非线性光学极化率
非线性光学极化率
第一章 非线性光学极化率 §1.1 导论“非线性光学”研究什么?⇒“光”对介质“光学性质”的“非线性影响”。
“光”: 强光(Laser)光强比较:)/(/2m W S W I =或用电场强度)/(m V E 表示 1)正午阳光: )/(2502m W I =(查书:P433) )/(1037.1)/(10324m V E m W I ⨯=−−→−=对应. 2E I ∝ ,23224)/(1037.1)/(250)/(10⎥⎦⎤⎢⎣⎡⨯=x m V m W m W , )/(16.2)/(216cm V m V x ==.2)Laser :历史:1960年: 梅曼 红宝石 ︒A 6943,1961年: Franken 二次谐波脉冲Laser: ⎪⎩⎪⎨⎧=∆--sst 15121010皮秒飞秒)(10/1019W t E ns t JE =∆⇒⎭⎬⎫=∆=21021001.0m mm S -==∆聚焦后)/(1033.4/1010219m V E m W I ⨯=⇒=3) 原子内场(以H 原子为例): 国际单位制[MKS+A(安培)] 2041re E at πε=C e 191060.1-⨯=;m F /1085.8)(120-⨯=真空中的介电系数ε;V C F /=m A n a r 1011053.053.0)1,(-︒⨯====波尔半径)/(106)(106112111m V m C F m E at ⨯=⋅⋅⋅⨯=---------与Laser 比较→同一量级。
高斯单位制[CGS+esu(静电单位)] 2re E at =)1031();(108.4910esu C esu e ⨯=⨯=-cm r 9103.5-⨯=)3001(;/106)/(102117V statvolt m V cm statvolt E at =⨯=⨯=(查书:P433)两种单位制:“长枪、短炮各有优势”。
非线性光学极化率的经典描述
2.光与物质相互作用关系 当一个光电场入射到介质体系中时,由于介质体系是由大 量的多种荷电粒子,如电子、原子实及离子等构成,它们 在外光电场的作用下会发生位移,这就会在介质中产生感 应的电极化强度。
P(r, t ) 0 (1) E(r, t )
配合电磁波在介质中传播的波动方程
E (r , t ) 2 E (r , t ) 2 P(r , t ) 2 E (r , t ) 0 0 0 0 0 2 t t t 2
• 相干辐射产生的另一个效应即是受激布里渊散射(SB S),当激光束射入晶体材料后,利用高分辨率光学干涉仪 器观察到在入射激光线的近旁存在着几条亮度很高的辐射线, 频差在1cm-1以下,这是与晶体等材料中声学波相联系的 SBS效应。
• 与SHG效应有联系的一些效应如和频(SFG)、差频 及光学参量振荡(OPO)也陆续地被发现。利用晶体材料 的双折射效应以补偿折射率的色散,人们在许多晶体中,如 KDP, ADP,LiNbO3及LiIO3 ,实现了有效 的相位匹配并得到有很高转换效率的相干辐射。利用和频, 可以对相干辐射频率进行蓝移,而利用差频及光学参量振荡 可以将可见激光转换至红外波段。这就为人们扩展相干辐射 的波段范围又提供了几种新的方法。
•非线性光学效应的定义如下:凡物质对于外加电磁场 的响应,并不是外加电磁场振幅的线性函数的光学现 象,均属于非线性光学效应的范畴。
1.非线性光学的早期10年(1961—1970) 非线性光学的一个重要发展时期是早期的10年。
1961年,Franken将红宝石激光束入射到石英片上,确证 了新的SHG效应。SHG效应的发现极大地促进了无机 晶体材料在相干辐射产生中的应用,具有重要的意义。 1962年Woodbury在使用硝基苯材料研究调Q红宝 石激光器时发现,从激光器出射的谱线中,除了红宝石的 激光线外,还有另一条处于红区的766nm谱线。而且 这条出射光束具有与红宝石激光束同样的传播方向和小的 发散角。随之人们即分析出,这是与硝基苯的分子振动密 切有关的一种新的相干辐射,即受激拉曼散射SRS。
非线性光学(NonlinearOptics)非线性极化率张量(Nonlinear
• 为了找出 中C3和 为ω的AC电场驱动下电子运动方程的近似解。
acceleration 驱动电场:
电子位移: 且满足:
damping
restoring force
尝试解
二、光学非线性的物理起源
• 此时单位时间内减少的光子数目为
,即净吸收速率。
• 随着光束在介质中的传播,其强度逐渐减小:定义z处的光强为I(z),dz内光强的变化 为dI ,此时有 。 • 由于光束强度定义为单位时间在单位面积上通过的能量(W m-2),有 ,即 。
• 进一步得到
。
二、光学非线性的物理起源
Resonant nonlinearities 共振非线性
Non-resonant nonlinearities 非共振非线性
• 进一步得到
。 • 此时在频率2ω处的偏振为 • 另外在频率2ω处的偏振由频率为ω的驱动电场转换而来,可得到 。
。
• 由上面三式,最终得到
的非简谐项C3成正比。 Miller’s Rule
,即二阶非线性极化率与运动方程中
•当ω趋近于ω0时,
三、二阶非线性
晶体对称性效应 • 比如,中心对称晶体 (centrosymmetric)具有反转对称性,在施加单一电场 时,非线 性偏振 况不变。 的分量可表示为 ,即电场方向反转时情
• 另外,由晶体的反转对称性,在场方向不变而反转晶体时,所有的物理过程相同。
在晶体的坐标轴变化下,所有的 和 的分量变化符号,从而得到
• 在光波的AC电场驱动下,电子在正周期的位移要小于负周期的位移。
(非线性光学课件)第二章 非线性光学极化强度和极化率的经典
因果关系
因果关系: 任意时刻t1的光场E(t1)都会对其后时刻t的极 化强度产生贡献。
dP(1) (t) 0R(1) (t, t1) E(t1)dt1
线性响应函数
时刻t介质的极化强度P(t)是所有t时刻之前介质对光场
响应的积累
t
P(1) (t)
R(1)
0
(t
,
t1
)
E(t1
)dt1
线性响应函数的特性:
t3)
E(t1)E(t2 )E(t3)dt1
极化强度与极化率张量
t
P(1) (t) 0R(1) (t t1) E(t1)dt1
P(1) (t) 0R(1) ( ) E(t )d
t t
0
P(2) (t)
R(2)
0
(t
t1,
t
t2
)
:
E(t1
)E(t2
)dt1dt2
P(n) (t) d
P(1) (t)
R(1)
0
(t
t1)
E(t1)dt1
因果关系
类似地,t1、t2时刻的电场对t时刻媒质的极化强 度也有贡献,这种贡献可以写成:
dP(2) (t) 0R(2) (t t1, t t2 ) : E(t1)E(t2 )dt1dt2
P(2) (t)
dt2
R(2)
0
(t
t1
,
电极化率可以理解为耦合系数。
在非线性光学中, 由于极化强度P与电场强度E之间是非线性关系,
或者说与光电场的强度有关, 因此,电极化率就与光电场强度或者说与光电场的强度有关。
2
介质分为光学上各向同性介质和各向异性介质。
第1章 非线性光学极化率的经典描述n
第1章 非线性光学极化率的经典描述
1.1 极化率的色散特性
1.1.1 介质中的麦克斯韦方程
由光的电磁理论已知, 光波是光频电磁波, 它在介
质中的传播规律遵从麦克斯韦方程组:
B E t D H J t D H 0
(r)
1 1 2 2 r r
第1章 非线性光学极化率的经典描述
如果组成光波的各个频率分量是不连续的,则极化强 度表示式中的积分由求和代替,表示为
P(1) (t ) 0 (1) (n ) E(n )eint
n
(1.1 - 39)
P(2) (t ) 0 (2) (m , n ) : E(m ) E(n )ei (m n )t
P (t ) 0 d1 d2 ( 2) (1, 2 ) : E (1 ) E (2 )ei (1 2 )t
(1.1 - 35)
第1章 非线性光学极化率的经典描述
并与(1.1 - 34)式进行比较, 可以得到二阶极化率张量 表示式为
(1,2 ) d1 d 2 R( 2) (1, 2 )ei (
参考书:
1、《非线性光学》
2、《量子电子学》 3、《非线性光学》
石顺祥 等著
A. 亚里夫 著 沈元壤 著 刘颂豪 等译
光与物质相互作用的半经典理论:
非线性光学现象的理论描述涉及到激光辐射场与物
质相互作用的问题,通常采用半经典理论处理。
第1章 非线性光学极化率的经典描述
第1章 非线性光学极化率的经典描述
以, 下面给出(r)和(r)mic在c.g.s./e.s.u.单位制中的单位:
第1章非线性光学极化率的经典描述2
(1.2 - 14) (1.2 - 15) (1.2 - 16)
第1章 非线性光学极化率的经典描述 章
e r1 = − E (ω ) exp(−ιωt ) F (ω ) + C.C. m
(1.2-17)
e2 r2 = 2 AE 2 (ω ) exp( −2ιω t ) F ( 2ω ) F (ω ) F (ω ) m e2 (1.2-18) + 2 AE (ω ) E * (ω ) exp( −2ιω t ) F (ω ) F ( −ω ) F (0) + C .C . m
第1章 非线性光学极化率的经典描述 章
P (t ) =
∑
∞
P ( k ) (t )
(1.2-20) (1.2-21)
k =1
P
(k )
(t ) = − nerk (t )
P ( 2) (t ) = −ner2 (t ) ne 3 = − 2 AE 2 (ω ) exp(−2ιωt ) F (ω ) F (ω ) F (2ω ) m (1.2-22) ne 3 − 2 AE (ω ) E * (ω ) F (ω ) F (−ω ) F (0) + C.C. m
则
1
ω − ω − 2ihω
2 0 2
(1.2 - 8)
ne2 (1) F (ω ) = χ ′(ω ) + iχ ′′(ω ) χ (ω ) = ε 0m
式中
(1.2 - 9)
ω02 − ω 2 ne 2 χ ′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2 2 ne 2 hω χ ′′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2
非线性光学极化率的描述n.pptx
(2)
i (112 2 )
1 2
12
• 同理, 若将r阶非线性极化强度表示为
(1.1 - 36)
r
P(r) (t) 0
d1
d
2
dr
(
r
)
(1,2
,,
r
)
|
E
(1
)
E
(2
)
E
(r
i
)e
mt
m 1
(1.1 - 37)
式中, (r)(ω1,ω2,…,ωr)与E(ω1)之间的竖线表示 r 个点, 则第r阶极化率张量表示式为
有关, 这种 与波矢 k 的依赖关系, 叫做介质极化率的空间色散, 其空间色散关系
可以通过空间域的傅里叶变换得到。
•
因为在光学波段,光波波长比原子内电子轨道半径大的多通常,空间色
散可以忽略 。
第17页/共37页
• 极化率的单位
•
上面引入了宏观介质的极化率(r), 实际上在文献中还经常用到单个
原子极化率这个参量, 我们用符号(r)mic表示。 宏观极化率与单个原子极化率
(1.2 - 6)
(1) ()
P( ) 0 E ( )
ne2
0m
02
1
2
2ih
(1.2 - 7)
第22页/共37页
如果引入符号
则
F
(
)
02
1 2
2ih
(1)() ne2 F() () i() 0m
(1.2 - 8) (1.2 - 9)
• 式中
( )
ne2
0m
(02
02 2 2 )2 4h2 2
/0
非线性光学 非线性光学极化率与性质
Kramers-Kronig色散关系 极化率 是一个复函, 1 ' i '' ,其 实部和虚部之间的关系称为Kramers-Kronig色散关 系。 '' 1 ' P.V . d ' 1 '' P.V . d
假设波的振幅随空间和时间缓慢变化,即满足以下慢 变近似条件:
2 A( z, t ) A( z, t ) k z 2 z
和
2 A( z, t ) A( z, t ) t 2 t
可以在波动方程中略去场振幅的二阶时间导数和 二阶空间导数,从而得到以下一阶的波方程:
2 A( z, t ) 1 A( z, t ) ik0 PNL ( z, t )e i ( kzt ) z v t 2 0 k
波动方程变为
2 k0 d2 d ( 2 i 2k )E( z ) P NL ( z)ei ( k 'k ) z dz dz 0
假设:在波长量级的距离内光波振幅的变化非常慢,即
则
d 2 E( z ) dE ( z ) k dz 2 dz
2 ik dE( z ) ik02 NL i i ( k 'k ) NL ikz 0 P ( z )e P ( z )e P NL ( z )eikz dz 2 0 k 2 0 k 2 0 nc
极化率的实部和虚部分别对应于介质的色散和吸收,分别 描述介质中光波的位相和振幅的变化,色散关系表明,我 们可以通过介质的色散或吸收而得到另外一个物理量。
1
13/35
非线性极化率张量
P
2
t 0 d1 d 2 R 1 , 2 : E t 1 E t 2
(非线性光学课件)第二章 非线性光学极化强度和极化率的经典
(t
T
,
t1
)
E(t1
)dt1
R(1) (t, t1 T ) R(1) (t T , t1)
因果关系
t+T
t2 t1-T t1 R(1) (t, t1 T ) R(1) (t T , t1)
t 时间
响应函数和绝对时间t,t1无关,只和时间差t-t1有 关
R(1) (t, t1) R(1) (t t1)
4
2.1 非线性电极化率 2.1.1 极化强度的时域表达式
☆
2.1.2极化强度的频域表达式 2.1.3 电极化率的对称性 2.1.4 简并因子 2.2 Kramers-Kronig色散关系 2.2.1 电极化率实部与虚部的关系 2.2.2 电极化率实部和虚部的物理意义 2.2.3 非线性折射率与非线性吸收系数间的关系 2.3 非线性介质的波方程 2.3.1 非线性介质的麦克斯韦方程 2.3.2 各向异性非线性介质的时域波方程 2.3.3 各向异性非线性介质的频域波方程 2.3.4 各向同性非线性介质频域波方程 2.3.5 各向同性非线性介质时域波方程
t
t2
)
:
E(t1)E(t2
)dt1
类似地,t1、t2、t3时刻的电场对t时刻媒质的极化 强度也有贡献,这种贡献可以写成:
dP(3)
(t
)
R (3)
0
(t
t1,
t
t2
,
t
t3
)
E(t1)E(t2 )E(t3)dt1dt2dt3
P(3) (t)
dt3
dt2
R(3)
0
(t
t1,t t2,t
对于各向异性介质,极化强度P与电场强度E的方向不再相同, 电极化率是一个张量。
非线性光学极化率的经典描述(1)极化率的色散特性
第一章 非线性光学极化率的经典
描述
1.1 极化率的色散特性
1.1.1 介质中的麦克斯
韦方程
介质中的麦克斯韦方程
介质中的麦克斯韦方程
光电场和极化强度
1.1.2 极化率的色散特
性
介质极化的响应函数
介质极化的响应函数
介质极化的响应函数
介质极化率的频率色散
线性极化率张量
线性极化率张量
线性极化率张量
非线性极化率张量
非线性极化率张量
非线性极化率张量
非线性极化率张量
介质极化率的空间色散
1.1.3 极化率的单位
ห้องสมุดไป่ตู้
极化率的单位
极化率的单位
THANKS!
非线性光学非线性极化率的微观表示
H0i Eii
(i 1,2,n)
(3.2)
Ei为定态Φi的能量
将 向这组基函数展开 : cii (3.3) i
密度矩阵:
ρ cicj
i 1,2,,n j 1,2,,n
(3.4)
密度算符: ρ | |
(3.5)
▲因为 ij i | ρ | j i | | j cicj (3.6)
t
1 i
{[H
0
,
ρ
(1)
]
[Hint
,
ρ
(0)
]}
ρ (1)
t
T
(3.22)
ρ (2)
t
1 i
{[H0
,
ρ
(
2)
]
[Hint
,
ρ
(1)
]}
ρ (
t
2)
T
(3.23)
······
ρ (n)
t
1 i
{[H
0
,
ρ
(n)
]
[Hint
,
ρ
( n 1)
]}
ρ (
t
n)
T
(3.24)
······
(n) (i )
]}
ρ (2)
t
T
(3.22) (3.23)
ρ (n)
t
1 i
{[
H0
,
ρ
(
n)
]
[Hint
,
ρ
(
n1)
]}
ρ (n
t
)
T
······
逐级求出 (1) , (2) , (n) ,
P P(1) P(2) P(n)
光学介质的非线性电极化效应精选全文
= () + () + () + (+) + ( − )
08:10
(5-4)
10
讨论:
(1)从(5-4)式中可以看出,二次非线性电极化中包含了
直流项 (),二次谐波项 ( ) 和 ( ) ,和频项 (+ ),
差频项 ( − ) 。
21
o光折射率与光场的振动方向无关是一常数,e光折
射率与光场振动方向有关,选择适当的入射光的振动方
向,可以实现相位匹配条件。
08:10
22
负单轴晶体
ne<no (ve>vo )
光轴
m
k()
n2e ( m ) no
k() 是能实现相
位匹配的光波传
播方向。m为相
位匹配角
O
频率的o光
+
( + )
( − )
+ ( − )
+
( + ) − ( + )
+ ( − ) − ( − )
o
光轴
对于负单轴晶体,基频光和倍频
光的这种配置可表示为
O
o+o e
+ 2
注意:基频和倍频光具有不同偏振态
08:10
24
对非线性材料的要求
①具有非中心对称结构,即无对称中心;
②非线性光学系数要大;
③能实现相位匹配,最好能实现90°匹配。这要求材料具有大
的双折射(即ne-no大)和小的色散(即n2ω-nω小);
④材料的光学均匀性要好,折射率要处处均匀一致;
非线性光学复习总结
非线性光学复习总结非线性光学复习总结一. 非线性基本概念线性极化率的基本概念:一、电场的复数表示法:E(r,t)=1/2E(r,ω)exp(-iωt)+c.c. (1)E(r,t)=Re{E(r,ω)exp(-iωt)} (2)E(r,t)=1/2E(r,ω)exp(-iωt) (3)以上三者物理含义是一致的,其严格数学表示是(1)式。
(注意是数学表达式,所以这种表示法主要还是为了运算的方便,具体那些系数、共轭神马的物理意义是其次的,不用太纠结。
)称为复振幅,不存在。
1/2是归一化系数。
对于线性算符,可采用(3)式进行简化计算,然后加c.c.或Re{ }即可对非线性算符,必须采用(1)式的数学形式计算二、因果性原理:某时刻的电场只能引起在此时刻以后介质的响应,而对此时刻以前的介质响应没有贡献。
也可以这样说,当光在介质中传播时,t时刻介质所感应的极化强度P(t)不仅与t时刻的光电场有关,也与此前的光电场有关。
(先有电场E,后有极化P)与此相关的是时间不变性原理:在某时刻介质对外电场的响应只与此前所加电场的时间差有关,而与所取的时间原点无关。
于是,极化强度表达的思路即是先找到时刻t之前附近的一段微小时间t-τ=dτ内电场的作用,再对从电场产生开始以来的时间进行积分,求得总的效应。
τ时刻电场,影响其后的极化:t时刻的极化,来自其前面时刻的电场贡献:代表频率为的简谐振动,的频率仅是数学描述,物理上或t时刻的极化,来自前面时刻的电场贡献:三、线性极化率:其中四、介电常数(各向同性介质):五、色散:由于因果性原理,导致必然是频率的函数,即介质的折射率和损耗都随光波长变化,称为色散现象。
正常色散:折射率随波长增加而减小。
六、KK关系:以上两式为著名的KK色散关系,由K-K关系课件,只要知道极化率的实部和虚部中任何一个与频率的函数关系(光谱特性)就可通过此关系求出另外一个。
线性极化率张量同样满足真实性条件:,所以,这两式是线性极化率的KK关系。
非线性光学极化率的量子力学描述n.pptx
d 21
dt
i0 21
i
E (t )(11
22 )
(8.1-6)
用类似方法可得
d 22
dt
i
E(t)(21
* 21
)
由归一化条件 11 22 1 得到
d dt
( 11
22 )
2i
E (t )( 21
* 21
)
第7页/共54页
(8.1-7)
碰撞项的考虑
当撤去微扰场 E(t) 时,可以预料与极化有关的 21 矩阵元将因碰撞
第6页/共54页
(8.1-5)
为了求出密度矩阵元,利用密度矩阵运动方程(3.16-5)式可以得到
d 21
dt
i
[(Hˆ
0
Hˆ ' ), ]21
i
(
Hˆ
' 21
11
E2 21
E1 21
22
Hˆ
' 21
)
i
[
Hˆ
' 21
(
11
22 )
(E2
E1 ) 21 ]
利用(8.1-6)式和共振频率 0 (E2 E1) / 可得
)
第13页/共54页
(8.1-19) (8.1-19)
令归一化洛仑兹线型函数 g( ) 为
g( )
2T2
1 4 2 ( 0 )2 T22
(
( / 2 )
0 )2
(
2
)2
半最大全宽度 (T2 )1
(8.1-20)
洛仑兹线型是表征因碰撞、自发辐射等引起的激发态有限寿命( , T2 )
起主导作用的跃迁特性。
非线性光学极化率的经典描述
• 在这20年中,大量的非线性光学专著得到出版,如在四 波混频,光学相位共轭,相干辐射的扩展,光学双稳态,多 光子过程,光纤和有机材料中的非线性光学效应等领域都有 相应的书籍。至于国际学术会议的论文集及一些著名学术刊 物所编辑的专集则为数极多。
• 这段时期中,关于非线性光学的基本原理和研究工作比较 全面总结的则首推Y.R.Shen的“The Principles of NonlineraOptics”。
Байду номын сангаас
•非线性光学效应的定义如下:凡物质对于外加电磁场 的响应,并不是外加电磁场振幅的线性函数的光学现 象,均属于非线性光学效应的范畴。
1.非线性光学的早期10年(1961—1970) 非线性光学的一个重要发展时期是早期的10年。
1961年,Franken将红宝石激光束入射到石英片上,确证 了新的SHG效应。SHG效应的发现极大地促进了无机 晶体材料在相干辐射产生中的应用,具有重要的意义。 1962年Woodbury在使用硝基苯材料研究调Q红宝 石激光器时发现,从激光器出射的谱线中,除了红宝石的 激光线外,还有另一条处于红区的766nm谱线。而且 这条出射光束具有与红宝石激光束同样的传播方向和小的 发散角。随之人们即分析出,这是与硝基苯的分子振动密 切有关的一种新的相干辐射,即受激拉曼散射SRS。
2.研究全面深入的20年
• 自1971年至1990年,非线性光学经历了深入发展的20年。 一些新的重要的非线性光学效应相继被发现,新型的非线性光 学晶体材料的试制成功,微微秒激光器件的广泛使用以及飞秒 激光器的研制进展,使得利用超快脉冲进行非线性光学的研究 得到重大推进。 • 在1970年代至1980年代,四波混频(FWM)作为一种重 要的产生相位复共轭光束的方法,在畸变相位的恢复,相位共 轭腔的设计方面得到了广泛的应用。DFWM所具有的复共轭 特性,NDFWM的窄带反射特性,共振DFWM的高反射等 等使得FWM这种技术可以用于消除激光束在大气中传播 时产生的相位畸变和研制光束自导迹系统。
第2章非线性光学极化率的量子力学描述
因为力学量o是任意的, 所以, 如果令o=1, 则上式也应成 立。 这样就有
1 1 tr{ˆ}
即密度算符的迹等于1,
tr{ˆ} 1
第2章 非线性光学极化率的量子力学描述
2) 热平衡状态的密度算符 对于所讨论的实际问题, 总是认为系统开始处于热 平衡状态, 然后才受到外加光波作用。 由于密度算符的迹等于1, 所以热平衡状态下的密 度算符的迹也应等于1, 即
)
Rˆ
}
(2.2 - 38)
第2章 非线性光学极化率的量子力学描述
按(2.2 - 25)式, 有
H1I (t) Uˆ0(t)Hˆ1(t)Uˆ0(t) Uˆ0(t)[Rˆ E(t)]Uˆ0(t)
式中 Rˆ I (t) Uˆ0(t)RˆUˆ0(t)
(2.2 - 39)
(2.2 - 40)
是电偶极矩在光电场E(t)中的附加能量。 如果引入符号
ψ1, ψ2, …, ψn, … 相应的几率为
p1, p2, …, pn, …
第2章 非线性光学极化率的量子力学描述
在这种情况下, 就要从量子力学范围过渡到量子统 计的范围去讨论问题。 按(2.1 - 29)式, 系统处在各 可能状态上的力学量o的平均值分别是
tr{Pˆ(1)oˆ},tr{Pˆ(2)oˆ},,tr{Pˆ(n )oˆ},
第2章 非线性光学极化率的量子力学描述
第2章 非线性光学极化率的量子力学描述
2.1 密度算符及其运动方程 2.2 非线性极化率的微扰理论 2.3 近独立分子体系的极化率张量及性质 2.4 分子间有弱相互作用介质的极化率张量 2.5 共振增强的极化率 2.6 准单色波的非线性极化 2.7 带电粒子可自由移动介质的极化率 2.8 有效场极化率 2.9 二能级原子系统的极化率 习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 非线性光学极化率
§1.1 导论
“非线性光学”研究什么?⇒“光”对介质“光学性质”的“非线性影响”。
“光”: 强光(Laser)
光强比较:)/(/2m W S W I =或用电场强度)/(m V E 表示
1)正午阳光: )/(2502
m W I =
(查书:P433) )/(1037.1)/(10324m V E m W I ⨯=−−→−=对应. 2E I ∝ , 2
3224)/(1037.1)/(250)/(10⎥⎦⎤⎢⎣⎡⨯=x m V m W m W , )/(16.2)/(216cm V m V x ==.
2)Laser :
历史:1960年: 梅曼 红宝石 ︒
A 6943,1961年: Franken 二次谐波
脉冲Laser: ⎪⎩⎪⎨⎧=∆--s s t 15121010皮秒飞秒 )(10/1019W t E ns t J E =∆⇒⎭
⎬⎫=∆= 21021001.0m mm S -==∆聚焦后
)/(1033.4/1010219m V E m W I ⨯=⇒=
3) 原子内场(以H 原子为例):
国际单位制[MKS+A(安培)]
2041r
e E at πε= C e 191060.1-⨯=;m F /1085.8)(120-⨯=真空中的介电系数ε;V C F /=
m A n a r 1011053.053.0)1,(-︒⨯====波尔半径
)/(106)(106112111m V m C F m E at ⨯=⋅⋅⋅⨯=---------与Laser 比较→同一量级。
高斯单位制[CGS+esu(静电单位)]
2r
e E at =
)1031();(108.4910esu C esu e ⨯=⨯=-
cm r 9
103.5-⨯=
)3001(;/106)/(102117V statvolt m V cm statvolt E at =⨯=⨯=(查书:P433) 两种单位制:“长枪、短炮各有优势”。
“光学性质”:
吸收(线性、非线性、饱和)
辐射(SHG 、SFG 、DFG 、OPO 、OPF 、FWMF )
散射(SRS 、SBS 、RS 、ARS )
折射率(电光效应、磁光效应、光学自聚焦)
“非线性”:归结为介质的P (极化强度)和E (外光场)的关系,)(E P P =。
“非线性影响”: 极化强度:V t P t P i
i ∑=)
()(
;)(~t P :表示P 是时间的快变量。
E P →的关系:
如果:E P ~~)1(χ=
(1.1.1) )1(χ为线性极化率
涉及的现象:线性光学、传统光学
如果: +++=3)3(2)2()1(~~~~E E E P χχχ
)()1()3()2()1(~~.~~~NL P P P P P +=+++=
(1.1.2)
式中,)1(χ:一阶(线性)极化率;)1(~P :一阶(线性)极化强度
)2(χ:二阶极化率;)2(~P :二阶极化强度(非线性)
)3(χ:三阶极化率;)3(~P :三阶极化强度(非线性)
)2(~)(≥n P n ,涉及的现象:非线性光学
矢量形式: +++⋅=→→→→
→→→
→→
三阶并矢二阶并矢E E E E E E P ~~~~~:~~)3()2()1(χχχ
→→)1(χ:二阶张量,932=个矩阵元,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=→→k k j k i k k j j j i j k i j i i i 333231232221131211)1(χχχχχχχχχχ (直角坐标系中)
→→→)2(χ
:三阶张量,2733=个矩阵元 →→→→)
3(χ:四阶张量,8134=个矩阵元 )(n χ的数值比较:
)1(χ:
⎪⎩
⎪⎨⎧++==)(1)(41)1()1(2)1(国际单位制高斯单位制χπχεn ,)1(ε为介电系数,n 为折射率 取5.1=n ,)4/25.1()1(πχ=~1(无量纲)
在(1.1.2)中,如果:~~)2(P
)1(~P (强度在一个量级),即E E )1(2)2(χχ= )(610//11)1()1()2(V
m E E at -===χχχ 同理,2211
2)1(2)1()3()()610(//V
m E E at -===χχχ
量纲
数值1111
)()()610(---=n n n V m χ,)()1(n n χχ>>- 求出P ~(介质)后,P ~
产生的非线性电磁波由电磁波的波动方程确定(2.1.9): 高斯单位制:2222222
~4~1~t P c t E c E ∂∂=∂∂-∇π (1.1.5) 国际单位制:2
202222~~1~t P t E c E ∂∂=∂∂-∇μ 把)()1()()1(~
~~~NL NL P E P P P +=+=χ代入(1.1.5)式,得 ⎩⎨⎧≠=∂∂=∂∂-∇)()(2)(222)(222)(2
~~:0:0.~4~~NL NL NL NL NL E P n t P c t E c n E 应的作为激励源激励产生相中原有的电磁波介质π, )1(241πχ+=n。