cos sin sin cos tan 222221cos sin 1cos 1cos 21cos 2sin cos 221cos 2cos 1cos 2sin 22ααααααααααααααααααα-+--=±=±=±==++-+==+=-=4、积化和差,和差化积公式sin sin 2sin cos sin sin 2sin cos 2222cos cos 2cos cos cos cos 2sin cos 222211sin cos [sin()sin()]cos cos [cos()cos()]221sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+--++=-=+-+-+=-=-=++-=++-=-+--(2)正弦定理 2sin sin sin abcR A B C ===(R 是ABC ∆外接圆半径)(3)余弦定理 2222cos c a b ab C =+- 222cos 2a b c C ab +-=(4)11sin ()()()224ABC a abcS ah ab C pr p p a p b p c R ∆=====---其中2a b cp ++=为半周长四、重要不等式1.222(,0)1122a b a bab a b a b++≥≥≥>+2.22233(,,0)11133a b c a b cabc a b c a b c++++≥≥≥>++3.222(,)22a b a b ab ab a b R ++⎛⎫≤≤∈ ⎪⎝⎭3(,,0)3a b c abc a b c ++⎛⎫≤> ⎪⎝⎭五、球1、222R r d =+2、球面距离l R θ=⋅ 2222222cos 22cos R R AB R AB r r r θβ+-==+-(β是径度差) 3、24S R π=球内接长方体 222224l R a b c ==++ 侧棱两两垂直的三棱锥补形⇒长方体⇒球内接长方体4、体积 343V R π= 3S V R R S V '''==球球球球多面体内切球半径 : 3V r S =全 六、二项式定理(1)011()n n n n n n n n a b C a C a b C b -+=+++(2)22(1)11n nx nx nx c x +≈+≈++ 七、导数1.()()()00000x x f x x f x y f x lim lim x x∆→∆→+∆-∆'==∆∆ ()()00f x x f x x x ⇔==在处可导,注意:在处不可导二、运算法则:()()()()()()()21234x u U V U V UV U V UV U U V UV y y u x V V ''''''±=±=+'''-⎛⎫'''== ⎪⎝⎭ 三、导数公式(1)0C '= (2)()1n n x nx -'=(3)()x x e e '= (4)()x x a a ln a '=(5)1(ln x )x '= (6)11(log )log ln a a x e x x a'== (7)(sin )cos x x '= (8)(cos )sin x x '=-8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL中考不须要,竞赛中很明显的结论9、三角形的外心,垂心,重心在同一条直线上。

高中物理竞赛中的数学知识(超全面)

高中物理竞赛中的数学知识(超全面)

初等数学在物理竞赛中的应用一、函数1.正比例函数0 k kx y ≠=k 为常数2.反比例函数0k xky ≠= k 为常数3.一次函数0b 0 k b kx y ≠≠+= k 、b 为常数 4.二次函数0a ≠++=c bx ax y 2 a 为常数(1)当2abx -=时,函数有极值4a b 4ac y 2-=。

若a>0,函数有极小值;若a<0,函数有极大值。

(2)函数是否存在y=0的x 值,取决于4ac b 2-=∆二、不等式1.不等式的基本性质(略)2.均值不等式n n n a a a n a a ⋅⋅⋅≥+++ 112 a 1 (a i >0)(1) 若n a a +++ 21a 为定值时,当且仅当a 1= a 2=…= a n 时,n n a a a ⋅⋅⋅ 11有最大值(n a a +++ 21a )/n 。

(2) 若n n a a a ⋅⋅⋅ 11为定值时,当且仅当a 1= a 2=…= a n 时, n a a +++ 21a 有最小值n n n a a a ⋅⋅⋅ 11。

3.三角不等式 1sin θ1≤≤- 1cos θ1≤≤-三、三角函数 和差角公式:二倍角公式:升降幂公式:xyo正比例k>0k<0x y o二次k<0k>0xy o 一次函数b xyo二次函数三倍角公式:半角公式:万能公式:四、求极值的方法 1、代数方法 (1)二次函数的极值(2)利用一元二次方程的判别式 (3)利用不等式 (4)配方2、利用三角函数3、利用几何方法4、利用物理方法(1)加速度a =0时,物体的速度有极值;(2)同一直线上运动的两个物体速度相等时,距离有极值; 五、圆锥曲线在平面解析几何中,把圆、椭圆、双曲线和抛物线统称为圆锥曲线。

它们的标准方程分别是:1、圆:22020R y y x x =-+-)()( 圆心坐标(x 0,y 0),半径为R2、椭圆:1by a x 2222=+ (a >b >0)中心坐标(0,0),半长轴为a ,半短轴为b ,半焦距22b a c -=,离心率1<=<ace 0,准线方程 c a x 2±=3、双曲线:1by a x 2222=- (a >0 b >0)中心坐标(0,0),实轴长为2a ,虚轴长为2b ,半焦距22b a c +=,离心率1>=ace ,A准线方程 c a x 2±=,渐近线x aby ±=4、抛物线:2px y 2=顶点坐标(0,0),焦点坐标(,02p),离心率e=1,准线方程2p x -=圆锥曲线的一般形式为:0F Ey Dx Cy Bxy Ax 22=+++++ (A 、B 、C 不能同时为0)(1)若04AC B 2<-=∆,对应的曲线为椭圆或圆; (2)若04AC B 2=-=∆,对应的曲线为抛物线; (3)若04AC B 2>-=∆,对应的曲线为双曲线; 圆锥曲线还具有以下光学性质: (1)椭圆:从椭圆的一个焦点发出的光线经过椭圆面反射后,汇聚于椭圆的另一个焦点; (2)抛物线:从抛物线的焦点发出的光线经过抛物面反射后,变成平行光线;(3)双曲线:从双曲线的一个焦点发出的光线经过双曲线面反射后,反向延长线汇聚于双曲线的另一个焦点;高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成. §1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,c x,cos2x π,ln x ,x e 等等.在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了.(3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()UI I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:从上表看,x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5).(2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v (t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数). 对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取vt∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()lim lim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x+∆-∆=∆∆,(A .27) 可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、d dx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆. 如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x xαα→→∆'===∆;所以导数的几何意义是切线的斜率. §3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C C y f x x x ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()limlim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆; (4)y =f (x )=x 3:33222000()()()()limlim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆;(6)y =f (x )000()()()limlim x x x f x x f x y f x x ∆→∆→∆→+∆-''====∆limlimx x ∆→∆→===上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x ===1212y x -'===利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx∆→∆∆=+=+∆∆.定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆ 20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数.解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d x x xdy d d x x x x x dx dx x xdx dx dx x x x x -⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dvv a a ax b dx dv dx=⋅=-⋅=-+.例8.求y =21v x =-,()y u v ==2dy du dv x dx dv dx =⋅=例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=- §4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38)一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40)在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dv dx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆.下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y 0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM ∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x 小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l l l l l∆=+=+-=++⋅⋅⋅-≈=,即△l 是正比于a平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M阶导数有()0()!M M fx M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.表A -3 常见函数的幂级数展开式函数 展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x < 2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞x e 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§5.积分5.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t=∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t 越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()b at t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )的某个逆导数Ф(x )上加一任意常量C ,仍旧是f (x )的逆导数.通常把一个函数f (x )的逆导数的通式Ф(x )+C 叫做它的不定积分,并记作()f x dx ⎰,于是()()f x dx x C =Φ+⎰,(A .54).因在不定积分中包含任意常量,它代表的不是个别函数,而是一组函数.。

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类

高中物理竞赛的知识与分类物理竞赛需要哪些知识?物理竞赛力学部分需要哪些数学?首先,为了理解力学一开始的匀加速直线运动和变加速直线运动,对于一元函数的简单微积分是必不可少的,当然主要集中在多项式函数的求导和积分上,实际操作起来十分容易。

此后,当运动范围被拓展到二维,运动形式成为曲线时,矢量代数、解析几何、参数方程、斜率、曲率半径等数学概念被融入到物理模型中,用来理解抛体、圆周、一般曲线运动。

这时微积分的应用也被拓展到更为复杂的函数范围,例如三角函数。

随着运动和力的关系——牛顿第二定律的引入,我们逐渐意识到光理解运动是不够的,运动背后的机理——力的作用,以及力的效果,才是我们要研究的。

动量定理、动能定理的引入,实际上反映了力在时空的积累效果,而牛顿方程本身,也是物理学家特别喜欢的形式——微分方程。

对于矢量和微积分更综合的运用体现在一种伴随物理学发展史的特殊运动形式——简谐振动当中。

而振动在介质当中的扩散效应——波动,又引出了波动方程、波函数这一时空函数的概念。

总结下来,力学部分所需要的数学是一元函数的微积分、矢量代数、解析几何、常微分方程、对二元函数的运用。

物理竞赛热学部分需要哪些数学?虽然高中热学部分涉及气体定律和热力学第一定律的内容比较容易,一般不需要微积分,但如果深入学习,热力学过程、各种态函数(内能、熵)、热力学第二定律,那么由于热力学体系变量多,适当的偏微分基础知识是必要的。

热力学是宏观的理论,而其背后有着分子动理论作为基础,它们之间的联系是通过对大量粒子系统的统计来实现的,因此,概率统计的知识就显得十分必要了。

总结下来,热学部分所需要的数学是简单的偏微分和概率统计。

物理竞赛电磁学部分需要哪些数学?依照往年的经验,电磁学是最容易让高考学生放弃物理、竞赛学生放弃物理竞赛的困难内容。

原因是因为数学不到位,非但理解不了场的概念,而且容易产生记忆模型和公式,套例题做习题的固有思维模式,最终对于电磁学可谓是“一点没学会”!从静电场开始,如果仅仅按高中的要求来学习,对于场的理解是空洞的,仅仅是唯像的概念,对于电场线、电势、静电平衡、介质极化等概念无法做到深入掌握,那就更别提解答赛题了。

物理竞赛基本知识

物理竞赛基本知识
乘、除 微分、积分 点积和叉积 右手螺旋定则
数学代表了对于复杂问题的描述和解决能 力。
加法、乘法、积分:求和 表示联合贡献,共同作用
加法:最基本的求和方法
乘法:特殊的加法,对任意多个相同物理量求和 积分:特殊的加法,对物理量微小变化求和
减法:相对大小,表示物理量变化
6.确保自己表达的信息能被其他 人顺利接收。
除法:表示平均分布 微分:特殊的减法,物理量微小 变化 求导:特殊的除法,两个不同物 理量微小变化之间的除法
做物理题基本的6个要点
1.研究对象的确定和坐标系的建立。 首先确定研究对象,把研究对象 放入坐标系。
2. 物理参数标准化 把所给的已知和待求取的物理参 量,用合适的字母符号代替,即 代数化。
3.写出所要应用物理定律或定理的 汉语名称和标准数学表达式,把 一个物理问题,转化为数学问题。 这些数学问题可以是等式,方程 组,微分或积分。
一般来说,一个物理定律或定理,至少需要认真写上3 遍,才算掌握。 复习时候只是看得明白,考试时候默写不出 来,写出来了也未必正确
4.解决数学问题。
5.验证答案的单位是否正确,然 后代入具体数值计算得到答案, 并分析答案大小是否符合常识。

(完整版)高中物理竞赛中的高等数学

(完整版)高中物理竞赛中的高等数学

高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成. §1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,c x,cos2x π,ln x ,x e 等等.在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了.(3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()UI I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:从上表看,x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5).(2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v (t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数). 对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取vt∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()lim lim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x+∆-∆=∆∆,(A .27) 可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、d dx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆. 如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x xαα→→∆'===∆;所以导数的几何意义是切线的斜率. §3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C C y f x x x ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()limlim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆; (4)y =f (x )=x 3:33222000()()()()limlim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆;(6)y =f (x )000()()()limlim x x x f x x f x y f x x ∆→∆→∆→+∆-''====∆limlimx x ∆→∆→===上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x ===1212y x -'===利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx∆→∆∆=+=+∆∆.定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆ 20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数.解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d x x xdy d d x x x x x dx dx x xdx dx dx x x x x -⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dvv a a ax b dx dv dx=⋅=-⋅=-+.例8.求y =解:令21v x =-,()y u v ==2dy du dv x dx dv dx =⋅=例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=- §4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38)一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40)在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dvdx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆.下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM ∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x 小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l l l l l∆=+=+-=++⋅⋅⋅-≈=,即△l 是正比于a平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M阶导数有()0()!M M fx M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.函数 展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x <1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x < 2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞x e 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§55.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t=∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t 越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()b at t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )的某个逆导数Ф(x )上加一任意常量C ,仍旧是f (x )的逆导数.通常把一个函数f (x )的逆导数的通式Ф(x )+C 叫做它的不定积分,并记作()f x dx ⎰,于是()()f x dx x C =Φ+⎰,(A .54).因在不定积分中包含任意常量,它代表的不是个别函数,而是一组函数.。

高中物理竞赛中的数学知识

高中物理竞赛中的数学知识

物理竞赛中的数学知识一、重要函数 1. 指数函数2. 三角函数3. 反三角函数反正弦Arcsin x ,反余弦Arccos x ,反正切Arctan x ,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限2. 等差数列: a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 3.等比数列:通项公式a n =a 1q(n-1),前n 项和11(1)(1)11n n n a a q a q S q q q--==≠-- 所有项和1(1)1n a S q q=<-4. 求和符号5.常用的等价无穷小为:当x →0时: sin x ~x ,tan x ~x ,arcsin x ~x ,arctan x ~x ,1-cos x ~221x , 11-+n x ~x n1。

(1+x)n =1+nx 等价无穷小可代换五、二项式定理1. 阶乘: n!=1×2×3×……×n2. 组合数:从m 个不同元素中取出n (n≤m )个元素的所有组合的个数,叫做从m 个不同元素中取出n 个元素的组合数3. 二项式定理即六、常用三角函数公式sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α sin (π/2+α)=cos α cos (π/2+α)=—sin α tan (π/2+α)=-cot αsin()sin cos cos sin A B A B A B +=+ s i n ()s i n c o s c o s s A B A B A B -=- cos()cos cos sin sin A B A B A B +=- c o s ()c o sc o ss i n sA B A B A B -=+ sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=-22tan tan 21tan AA A=-sin2A =cos 2A =s i n t a n 21c o sA A A ==+ 和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1s i n c o s s i n s i n 2a b a b a b =++-⎡⎤⎣⎦ ()()1c o s s i n s i n s i n 2a b a b a b =+--⎡⎤⎣⎦ 万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22t a n2t a n 1t a n2aa a=-求导与微分一、导数的概念1.几个基本初等函数的导数 ⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=-2.导数的四则运算 (1))(])([x u c x u c '⋅='⋅; (2))()(])()([x v x u x v x u '+'='±;(3))()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;(4))()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡二、微分1.微分的概念设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为).0()(0)()(00→∆∆+∆=-∆+=∆x x x A x f x x f y其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为.0x A x x dfx x dy∆====x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此.)(,)(00dx x f dy dx x f x x dy'='==由此可以看出,微分的计算完全可以借助导数的计算来完成.(2)微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则)()()()()()()().()()()()]()([).()()]()([.0)(),())((2x v x dv x u x du x v x v x u dx du x v x dv x u x v x u d x du x du x v x u d c d x cdu x cu d -=+=⋅±=±==三、不定积分1.不定积分概念【定义】(不定积分) 函数f(x)的原函数的全体称为f(x)的不定积分,记作⎰dx x f )(.若F(x)是f(x)的一个原函数,则⎰+=)()()(是任意常数C Cx F dx x f2.不定积分的性质(1)积分运算与微分运算互为逆运算.()()⎰⎰⎰⎰+=+='==.)()()()(,)()()()(C x F x dF C x F dx x F dx x f dx x f d x f dx x f dxd或或(2)⎰⎰≠=)0()()(k dx x f k dx x kf 常数(3)⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式kdx kx c =+⎰ 11x x dx c μμμ+=++⎰c o s s i n xd x x c=+⎰ sin cos xdx x c =-+⎰四、定积分【定义】(定积分) 函数)(x f 在区间[a,b ]上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,【定理】(牛顿-莱布尼茨公式) 若函数)(x f 在区间[a,b ]上连续,)(x F 是)(x f 在[a,b ]上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式.常用数学知识汇总一、三角函数公式 1.两角和公式sin()sin cos cos sin A B A B A B +=+ s i n ()s i n c o s c o s s A B A B A B -=- cos()cos cos sin sin A B A B A B +=- c o s ()c o sc o ss i n sA B A B A B -=+ tan tan tan()1tan tan A B A B A B ++=- tan tan tan()1tan tan A BA B A B --=+cot cot 1cot()cot cot A B A B B A ⋅-+=+ cot cot 1cot()cot cot A B A B B A ⋅+-=- 2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=- 3.半角公式sin2A =cos 2A =sin tan21cos A A A ==+sin cot 21cos A A A==- 4.和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅5.积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦()()1s i n c o s s i n s i n 2a b a b a b =++-⎡⎤⎣⎦ ()()1c o s s i n s i n s i n 2a b a b a b =+--⎡⎤⎣⎦ 6.万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22t a n2t a n 1t a n2aa a=- 7.平方关系22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=8.倒数关系tan cot 1x x ⋅= sec cos 1x x ⋅= c sin 1cs x x ⋅=9.商数关系sin tan cos x x x =cos cot sin xx x= 二、重要公式(1)0sin lim 1x xx →= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x →)sin xx tan x x a r c s i n x x arctan xx 211c o s 2xx -()ln 1x x + 1x e x - 1l n x a x a - ()11x x ∂+-∂四、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭五、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'=⒀()arcsin x '=⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x'=-+⒄()1x '=⒅'=八、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+ 九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+。

拓展第一讲 物理竞赛中的数学基础

拓展第一讲 物理竞赛中的数学基础

第一讲物理竞赛中的数学基础一、勾股定理勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

据考证,人类对这条定理的认识,少说也超过4000 年!又据记载,现时世上一共有超过300 个对这定理的证明!勾股定理,主要应用是直角三角形中已知两边求第三边。

1、应用勾股定理求最短距离。

我们已经学过平面内两点之间线段最短的道理,也就是说两点之间的所有连线,最短路线是两点之间的线段。

但在立体图形中不同的侧面上两点之间,曲面上的两点之间的最短距离如何解决,我们分两个小问题来讲。

(1)圆柱形物体上的两点的最短路线。

圆柱体是立体图形,两点之间的连线绝大部分是曲线,应该不是最短的,但有人只凭直觉、感觉,认为如图所示的A→B→C的路线最短,是错误的。

解决问题的方法是将圆柱的侧面展开转化为平面图形来解决。

如图,将右上圆柱的侧面沿母线AB展开后是矩形ABB′A′,不难看出,从A到C的最短路线应是矩形ABCD的对角线AC,这时AC是一个直角三角形的斜边,可用勾股定理解决,其中矩形ABB′A′长、宽分别是圆柱的高与底面周长。

(2)长方体(或正方体)面上两点间的距离。

长方体(或正方体)是立体图形,它的每个面都是平面,如果计算同一个面上两点之间的距离,则比较简单。

如果计算不在同一个面上的两点之间的距离,就变成了两个平面之间的问题,必须将它们转化到同一个平面内。

就需把长方体(或正方体)的侧面设法展开成为一个平面,且使计算距离的两个点所在的平面放在一起,这样可利用勾股定理解决问题。

如图,一个正方块,求A点到E点的最短距离,可把AA′D′D与A′B′C′D′展成一个平面,A 与E之间的最短距离就是RtΔADE的斜边AE的长,可根据题目中给出的数据,用勾股定理加以解决。

2、应用勾股定理可测量建筑物高度、河宽等,主要是在测量设计时构造直角三角形,其中两边可测,利用勾股定理求出无法直接测的距离,如测A、B间距离,可在与AB成90°的方向选一点C(可测出AC),同时,CB可直接测得,可用勾股定理算出AB,AB2=BC2-AC2。

物理竞赛中的数学知识

物理竞赛中的数学知识

物理竞赛中的数学知识一、重要函数1.指数函数2.三角函数3.反三角函数反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限1.数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n项。

数列的一般形式可以写成a1,a2,a3,…,a n,a(n+1),… 简记为{an},通项公式:数列的第N项a n 与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。

2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

通项公式a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q 表示。

通项公式a n =a 1q (n-1),前n 项和11(1)(1)11n n n a a q a q S q q q --==≠-- 所有项和1(1)1n a S q q=<- 3. 求和符号 4. 数列的极限: 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作Aa n n =∞→lim 否则称数列{}n a 发散或nn a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。

高中物理竞赛微积分基础

高中物理竞赛微积分基础

高中物理竞赛微积分基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、常用等价无穷小关系(0x →) 小量近似①sin x x = ;②tan x x = ;③211cos 2x x -= ;④()ln 1x x += ;⑤1x e x -= 2、基本函数的导数公式 小量比值(1)y =f (x )=C (常量)(2)y=f (x )=x(3)y =f (x )=x 2⑴ 导数的四则运算①d(u±v)d t =du d t ± dv d t ③d(u v )d t = du d t ·v - u ·dv d t u v v 2②d(u ·v)d t =du d t ·v + u ·dv d t u v ⑵ 常见函数的导数①dC dt =0(C 为常数); ②dt n dt =nt n-1 (n 为实数); ③dsint dt =cost ; ④ dcost dt =-sint ;⑶ 复合函数的导数在数学上,把u=u(v(t))称为复合函数,即以函数v(t)为u(x)的自变量。

du(v(t))d t =du(v(t))d v(t) ·dv(t)d t导数的数学意义:变化率导数的几何意义:图线切线斜率导数的物理意义:定义物理量(速度、加速度等)3、定积分 小量累计函数,b 和a 分别叫做定积分的上限和下限。

f(x)是Ф(x)的导数,Ф(x)是f(x)的逆导数或原函数。

求f(x)的定积分就可以归结为求它的逆导数或原函数(不定积分)。

4、不定积分通常把求一个导函数f(x)的逆导数的通式Ф(x)+C叫做它的不定积分。

2020年人大附中高中物理竞赛辅导课件(物理竞赛中的数学知识)统计物理的基本概念(共16张PPT)

2020年人大附中高中物理竞赛辅导课件(物理竞赛中的数学知识)统计物理的基本概念(共16张PPT)

例如:粒子数
假想把箱子分成两相同体积的部 分,达到平衡时,两侧粒子有的 穿越界线,但两侧粒子数相同。
•平衡态是一种理想状态
状态方程 当系统处于平衡态时,三个状态参量存在一定的
函数关系: f ( p,V ,T ) 0 物态方程
(状态方程)理想气Fra bibliotek pV M RT p
M mol
M 气体质量
Mmol 气体的摩尔质量
表示方式
1
P1
2
P2
S
PS
S
Pi 0(i 1,2, S ) 有 Pi 1 i 1
2. 连续型随机变量 取值无限、连续
随机变量X的概率密度
( x) dP( x)
dx
变量取值在x—x+dx间 隔内的概率
概率密度等于随机变量取值在单位间隔内的概率。
( X )又称为概率分布函数(简称分布函数)。
设一容器,用隔板将其隔开当 隔板右移时,分子向右边扩散 在这过程中,各点密度、温度等均不相同,这就是 非平衡态。但随着时间的推移,各处的密度、压强 等都达到了均匀,无外界影响,状态保持不变,就 是平衡态。
说明: •平衡态是一种热动平衡 处在平衡态的大量分子仍在作热运动,而且因
为碰撞, 每个分子的速度经常在变,但是系统的宏 观量不随时间 改变。
i
Pi ( Ai )
i
N
1
几率归一化条件
(3) 二互斥事件的概率等于分事件概率之和
P( A B) P( A) P(B)
(4) 二相容事件的概率等于分事件概率之积
P( A, B) P( A)P(B)
2. 概率分布函数
随机变量 在一定条件下, 变量以确定的概率 取各种不相同的值。

高一物理竞赛第一章知识点

高一物理竞赛第一章知识点

高一物理竞赛第一章知识点在高一物理竞赛中,第一章的知识点是非常重要的,它是我们理解物理学基础概念和原理的起点。

本文将介绍一些高一物理竞赛第一章的主要知识点,包括力学、热学和光学三个方面。

力学知识点:1. 牛顿力学三大定律:牛顿第一定律(惯性定律)、牛顿第二定律(力和加速度的关系)和牛顿第三定律(作用力和反作用力的关系)。

2. 力的合成和分解:力的合成是指多个力合成为一个力的过程,力的分解是指将一个力分解为多个力的过程。

3. 动力学:质点的运动学方程和动力学方程,包括速度、加速度、力等的关系式。

4. 弹性力学:弹簧的胡克定律以及应变和应力的关系等内容。

热学知识点:1. 温度:温度的概念和测量方法,包括摄氏度和开尔文温度。

2. 热传递:热传递的三种方式,即传导、对流和辐射。

这些方式的特点和应用。

3. 理想气体状态方程:理想气体的状态方程,即气体的压力、体积和温度之间的关系式。

4. 内能和热量:内能的概念和表达式,以及热量和功的关系。

光学知识点:1. 光的传播:光的直线传播和反射、折射等现象。

光的速度和光的介质。

2. 光的色散和干涉:光的色散现象和干涉现象,包括杨氏双缝干涉、薄膜干涉等内容。

3. 光的衍射:光的衍射现象,包括单缝衍射和衍射格的现象。

4. 光的波粒二象性:光的波粒二象性的基本概念和实验现象。

以上是高一物理竞赛第一章的一些重要知识点。

掌握这些知识,对于理解物理学的基本原理和解题都将起到非常积极的作用。

希望大家能够认真学习并灵活运用这些知识点,取得优异的成绩。

高中物理竞赛中的高等数学

高中物理竞赛中的高等数学

高中物理竞赛中的高等数学一、微积分初步物理学研究的是物质的运动规律,因此经常遇到的物理量大多数是变量,而要研究的正是一些变量彼此间的联系.这样,微积分这个数学工具就成为必要的了.考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的.所以在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要.至于更系统和更深入地掌握微积分的知识和方法,可在通过高等数学课程的学习去完成.§1.函数及其图形1.1 函数 自变量和因变量 绝对常量和任意常量在数学中函数的功能是这样定义的:有两个互相联系的变量x 和y ,如果每当变量x 取定了某个数值后,按照一定的规律就可以确定y 的对应值,那么称y 是x 的函数,并记作:y =f (x ),(A .1);其中x 叫做自变量,y 叫做因变量,f 是一个函数记号,它表示y 和x 数值的对应关系.有时把y =f (x )也记作y =y (x ).如果在同一个问题中遇到几个不同形式的函数,也可以用其它字母作为函数记号,如ϕ(x )、ψ(x )等等.①常见的函数可以用公式来表达,例如()32y f x x ==+,212ax bx +,cx,cos2x π,ln x ,x e 等等. 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面出现的13 2 2e π、、、、和a b c 、、等,它们叫做常量;常量有两类:一类如13 2 2e π、、、、等,它们在一切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a 、b 、c 等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量.在数学中经常用拉丁字母中最前面几个(如a 、b 、c )代表任意常量,最后面几个(x 、y 、z )代表变量.当y =f (x )的具体形式给定后,就可以确定与自变量的任一特定值x 0相对应的函数值f (x 0).例如: (1)若y =f (x )=3+2x ,则当x =-2时y =f (-2)=3+2×(-2)=-1.一般地说,当x =x 0时,y =f (x 0)=3+2x 0.(2)若()cy f x x ==,则当0x x =时,00()c f x x =.1.2 函数的图形在解析几何学和物理学中经常用平面上的曲线来表示两个变量之间的函数关系,这种方法对于直观地了解一个函数的特征是很有帮助的.作图的办法是先在平面上取一直角坐标系,横轴代表自变量x ,纵轴代表因变量(函数值)y =f (x ).这样一来,把坐标为(x ,y )且满足函数关系y =f (x )的那些点连接起来的轨迹就构成一条曲线,它描绘出函数的面貌.图A -1便是上面举的第一个例子y =f (x )=3+2x 的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线.图A -2是第二个例子()cy f x x==的图形,其中P 1,P 2,P 3,P 4,P 5各点的坐标分别为:1(,4)4c 、1(,2)2c 、(1,)c 、(2,)2c 、(4,)4c ,各点连接成双曲线的一支.1.3 物理学中函数的实例反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的.下面举几个例子. (1)匀速直线运动公式:s =s 0+vt .(A .2)此式表达了物体作匀速直线运动时的位置s 随时间t 变化的规律,在这里t 相当于自变量x ,s 相当于因变量y ,s 是t 的函数.因此记作:s =s (t )=s 0+vt ,(A .3)式中初始位置s 0和速度v 是任意常量,s 0与坐标原点的选择有关,v 对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值.图A -3是这个函数的图形,它是一根倾斜的直线.易知它的斜率等于v .(2)匀变速直线运动公式:20012s s v t at =++,(A .4),v =v 0+at .(A .5)两式中s 和v 是因变量,它们都是自变量t 的函数,因此记作:2001()2s s t s v t at ==++,(A .6),v =v (t )=v 0+at ,(A .7)图A -4a 、4b 分别是两个函数的图形,其中一个是抛物线,一个是直线.(A .6)和(A .7)式是匀变速直线运动的普遍公式,式中初始位置s 0、初速v 0和加速度a 都是任意常量,它们的数值要根据讨论的问题来具体化.例如在讨论自由落体问题时,若把坐标原点选择在开始运动的地方,则s 0=0,v 0=0,a =g ≈9.8M /s 2,这时(A .6)和(A .7)式具有如下形式:21()2s s t gt ==,(A .8);v =v (t )=gt .(A .9);这里的g 可看作是绝对常量,式中不再有任意常量了. (3)玻意耳定律:PV =C .(A .10)上式表达了一定质量的气体,在温度不变的条件下,压强P 和体积V 之间的函数关系,式中的C 是任意常量.可以选择V 为自变量,P 为因变量,这样,(A .10)式就可写作:()CP P V V==,(A .11)它的图形和图A -2是一样的,只不过图中的x 、y 应换成V 、P .在(A .10)式中也可以选择P 为自变量,V 为因变量,这样它就应写成:()CV V P P==,(A .12) 由此可见,在一个公式中自变量和因变量往往是相对的. (4)欧姆定律:U IR =.(A .13)当讨论一段导线中的电流I 这样随着外加电压U 而改变的问题时,U 是自变量,I 是因变量,R 是常量.这时,(A .13)式应写作:()UI I U R==,(A .14);即I 与U 成正比. 应当指出,任意常量与变量之间的界限也不是绝对的.例如,当讨论串联电路中电压在各电阻元件上分配问题时,由于通过各元件的电流是一样的,(A .13)式中的电流I 成了常量,而R 是自变量,U 是因变量.于是U =U (R )=IR ,(A .15)即U 与R 成正比.但是当讨论并联电路中电流在各分支里的分配问题时,由于各分支两端具有共同的电压,(A .13)式中的U 就成了常量,而R 为自变量,I 是因变量,于是:()U I I R R==,(A .16)即I 与R 成反比.总之,每个物理公式都反映了一些物理量之间的函数关系,但是其中哪个是自变量,哪个是因变量,哪些是常量,有时公式本身反映不出来,需要根据所要讨论的问题来具体分析. §2.导数2.1 极限若当自变量x 无限趋近某一数值x 0(记作x →x 0)时,函数f (x )的数值无限趋近某一确定的数值a ,则a 叫做x →x 0时函数f (x )的极限值,并记作:0lim ()x x f x a →=,(A .17)(A .17)式中的“lim ”是英语“limit (极限)”一词的缩写,(A .17)式读作“当x 趋近x 0时,f (x )的极限值等于a ”.极限是微积分中的一个最基本的概念,它涉及的问题面很广.这里不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义.考虑下面这个函数:232()1x x y f x x --==-,(A .18),这里除x =1外,计算任何其它地方的函数值都是没有困难的.例如当0x =时,(0)2f =,当2x =,(2)8f =,等等.但是若问x =1时函数值f (1)=?,就会发现,这时(A .18)式的分子和分母都等于0,即0(1)0f =!用0去除以0,一般地说是没有意义的.所以表达式(A .18)没有直接给出f (1),但给出了x 无论如何接近1时的函数值来.下表列出了当x 的值从小于1和大于1两方面趋于1时f (x )值的变化情况:表A -1 x 与f (x )的变化值x232x x --1x -232()1x x f x x --=- 0.9 -0.47 -0.1 4.70.99 -0.0497 -0.01 4.97 0.999 -0.004997 -0.001 4.997 0.9999 -0.0004997 -0.0001 4.9997 1.1 0.53 0.1 5.3 1.01 0.503 0.01 5.03 1.001 0.005003 0.001 5.003 1.00010.000500030.00015.0003从上表看,x 值无论从哪边趋近1时,分子分母的比值都趋于一个确定的数值5,这便是x →1时f (x )的极限值. 其实计算f (x )值的极限无需这样麻烦,只要将(A .18)式的分子作因式分解:3x 2-x -2=(3x +2)(x -1),并在x ≠1的情况下从分子和分母中将因式(x -1)消去:(32)(1)()3 2 (1)1x x y f x x x x +-===+≠-;即可看出:x 趋于1时,函数f (x )的数值趋于:3×1+2=5.所以根据函数极限的定义,21132lim ()lim 51x x x x f x x →→--==-. 2.2 几个物理学中的实例 (1)瞬时速度当一个物体作任意直线运动时,它的位置可用它到某个坐标原点O 的距离s 来描述.在运动过程中s 是随时间t 变化的,也就是说,s 是t 的函数:s =s (t ).函数s (t )表示的是这个物体什么时刻到达什么地方.形象一些说,假如物体是一列火车,则函数s (t )就是它的一张“旅行时刻表”.但是,在实际中往往不满足于一张“时刻表”,还需要知道物体运动快慢的程度,即速度或速率的概念.例如,当车辆驶过繁华的街道或桥梁时,为了安全,对它的速率就要有一定的限制;一个上抛体(如高射炮弹)能够达到怎样的高度,也与它的初始速率有关,等等.为了建立速率的概念,就要研究在一段时间间隔里物体位置的改变情况.假设考虑的是从t =t 0到t =t 1的一段时间间隔,则这间隔的大小为:△t =t 1-t 0.根据s 和t 的函数关系s (t )可知,在t 0和t 1=t 0+△t 两个时刻,s 的数值分别为s (t 0)和s (t 1)=s (t 0+△t ),即在t 0到t 1这段时间间隔里s 改变了:△s =s (t 1)-s (t 0)=s (t 0+△t )-s (t 0).在同样大小的时间间隔△t 里,若s 的改变量△s 小,就表明物体运动得慢, 所以就把s ∆与t ∆之比st∆∆叫做这段时间间隔里的平均速率,用v 来表示,则00()()s t t s t s v t t+∆-∆==∆∆,(A .19),举例说明如下. 对于匀变速直线运动,根据(A .4)式有2000001()2s t s v t at =++和2000001()()()2s t t s v t t a t t +∆=++∆++∆,22200000000000000111[()()]()()()()()12222s v t t a t t s v t at v at t a t s t t s t v v at a t t t t ++∆++∆-+++∆+∆+∆-====++∆∆∆∆;平均速率s v t ∆=∆反映了物体在一段时间间隔内运动的快慢,除了匀速直线运动的特殊情况外,st∆∆的数值或多或少与t ∆的大小有关;t ∆取得越短,s t ∆∆就越能反映出物体在0t t =时刻运动的快慢;通常就把0t ∆→时st∆∆的极限值叫做物体在t =t 0时刻的瞬时速率v ,即0000()()lim lim t t s t t s t sv t t ∆→∆→+∆-∆==∆∆,(A .20) 对于匀变速直线运动来说,0000001lim lim()2t t s v v at a t v at t ∆→∆→∆==++∆=+∆. 这就是熟悉的匀变速直线运动的速率公式(A .5). (2)瞬时加速度一般地说,瞬时速度或瞬时速率v 也是t 的函数:v =v (t ).但是在许多实际问题中,只有速度和速率的概念还不够,还需要知道速度随时间变化的快慢,即需要建立“加速度”的概念.平均加速度a 和瞬时加速度a 概念的建立与v 和v 的建立类似.在直线运动中,首先取一段时间间隔t 0到t 1,根据瞬时速率v 和时间t 的函数关系v (t )可知,在t =t 0和t =t 1两时刻的瞬时速率分别为v (t 0)和v (t 1)=v(t 0+△t ),因此在t 0到t 1这段时间间隔里v 改变了△v =v (t 0+△t )-v (t 0).通常把v t∆∆叫做这段时间间隔里的平均加速度,记作a ;00()()v t t v t v a t t +∆-∆==∆∆,(A .21) 举例来说,对于匀变速直线运动,根据(A .5)式有000()v t v at =+,000()()v t t v a t t +∆=++∆.所以平均加速度为000000()()[()]()v t t v t v a t t v at v a a t t t+∆-++∆-+∆====∆∆∆(常数).对于一般的变速运动,a 也是与t ∆有关的,这时为了反映出某一时刻速度变化的快慢,就需要取v t∆∆在0t ∆→时的极限,这就是物体在t =t 0时刻的瞬时加速度a :0000()()limlim t t v t t v t va t t∆→∆→+∆-∆==∆∆,(A .22)(3)应用举例水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动.为简单起见,假设水渠是直的,这时可以把x 坐标轴取为逆水渠走向的方向(见图A -5),于是各处渠底的高度h 便是x 的函数:h =h (x ).知道了这个函数,就可以计算任意两点之间的高度差.在修建水渠的时候,人们经常运用“坡度”的概念.譬如说,若逆水渠而上,渠底在100m 的距离内升高了20cm ,人们就说这水渠的坡度是0.221001000m m =,因此所谓坡度,就是指单位长度内的高度差,它的大小反映着高度随长度变化的快慢程度.如果用数学语言来表达,就要取一段水渠,设它的两端的坐标分别为x 0和x 1,于是这段水渠的长度为:△x =x 1-x 0.根据h 和x 的函数关系h (x )可知,在x 0和x 1=x 0+△x 两地h 的数值分别为h (x 0)和h (x 1)=h (x 0+△x ),所以在△x 这段长度内h 改变了:△h =h (x 0+△x )-h (x 0).根据上述坡度的定义,这段水渠的平均坡度为:00()()h x x h x h k x x+∆-∆==∆∆,(A .23) 前面所举例子,△x 采用了100米的数值.实际上在100米的范围内,水渠的坡度可能各处不同.为了更细致地把水渠在各处的坡度反映出来,应当取更小的长度间隔x ∆,x ∆取得越小,hx∆∆就越能精确反映出x =x 0处的坡度.所以在x =x 0处的坡度k 应是0x ∆→时的平均坡度k 的极限值,即0000()()lim lim x x h x x h x hk x x ∆→∆→+∆-∆==∆∆,(A .24)2.3 函数的变化率——导数前面举了三个例子,在前两个例子中自变量都是t ,第三个例子中自变量是x .这三个例子都表明,在研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,即函数的“变化率”概念.当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量.增量,通常用代表变量的字母前面加个“△”来表示.例如,当自变量x 的数值由x 0变到x 1时,其增量就是△x ≡x 1-x 0.(A .25)与此对应.因变量y 的数值将由y 0=f (x 0)变到y 1=f (x 1),它的增量为△y ≡y 1-y 0=f (x 1)-f (x 0)=f (x 0+△x )-f (x 0).(A .26)应当指出,增量是可正可负的,负增量代表变量减少.增量比00()()f x x f x y x x +∆-∆=∆∆,(A .27)可以叫做函数在x =x 0到x =x 0+△x 这一区间内的平均变化率,它在△x →0时的极限值叫做函数y =f (x )对x 的导数或微商,记作y ′或f ′(x ),0000()()()lim lim x x f x x f x yy f x x x ∆→∆→+∆-∆''===∆∆,(A .28)除y '或()f x '外,导数或微商还常常写作dy dx 、df dx 、ddx等其它形式.导数与增量不同,它代表函数在一点的性质,即在该点的变化率.应当指出,函数f (x )的导数f ′(x )本身也是x 的一个函数,因此可以再取它对x 的导数,这叫做函数y =f (x )的二阶导数,记作y ''、()f x ''、22d y dx 等;22()()()d y d dy dy f x f x dx dx dx dx '''''====,(A .29) 据此类推,则不难定义出高阶的导数来.有了导数的概念,前面的几个实例中的物理量就可表示为:瞬时速率:ds v dt =,(A .30);瞬时加速度:22dv d sa dt dt==,(A .31);水渠坡度:dh k dx =,(A .32).2.4 导数的几何意义在几何中切线的概念也是建立在极限的基础上的.如图A -6所示,为了确定曲线在P 0点的切线,先在曲线上P 0附近选另一点P 1,并设想P 1点沿着曲线向P 0点靠拢.P 0P 1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述.从图上不难看出,P 1点愈靠近P 0点,α角就愈接近一个确定的值α0,当P 1点完全和P 0点重合的时候,割线P 0P 1变成切线P 0T ,α的极限值α0就是切线与横轴的夹角.在解析几何中,把一条直线与横坐标轴夹角的正切tan α叫做这条直线的斜率.斜率为正时表示α是锐角,从左到右直线是上坡的(见图A -7a );斜率为负时表示α是钝角,从左到右直线是下坡的(见图A -7b ).现在来研究图A -6中割线P 0P 1和切线P 0T 的斜率.设P 0和P 1的坐标分别为(x 0,y 0)和(x 0+△x ,y 0+△y ),以割线P 0P 1为斜边作一直角三角形△P 0P 1M ,它的水平边P 0M 的长度为△x ,竖直边MP 1的长度为△y ,因此这条割线的斜率为:10tan MP y P M xα∆==∆.如果图A -6中的曲线代表函数y =f (x ),则割线P 0P 1的斜率就等于函数在 0x x =附近的增量比yx∆∆,切线0PT 的低斜率0tan α是10P P →时,割线P 0P 1斜率的极限值,即10100tan lim tan lim ()P P P P yf x x αα→→∆'===∆;所以导数的几何意义是切线的斜率.§3.导数的运算在上节里只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来.3.1 基本函数的导数公式(1)y =f (x )=C (常量):00()()()lim lim 0x x f x x f x C Cy f x xx ∆→∆→+∆--''====∆∆; (2)y =f (x )=x :000()()()()lim lim lim 1x x x f x x f x x x x x y f x x xx ∆→∆→∆→+∆-+∆-∆''=====∆∆∆; (3)y =f (x )=x 2:22000()()()()lim lim lim(2)2x x x f x x f x x x x y f x x x x x x∆→∆→∆→+∆-+∆-''====+∆=∆∆;(4)y =f (x )=x 3:33222000()()()()lim lim lim[33()]3x x x f x x f x x x x y f x x x x x x x x∆→∆→∆→+∆-+∆-''====+∆+∆=∆∆; (5)y =f (x )=1x :0()()()lim x f x x f x y f x x ∆→+∆-''===∆011lim x x x x x∆→-+∆=∆ 200()11lim lim ()()x x x x x x x x x x x x x∆→∆→-+∆-===-+∆⋅∆+∆; (6)y =f (x )=x :000()()()lim lim lim[]x x x f x x f x x x x x x x x x xy f x x x x x x x∆→∆→∆→+∆-+∆-+∆-+∆+''====⋅∆∆∆+∆+ 220()()11limlim()2x x x x x x x x x x x x x∆→∆→+∆-===∆+∆++∆+上面推导的结果可以归纳成一个普遍公式:当ny x =时,1n n dx y nx dx-'==,(n 为任何数),(A .33). 例如:当1n =时,()y f x x ==,1dxy dx '==; 当2n =时,2()y f x x ==,22dx y x dx '==; 当3n =时,3()y f x x ==,323dx y x dx '==; 当1n =-时,11()y f x x x -===,2211()(1)d y x dx x x-'==-=-;当12n =时,12()y f x x x ===,121122d x y x dx x-'===;等等.利用(A .33)式还可以计算其它幂函数的导数(见表A -2).除了幂函数n x 外,物理学中常见的基本函数还有三角函数、对数函数和指数函数.现在只给出这些函数的导数公式(见表A -2)而不推导,解题时可以直接引用.3.2 有关导数运算的几个定理 定理一:[()()]d du dvu x v x dx dx dx ±=±,(A .34). 证明:00[()()]lim lim[]x x d u v u v du dvu x v x dx x x x dx dx∆→∆→∆±∆∆∆±==±=±∆∆∆. 定理二:[()()]()()d du dvu x v x v x u x dx dx dx ⋅=+,(A .35).证明:00[()][()]u(x)v(x)v()()[()()]lim lim x x d u x u v x v x u u x v u vu x v x dx x x∆→∆→+∆+∆-∆+∆+∆∆⋅==∆∆ 0lim[()()]()()x u v du dvv x u x v x u x x x dx dx ∆→∆∆=+=+∆∆.表A -2基本导数公式函数y =f (x )导数y ′=f ′(x )函数y =f (x ) 导数y ′=f ′(x )c (任意常量) 012n =- ,121x x -=3321212()x x --=- x n (n为任意常量)nx n -132n =-,3321()x x -=5523232()x x --=-n =1, x1…… ……n =2, x 2 2x sin xcos xn =3, x 33x 2 cos xsin x - 1n =-,11x x -=221(1)x x --=-ln x 1x2n =-,221x x -=332(2)x x --=-x ex e12n =,121x x=121212x x -= …… ……定理三:2()()()[]()[()]du dv v x u x d u x dx dx dx v x v x -=,(A .36).证明:000()()()[()]()[()]()()()()()[]lim lim lim ()[()]()[()]()x x x u x u u x d u x u x u v x v x v u x v x u u x v v x v v x dx v x x v x v v x xv x v v x x ∆→∆→∆→+∆-+∆-+∆∆-∆+∆===∆+∆∆+∆∆20()()()()lim [()]()[()]x u v du dv v x u x v x u x x x dx dx v x v v x v x ∆→∆∆--∆∆==+∆. 定理四:[()]d du dvu v x dx dv dx=⋅,(A .37). 证明:00[()][()]()()[()]lim lim[]x x d u v x x u v x u v v v v v u v x dx x v x ∆→∆→+∆-+∆-∆==⋅∆∆∆00()()lim[]lim[]x x u v v v v v du dvv x dv dx∆→∆→+∆-∆=⋅=⋅∆∆ 例1.求22y x a =±(a 为常量)的导数.解:22202dy dx da x x dx dx dx=±=±=. 例2.求ln x y a =(a 为常量)的导数. 解:ln ln 110dy d x d a dx dx dx x x=-=-=. 例3.求2y ax =(a 为常量)的导数. 解:222022dy da dx x a x a x ax dx dx dx=⋅+⋅=⋅+⋅=. 例4.求2x y x e =的导数. 解:22222(2)xx x x x dy dx de e x x e x e x x e dx dx dx=+=⋅+⋅=+. 例5.求23251x y x -=+的导数.解:2222222(32)(51)(51)(32)6(51)(32)515610(51)(51)(51)d x d x x x dy x x x x x dx dx dx x x x -++--⋅+--⋅++===+++. 例6.求tan y x =的导数. 解:2222sin cos cos sin sin cos cos sin (sin )1(tan )()sec cos cos cos cos d x d xxxdy d d x x x x x dx dx x x dxdx dx xx x x-⋅-⋅-======. 例7.求cos()y ax b =+(a 、b 为常量)的导数.解:令v ax b =+,()cos y u v v ==,则(sin )sin()dy du dv v a a ax b dx dv dx=⋅=-⋅=-+. 例8.求21y x =-的导数.解:令21v x =-,()y u v v ==,则21221dy du dv x x dx dv dx vx =⋅=⋅=-.例9.求22ax y x e -=(a 为常量)的导数.解:令v u e =,2v ax =-,则2222222(2)2(1)v ax dy dx du dvu x xu x e ax x ax e dx dx dv dx-=+⋅=+⋅⋅-=-§4.微分和函数的幂级数展开 4.1 微分自变量的微分,就是它的任意一个无限小的增量△x .用dx 代表x 的微分,则dx =△x .(A .38) 一函数y =f (x )的导数f ′(x )乘以自变量的微分dx 即为该函数的微分,用dy 或df (x )表示,即dy =df (x )=f ′(x )dx ,(A .39) 所以()dyf x dx'=,(A .40) 在之前曾把导数写成dydx的形式,是把它作为一个整体引入的.当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分.在引入微分的概念之后,就可把导数看成微分dy 与dx 之商(所谓“微商”),即一个真正的分数了.把导数写成分数形式,常常是很方便的,例如,把上节定理四(A .37)式的左端[()]d u v x dx 简写成du dx,则该式化为du du dvdx dv dx =⋅;此公式从形式上看和分数运算法则一致,很便于记忆. 下面看微分的几何意义.图A -8是任一函数y =f (x )的图形,P 0(x 0,y 0)和P 1(x 0+△x ,y 0+△y )是曲线上两个邻近的点,P 0T 是通过P 0的切线.直角三角形△P 0MP 1的水平边0P M x =∆,竖直边1MP y =∆(见图8A -).设0PT 与1MP 的交点为N ,则0tan MNMNNP M xPM∠==∆,但0tan NP M ∠为切线P 0T 的斜率,它等于x =x 0处的导数f ′(x 0),因此00()tan dy f x x NP M x MN '=∆=∠⋅∆=.所以微分dy 在几何图形上相当于线段MN 的长度,它和增量1y MP ∆=相差1NP 一段长;从上一节计算导数时取极限的过程可以看出,dy 是y ∆中正比于x ∆的那一部分,而1NP 则是正比于(△x )2以及△x 更高幂次的各项之和[例如对于函数y =f (x )=x 3,△y =3x 2△x +3x (△x )2+(△)3,而d y =f ′(x )△x =3x 2△x ].当△x 很小时,(△x )2、(△x )3、…比△x小得多,1NP 也就比dy 小得多,所以可以把微分dy 叫做增量y ∆中的线性主部.也就是说,若函数在x =x 0的地方像线性函数那样增长,则它的增量就是dy .4.2幂函数的展开已知一个函数f (x )在x =x 0一点的数值f (x 0),如何求得其附近的点x =x 0+△x 处的函数值f (x )=f (x 0+△x )? 若f (x )为x 的幂函数n x ,可以利用牛顿的二项式定理:23000000000(1)(1)(2)()()[1()]()[1()]()[1()()()]2!3!n n nn n x x x n n x n n n x f x x x x x f x f x n x x x x x ∆∆∆-∆--∆==+∆=+=+=++++⋅⋅⋅000(1)(1)()()!nmm n n n m x f x m x =-⋅⋅⋅-+∆=∑,(A .41)此式适用于任何n (整数、非整数、正数、负数等等).若n 为正整数,则上式中的级数在M =n 的地方截断,余下的项自动为0,否则上式为无穷级数.不过当△x <<x 0时,后面的项越来越小,只需保留有限多项就足够精确了.不要以为数学表达式越精确越好.如图A -9中A 、B 两点间的水平距离为l ,若将B 点竖直向上提高一个很小的距离a (a <<l)到达B ′,问AB ′之间的距离比AB 增加了多少?利用勾股定理易得距离的增加量为22l l a l ∆=+-.这是个精确的公式,但没有给出一个鲜明的印象,究竟△l 是随a 怎样变化的?若用二项式定理将它展开,只保留到最低级的非0项,则有12222221[1()1]{[1()]1}[1()1]()222a a a l a a l l l l l ll l l∆=+-=+-=++⋅⋅⋅-≈=,即△l 是正比于a 平方增长的,属二级小量.这种用幂级数展开来分析主要变化趋势的办法,在物理学里是经常用到的.4.3泰勒展开非幂函数(譬如s in x 、e x )如何作幂级数展开?这要用泰勒(Taylor)展开. 下面用一种不太严格,但简单明了的办法将它导出.假设函数f (x )在x =x 0处的增量△f =f (x )-f (x 0)能够展成△x =x -x 0的幂级数:001()()()mm m f x f x a x x ∞=-=-∑,(A .42)则通过逐项求导可得101()()m m m f x ma x x ∞-='=-∑;当x →x 0时,m >1的项都趋于0,于是有f ′(x 0)=a 1;再次求导,得202()(1)()m m m f x m m a x x ∞-=''=--∑,当x →x 0时,m >2的项都趋于0,于是有f (x 0)=2a 2;如此类推,一般地说,对于M 阶导数有()0()!M M f x M a =;于是(A .42)式可以写为:()000()()()()!m m m Mf x f x f x x x m ∞=-=-∑,(A .43).若定义第0阶导数f (0)(x )就是函数f (x )本身,则上式还可进一步简写为:()000()()()!m m m f x f x x x m ∞==-∑,(A .44). 上述(A .43)或(A .44)式称为泰勒展开式,它在物理学中是非常有用的公式. 下面在表A -3中给出几个常见函数在x 0=0或1处的泰勒展开式.表A -3 常见函数的幂级数展开式函数展开式收敛范围12(1)x ± 234111113113512242462468x x x x ⋅⋅⋅⋅⋅⋅±-±-±⋅⋅⋅⋅⋅⋅⋅⋅⋅1x ≤ 32(1)x ± 234331311311312242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 52(1)x ± 234553531531112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x ≤ 12(1)x -± 234113135135712242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 32(1)x -± 234335357357912242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 52(1)x -±2345575795791112242462468x x x x ⋅⋅⋅⋅⋅⋅±+±+±⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1x < 1(1)x -±2341x x x x ±+±+±⋅⋅⋅1x <2(1)x -±23412345x x x x ±+±+±⋅⋅⋅1x < sin x3573!5!7!x x x x -+-+⋅⋅⋅ x <∞ cos x24612!4!6!x x x -+-+⋅⋅⋅ x <∞ tan x 35791217623153152835x x x x x +++++⋅⋅⋅ x <∞ xe 23411!2!3!4!x x x x +++++⋅⋅⋅ x <∞ln(1)x + 234234x x x x -+-+⋅⋅⋅11x -<≤ ln(1)x -234()234x x x x -++++⋅⋅⋅11x -≤<§5.积分5.1几个物理中的实例 (1)变速直线运动的路程大家都熟悉匀速直线运动的路程公式.若物体的速率是v ,则它在t a 到t b 一段时间间隔内走过的路程是s =v (t b -t a ),(A .45).对于变速直线运动来说,物体的速率v 是时间的函数:v =v (t ),函数的图形是一条曲线(见图A -10a ),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A -4b ).对于变速直线运动,(A .45)式已不适用.但是,可以把t =t a 到t =t b 这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的.这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a 到t b 这段时间里走过的总路程.设时间间隔(t b -t a )被t =t 1(=t a )、t 2、t 3、…、t n 、t b 分割成n 小段,每小段时间间隔都是△t ,则在t 1、t 2、t 3、…、t n 各时刻速率分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n ).若把各小段时间的速率v 看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t .于是,在整个(t b -t a )这段时间里的总路程是1231()()()()()nn i i s v t t v t t v t t v t t v t t ==∆+∆+∆+⋅⋅⋅+∆=∆∑,(A .46).现在再看看上式的几何意义.在函数v =v (t )的图形中,通过t =t 1、t 2、t 3、…、t n 各点垂线的高度分别是v (t 1)、v (t 2)、v (t 3)、…、v (t n )(见图A -10b ),所以v (t 1)△t 、v (t 2)△t 、v (t 3)△t 、…、v (t n )△t 就分别是图中那些狭长矩形的面积,而1()ni i v t t =∆∑则是所有这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积.在上面的计算中,把各小段时间△t 里的速率v 看做是不变的,实际上在每小段时间里v 多少还是有些变化的,所以上面的计算并不精确.要使计算精确,就需要把小段的数目n 加大,同时所有小段的△t 缩短(见图A -10c ).△t越短,在各小段里v 就改变得越少,把各小段里的运动看成匀速运动也就越接近实际情况.所以要严格地计算变速运动的路程s ,就应对(A .46)式取n →∞、△t →0的极限,即01lim ()ni t i n s v t t ∆→=→∞=∆∑,(A .47). 当n 越来越大,△t 越来越小的时候,图A -10中的阶梯状图形的面积就越来越接近v (t )曲线下面的面积(图A -10d).所以(A .47)式中的极限值等于(t b -t a )区间内v (t )曲线下的面积.总之,在变速直线运动中,物体在任一段时间间隔(t b -t a )里走过的路程要用(A .47)式来计算,这个极限值的几何意义相当于这区间内v (t )曲线下的面积. (2)变力的功当力与物体移动的方向一致时,在物体由位置s =s a 移到s =s b 的过程中,恒力F 对它所作的功为:A =F (s b -s a )(A .48);若力F 是随位置变化的,即F 是s 的函数:F =F (s ),则不能运用(A .48)式来计算力F 的功.此时,也需要象计算变速运动的路程那样,把(s b -s a )这段距离分割成n 个长度为△s 的小段(见图A -11):并把各小段内力F 的数值近似看成是恒定的,用恒力作功的公式计算出每小段路程△s 上的功,然后加起来取n →∞、△s →0的极限值.具体地说,设力F 在各小段路程内的数值分别为F (s 1)、F (s 2)、F (s 3)、…、F (s n ),则在各小段路程上力F 所作的功分别为F (s 1)△s 、F (s 2)△s 、F (s 3)△s 、…、F (s n )△s ,在(s b -s a )整段路程上力F 的总功A 就近似地等于1()ni i F s s =∆∑;因为实际上在每一小段路程上加F 都是变化的,所以严格地计算,还应取n →∞、△s →0的极值,即01lim ()ni t i n A F s s ∆→=→∞=∆∑,(A .49).同上例,这极限值应是(s b -s a )区间内F (s )下面的面积(见图A -12).5.2定积分以上两个例子表明,许多物理问题中需要计算象(A .47)和(A .49)式中给出的那类极限值.概括起来说,就是要解决如下的数学问题:给定一个函数f (x ),用x =x 1(=a )、x 2、x 3、…、x n 、b 把自变量x 在(b -a )区间内的数值分成n 小段,设每小段的大小为△x ,求n →∞、△x →0时1()ni i f x x =∆∑的极限;通常把这类形式的极限用符号()ba f x dx ⎰来表示,即01()lim ()nbi ax i n f x dx f x x ∆→=→∞=∆∑⎰,(A .50);()baf x dx ⎰叫做x a =到x b =区间内()f x 对x 的定积分,()f x 叫做被积函数,b 和a 分别叫做定积分的上限和下限.用定积分的符号来表示,(A .47)和(A .49)式可分别写为()bat t s v t dt =⎰,(A .51)、()bas s A F s ds =⎰,(A .52).在变速直线运动的路程公式(A .51)里,自变量是t ,被积函数是v (t ),积分的上、下限分别是t b 和t a ;在变力作功的公式(A .52)里,自变量是s ,被积函数是F (s ),积分的上、下限分别是s b 和s a .求任意函数定积分的办法有赖于下面关于定积分的基本定理:若被积函数f (x )是某个函数Ф(x )的导数,即f (x )=Ф′(x ),则在x =a 到x =b 区间内f (x )对x 的定积分等于Ф(x )在这区间内的增量,即()()()ba f x dxb a =Φ-Φ⎰,(A .53).下面来证明上述定理.在a ≤x ≤b 区间内任选一点x i ,首先考虑Ф(x )在x =x i 到x =x i +△x =x i+1区间的增量△Ф(x i )=Ф(x i+1)-Ф(x i ):()()i i x x x x ∆Φ∆Φ=⋅∆∆,当0x ∆→时,可用Ф(x )的导数()d x dx Φ'Φ=代替x ∆Φ∆;但按照定理的前提,Ф′(x )=f (x ),故△Ф(x i )≈Ф′(x i )△x =f (x i )△x 式中≈表示“近似等于”,若取△x →0的极限,上式就是严格的等式.把a ≤x ≤b 区间分成n -1小段,每段长△x ;上式适用于每小段.根据积分的定义和上式,有:12112100()lim[()()()]lim[()()()]bn n ax x n n f x dx f x x f x x f x x x x x --∆→∆→→∞→∞=∆+∆+⋅⋅⋅+∆=∆Φ+∆Φ+⋅⋅⋅+∆Φ⎰2132110lim{[()()][()()][()()]}()()n n n x n x x x x x x x x -∆→→∞=Φ-Φ+Φ-Φ+⋅⋅⋅+Φ-Φ=Φ-Φ因x 1=a ,xn =b ,于是得(A .53)式,至此定理证毕.下面看看函数Ф(x )在f -x 图(见图A -13)中所表现的几何意义.如前所述,△Ф(x i )=Ф(x i+1)-Ф(x i )=f (x i )△x ,正是宽为△x 、高为()i i i f x x P =的一个矩形(即图13A -中的1i i i x x NP +)的面积.它和曲线段P i P i+1下面的梯形x i x i+1P i+1P i 的面积只是相差一小三角形P i NP i +1的面积.当△x →0时,可认为△Ф(x i )就是梯形x i x i+1P i+1P i 的面积.既然当x 由x i 变到x i+1时,Ф(x )的增量的几何意义是相应区间f -x 曲线下的面积,则Ф(x )本身的几何意义就是从原点O 到x 区间f -x 曲线下面的面积加上一个常量C =Ф(0).例如Ф(x i )的几何意义是图形Ox i P i P 0的面积加C ,Ф(x i +1)的几何意义是图形Ox i+1P i+1P 0的面积加C ,等等.这样,△Ф(x i )=Ф(x i+1)-Ф(x i )就是:(Ox i+1P i+1P 0的面积+C )-(Ox i P i P 0的面积+C )=x i x i+1P i+1P i 的面积,而Ф(b )-Ф(a )的几何意义是:(ObP b P 0的面积+C )-(OaP a P 0的面积+C )=abP b P a 的面积.它相当于定积分()ba f x dx ⎰的值.5.3不定积分及其运算在证明了上述定积分的基本定理之后,就可以着手解决积分的运算问题了.根据上述定理,只要求得函数Ф(x )的表达式,利用(A .53)式立即可以算出定积分()ba f x dx ⎰来,那么,给出了被积函数()f x 的表达式之后,怎样去求Ф(x )的表达式呢?上述定理说明,Ф′(x )=f (x ),所以这就相当于问f (x )是什么函数的导数.由此可见,积分运算是求导的逆运算.如果f (x )是Ф(x )的导数,可以称Ф(x )是f (x )的逆导数或原函数.求f (x )的定积分就可以归结为求它的逆导数或原函数.在上节里讲了一些求导数的公式和定理,常见的函数都可以按照一定的法则把它们的导数求出来.然而求逆导数的问题却不像求导数那样容易,而需要靠判断和试探.例如,知道了Ф(x )=x 3的导数Ф′(x )=3x 2,也就知道了F (x )=3x 2的逆导数是Ф(x )=x 3;这时,如果要问函数f (x )=x 2的逆导数是什么,那么就不难想到,它的逆导数应该是x 3/3;这里要指出一点,即对于一个给定的函数f (x )来说,它的逆导数并不是唯一的.Ф1(x )=x 3/3是f (x )=x 2的逆导数,Ф2(x )=x 3/3+1和Ф3(x )=x 3/3-5也都是它的逆导数,因为Ф1′(x )、Ф2′(x )、Ф3′(x )都等于x 2.一般说来,在函数f (x )。

数学物理竞赛知识点总结

数学物理竞赛知识点总结

数学物理竞赛知识点总结一、数学竞赛知识点总结1. 不等式(1) 已知不等式性质(2) 不等式的计算(3) 不等式的应用(如证明、应用)2. 函数(1) 函数的性质(2) 函数的运算(如复合函数、反函数)(3) 函数的图像与性质(如一次函数、二次函数、三角函数)3. 数列(1) 等差数列和等比数列的性质(2) 数列的求和(3) 数列的应用(如证明、应用)4. 极限(1) 极限的概念及性质(2) 极限的运算规则(3) 极限的应用(如证明、变量法)5. 微分与积分(1) 微分的概念及性质(2) 积分的概念及性质(3) 微分与积分的应用(如证明、变量法)6. 组合与排列(1) 组合与排列的概念及性质(2) 组合与排列的公式与计算(3) 组合与排列的应用(如证明、变量法)7. 概率(1) 概率的概念及性质(2) 概率的计算公式(3) 概率的应用(如证明、变量法)8. 数论(1) 数论的基本概念(2) 数论的性质与定理(3) 数论的应用(如证明、变量法)9. 平面几何(1) 平面几何的基本概念(2) 平面几何的性质与定理(3) 平面几何的应用(如证明、变量法)10. 空间几何(1) 空间几何的基本概念(2) 空间几何的性质与定理(3) 空间几何的应用(如证明、变量法)11. 解析几何(1) 解析几何的基本概念(2) 解析几何的性质与定理(3) 解析几何的应用(如证明、变量法)12. 复变函数(1) 复变函数的基本概念(2) 复变函数的性质与定理(3) 复变函数的应用(如证明、变量法)13. 加速度表达式(1) 加速度表达式的概念及性质(2) 加速度表达式的计算规则(3) 加速度表达式的应用(如证明、变量法)14. 群论(1) 群论的基本概念(2) 群论的性质与定理(3) 群论的应用(如证明、变量法)15. 常数(1) 常数的概念及性质(2) 常数的计算规则(3) 常数的应用(如证明、变量法)二、物理竞赛知识点总结1. 运动学(1) 位移、速度、加速度的等物理量的概念及性质(2) 运动图象的绘制及分析(3) 运动规律的应用2. 动力学(1) 牛顿定律的表述及应用(2) 动量、动能、功率的概念及计算(3) 动力学定律的应用3. 静力学(1) 物体的平衡条件(2) 施力与受力的关系(3) 静力学的应用(如证明、变量法)4. 物态方程(1) 理想气体状态方程的概念及性质(2) 理想气体状态方程的计算及应用(3) 理想气体状态方程的变化规律5. 热力学(1) 热力学的基本概念(2) 热力学的性质与定理(3) 热力学的应用(如证明、变量法)6. 电学(1) 电荷、电场、电势的概念及性质(2) 电路、电流、电阻的计算(3) 电学的应用(如证明、变量法)7. 光学(1) 几何光学与波动光学的基本概念(2) 光学现象的分析与计算(3) 光学的应用(如证明、变量法)8. 声学(1) 声波的基本概念(2) 声学现象的分析与计算(3) 声学的应用(如证明、变量法)9. 原子物理(1) 原子结构的基本概念(2) 原子核的结构及性质(3) 原子物理的应用(如证明、变量法)10. 核物理(1) 核反应的基本概念(2) 放射性物质的性质及应用(3) 核物理的应用(如证明、变量法)11. 量子物理(1) 量子力学的基本概念(2) 量子物理的性质与定理(3) 量子物理的应用(如证明、变量法)12. 统计物理(1) 统计物理的基本概念(2) 统计物理的性质与定理(3) 统计物理的应用(如证明、变量法)13. 电磁学(1) 电场、磁场、电磁感应的基本概念(2) 电磁学现象的应用与计算(3) 电磁学的应用(如证明、变量法)14. 物理实验(1) 实验的设计及操作(2) 实验结果的分析及应用(3) 实验的应用(如证明、变量法)15. 分子物理(1) 分子结构的基本概念(2) 分子物理的性质及应用(3) 分子物理的应用(如证明、变量法)总结:数学物理竞赛知识点包括数学和物理两个方面,内容涉及不等式、函数、数列、极限、微分与积分、组合与排列、概率、数论、平面几何、空间几何、解析几何、复变函数、加速度表达式、群论、常数等数学知识,运动学、动力学、静力学、物态方程、热力学、电学、光学、声学、原子物理、核物理、量子物理、统计物理、电磁学、物理实验、分子物理等物理知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通物理的数学基础选自赵凯华老师新概念力学一、微积分初步物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。

这样,微积分这个数学工具就成为必要的了。

我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。

所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。

至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。

§1.函数及其图形1.1函数自变量和因变量绝对常量和任意常量1.2函数的图象1.3物理学中函数的实例§2.导数2.1极限如果当自变量x无限趋近某一数值x0(记作x→x0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做x→x0时函数f(x)的极限值,并记作(A.17)式中的“lim”是英语“limit(极限)”一词的缩写,(A.17)式读作“当x趋近x0时,f(x)的极限值等于a”。

极限是微积分中的一个最基本的概念,它涉及的问题面很广。

这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。

考虑下面这个函数:这里除x=1外,计算任何其它地方的函数值都是没有困难的。

例如当但是若问x=1时函数值f(1)=?我们就会发现,这时(A.18)式的说是没有意义的。

所以表达式(A.18)没有直接给出f(1),但给出了x无论如何接近1时的函数值来。

下表列出了当x的值从小于1和大于1两方面趋于1时f(x)值的变化情况:表A-1 x与f(x)的变化值x3x2-x-2x-10.9-0.47-0.1 4.70.99-0.0497-0.01 4.970.999-0.004997-0.001 4.9970.999 9-0.0004997-0.00014.99971.10.530.1 5.3 1.010.5030.01 5.03 1.0010.0050030.001 5.0031.000 10.000500030.0001 5.0003从上表可以看出,x值无论从哪边趋近1时,分子分母的比值都趋于一个确定的数值——5,这便是x→1时f(x)的极限值。

其实计算f(x)值的极限无需这样麻烦,我们只要将(A.18)式的分子作因式分解:3x2-x-2=(3x+2)(x-1),并在x≠1的情况下从分子和分母中将因式(x-1)消去:即可看出,x趋于1时函数f(x)的数值趋于3×1+2=5。

所以根据函数极限的定义,求极限公式(2)(3)(4)等价无穷小量代换sinx~x; tan~x; arctanx~x; arcsinx~x;2.2极限的物理意义(1)瞬时速度对于匀变速直线运动来说,这就是我们熟悉的匀变速直线运动的速率公式(A.5)。

(2)瞬时加速度时的极限,这就是物体在t=t0时刻的瞬时加速度a:(3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。

为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:h=h(x).知道了这个函数,我们就可以计算任意两点之间的高度差。

就愈能精确地反映出x=x0这一点的坡度。

所以在x=x0这一点的坡度k 应是△2.3函数的变化率——导数前面我们举了三个例子,在前两个例子中自变量都是t,第三个例子中自变量是x.这三个例子都表明,在我们研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,我们往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,亦即,函数的“变化率”概念。

当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量。

增量,通常用代表变量的字母前面加个“△”来表示。

例如,当自变量x 的数值由x0变到x1时,其增量就是△x≡x1-x0.(A.25)与此对应。

因变量y的数值将由y0=f(x0)变到y1=f(x1),于是它的增量为△y≡y1-y0=f(x1)-f(x0)=f(x0+△x)-f(x0).(A.26)应当指出,增量是可正可负的,负增量代表变量减少。

增量比可以叫做函数在x=x0到x=x0+△x这一区间内的平均变化率,它在△x→0时的极限值叫做函数y=f(x)对x的导数或微商,记作y′或f′(x),f(x)等其它形式。

导数与增量不同,它代表函数在一点的性质,即在该点的变化率。

应当指出,函数f(x)的导数f′(x)本身也是x的一个函数,因此我们可以再取它对x的导数,这叫做函数y=f(x)据此类推,我们不难定义出高阶的导数来。

有了导数的概念,前面的几个实例中的物理量就可表示为:2.4导数的几何意义在几何中切线的概念也是建立在极限的基础上的。

如图A-6所示,为了确定曲线在P0点的切线,我们先在曲线上P0附近选另一点P1,并设想P1点沿着曲线向P0点靠拢。

P0P1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角α来描述。

从图上不难看出,P1点愈靠近P0点,α角就愈接近一个确定的值α0,当P1点完全和P0点重合的时候,割线P0P1变成切线P0T,α的极限值α0就是切线与横轴的夹角。

在解析几何中,我们把一条直线与横坐标轴夹角的正切tanα叫做这条直线的斜率。

斜率为正时表示α是锐角,从左到右直线是上坡的(见图A-7a);斜率为负时表示α是钝角,从左到右直线是下坡的(见图A-7b)。

现在我们来研究图A-6中割线P0P1和切线P0T的斜率。

设P0和P1的坐标分别为(x0,y0)和(x0+△x,y0+△y),以割线P0P1为斜边作一直角三角形△P0P1M,它的水平边P0M的长度为△x,竖直边MP1的长度为△y,因此这条割线的斜率为如果图A-6中的曲线代表函数y=f(x),则割线P0P1的斜率就等于函数在线P0P1斜率的极限值,即所以导数的几何意义是切线的斜率。

§3.导数的运算在上节里我们只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来。

3.1基本函数的导数公式(1)y=f(x)=C(常量)(2)y=f(x)=x(3)y=f(x)=x2(4)y=f(x)=x3上面推导的结果可以归纳成一个普遍公式:当y=x n时,等等。

利用(A.33)式我们还可以计算其它幂函数的导数(见表A-2)。

除了幂函数x n外,物理学中常见的基本函数还有三角函数、对数函数和指数函数。

我们只给出这些函数的导数公式(见表A-2)而不推导,读者可以直接引用。

3.2有关导数运算的几个定理定理一证:定理二表A-2基本导数公式函数y=f(x)导数y′=f′(x)c(任意常量)0x n(n为任意常量)nx n-1,.n=1,x12xn=2,x2n=3,x33x2……………………sinx cosxcosx -sinxlnxe x e x定理三定理四例题1求y=x2±a2(a为常量)的导数。

例题3求y=ax2(a为常量)的导数。

例题4求y=x2e x的导数。

例题6求y=tanx的导数。

例题7求y=cos(ax+b)(a、b为常量)的导数。

解:令v=ax+b,y=u(v)=cosv,则例题9求y=x2e-ax2(a为常量)的导数。

解:令u=e v,v=-ax2,则§4.微分和函数的幂级数展开4.1微分自变量的微分,就是它的任意一个无限小的增量△x.用dx代表x的微分,则dx=△x.(A.38)一个函数y=f(x)的导数f′(x)乘以自变量的微分dx,叫做这个函数的微分,用dy或df(x)表示,即dy≡df(x)≡f′(x)dx,(A.39)一个整体引入的。

当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分。

在引入微分的概念之后,我们就可把导数看成微分dy与dx之商(所谓“微商”),即一个真正的分数了。

把导数写成分数形式,常常是很方便的,例如,把上节定理四(A.37)此公式从形式上看就和分数运算法则一致了,很便于记忆。

下面看微分的几何意义。

图A-8是任一函数y=f(x)的图形,P0(x0,y0)和P1(x0+△x,y0+△y)是曲线上两个邻近的点,P0T是通过P0的切线。

直角三角形△P0MP1的水平边的交点为N,则但tan∠NP0M为切线P0T的斜率,它等于x=x0处的导数f′(x0),因此所以微分dy在几何图形上相当于线段MN的长度,它和增量是正比于(△x)2以及△x更高幂次的各项之和[例如对于函数y=f(x)=x3,△y=3x2△x+3x(△x)2+(△x)3,而dy=f′(x)△x=3x2△x].当△x很小时,(△x)2、(△x)3、…比△x小得多,中的线性主部。

这就是说,如果函数在x=x0的地方象线性函数那样增长,则它的增量就是dy.§5.积分5.1几个物理中的实例(1)变速直线运动的路程我们都熟悉匀速直线运动的路程公式。

如果物体的速率是v,则它在t a 到t b一段时间间隔内走过的路程是s=v(t b-t a). (A.45)对于变速直线运动来说,物体的速率v是时间的函数:v=v(t),函数的图形是一条曲线(见图A-10a),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A-4b)。

对于变速直线运动,(A.45)式已不适用。

但是,我们可以把t=t a到t=t b这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的。

这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到t a到t b这段时间里走过的总路程。

设时间间隔(t b-t a)被t=t1(=t a)、t2、t3、…、t n、t b分割成n小段,每小段时间间隔都是△t,则在t1、t2、t3、…、t n各时刻速率分别是v(t1)、v(t2)、v(t3)、…、v(t n)。

如果我们把各小段时间的速率v看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v(t1)△t、v(t2)△t、v(t3)△t、…、v(t n)△t.于是,在整个(t b-t a)这段时间里的总路程是现在我们来看看上式的几何意义。

在函数v=v(t)的图形中,通过t=t1、t2、t3、…、t n各点垂线的高度分别是v(t1)、v(t2)、v(t3)、…、v(t n)(见图A-10b),所以v(t1 )△t、v(t2)△t、v(t3)△t、…、v(t n)△t就分这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积。

相关文档
最新文档