非线性光学极化率

合集下载

非线性光学极化率

非线性光学极化率

第一章 非线性光学极化率 §1.1 导论“非线性光学”研究什么?⇒“光”对介质“光学性质”的“非线性影响”。

“光”: 强光(Laser)光强比较:)/(/2m W S W I =或用电场强度)/(m V E 表示 1)正午阳光: )/(2502m W I =(查书:P433) )/(1037.1)/(10324m V E m W I ⨯=−−→−=对应. 2E I ∝ ,23224)/(1037.1)/(250)/(10⎥⎦⎤⎢⎣⎡⨯=x m V m W m W , )/(16.2)/(216cm V m V x ==.2)Laser :历史:1960年: 梅曼 红宝石 ︒A 6943,1961年: Franken 二次谐波脉冲Laser: ⎪⎩⎪⎨⎧=∆--sst 15121010皮秒飞秒)(10/1019W t E ns t JE =∆⇒⎭⎬⎫=∆=21021001.0m mm S -==∆聚焦后)/(1033.4/1010219m V E m W I ⨯=⇒=3) 原子内场(以H 原子为例): 国际单位制[MKS+A(安培)] 2041re E at πε=C e 191060.1-⨯=;m F /1085.8)(120-⨯=真空中的介电系数ε;V C F /=m A n a r 1011053.053.0)1,(-︒⨯====波尔半径)/(106)(106112111m V m C F m E at ⨯=⋅⋅⋅⨯=---------与Laser 比较→同一量级。

高斯单位制[CGS+esu(静电单位)] 2re E at =)1031();(108.4910esu C esu e ⨯=⨯=-cm r 9103.5-⨯=)3001(;/106)/(102117V statvolt m V cm statvolt E at =⨯=⨯=(查书:P433)两种单位制:“长枪、短炮各有优势”。

非线性光学极化率的经典描述

非线性光学极化率的经典描述

2.光与物质相互作用关系 当一个光电场入射到介质体系中时,由于介质体系是由大 量的多种荷电粒子,如电子、原子实及离子等构成,它们 在外光电场的作用下会发生位移,这就会在介质中产生感 应的电极化强度。
P(r, t ) 0 (1) E(r, t )
配合电磁波在介质中传播的波动方程
E (r , t ) 2 E (r , t ) 2 P(r , t ) 2 E (r , t ) 0 0 0 0 0 2 t t t 2
• 相干辐射产生的另一个效应即是受激布里渊散射(SB S),当激光束射入晶体材料后,利用高分辨率光学干涉仪 器观察到在入射激光线的近旁存在着几条亮度很高的辐射线, 频差在1cm-1以下,这是与晶体等材料中声学波相联系的 SBS效应。
• 与SHG效应有联系的一些效应如和频(SFG)、差频 及光学参量振荡(OPO)也陆续地被发现。利用晶体材料 的双折射效应以补偿折射率的色散,人们在许多晶体中,如 KDP, ADP,LiNbO3及LiIO3 ,实现了有效 的相位匹配并得到有很高转换效率的相干辐射。利用和频, 可以对相干辐射频率进行蓝移,而利用差频及光学参量振荡 可以将可见激光转换至红外波段。这就为人们扩展相干辐射 的波段范围又提供了几种新的方法。
•非线性光学效应的定义如下:凡物质对于外加电磁场 的响应,并不是外加电磁场振幅的线性函数的光学现 象,均属于非线性光学效应的范畴。
1.非线性光学的早期10年(1961—1970) 非线性光学的一个重要发展时期是早期的10年。
1961年,Franken将红宝石激光束入射到石英片上,确证 了新的SHG效应。SHG效应的发现极大地促进了无机 晶体材料在相干辐射产生中的应用,具有重要的意义。 1962年Woodbury在使用硝基苯材料研究调Q红宝 石激光器时发现,从激光器出射的谱线中,除了红宝石的 激光线外,还有另一条处于红区的766nm谱线。而且 这条出射光束具有与红宝石激光束同样的传播方向和小的 发散角。随之人们即分析出,这是与硝基苯的分子振动密 切有关的一种新的相干辐射,即受激拉曼散射SRS。

非线性光学(NonlinearOptics)非线性极化率张量(Nonlinear

非线性光学(NonlinearOptics)非线性极化率张量(Nonlinear
•由 ,令 ,有 。 • 即在 不为零时,频率为ω的入射光场在介质中产生了频率为2ω的出射光场。 的关系,需要考虑在频率
• 为了找出 中C3和 为ω的AC电场驱动下电子运动方程的近似解。
acceleration 驱动电场:
电子位移: 且满足:
damping
restoring force
尝试解
二、光学非线性的物理起源
• 此时单位时间内减少的光子数目为
,即净吸收速率。
• 随着光束在介质中的传播,其强度逐渐减小:定义z处的光强为I(z),dz内光强的变化 为dI ,此时有 。 • 由于光束强度定义为单位时间在单位面积上通过的能量(W m-2),有 ,即 。
• 进一步得到

二、光学非线性的物理起源
Resonant nonlinearities 共振非线性
Non-resonant nonlinearities 非共振非线性
• 进一步得到
。 • 此时在频率2ω处的偏振为 • 另外在频率2ω处的偏振由频率为ω的驱动电场转换而来,可得到 。

• 由上面三式,最终得到
的非简谐项C3成正比。 Miller’s Rule
,即二阶非线性极化率与运动方程中
•当ω趋近于ω0时,
三、二阶非线性
晶体对称性效应 • 比如,中心对称晶体 (centrosymmetric)具有反转对称性,在施加单一电场 时,非线 性偏振 况不变。 的分量可表示为 ,即电场方向反转时情
• 另外,由晶体的反转对称性,在场方向不变而反转晶体时,所有的物理过程相同。
在晶体的坐标轴变化下,所有的 和 的分量变化符号,从而得到
• 在光波的AC电场驱动下,电子在正周期的位移要小于负周期的位移。

(非线性光学课件)第二章 非线性光学极化强度和极化率的经典

(非线性光学课件)第二章 非线性光学极化强度和极化率的经典

因果关系
因果关系: 任意时刻t1的光场E(t1)都会对其后时刻t的极 化强度产生贡献。
dP(1) (t) 0R(1) (t, t1) E(t1)dt1
线性响应函数
时刻t介质的极化强度P(t)是所有t时刻之前介质对光场
响应的积累
t
P(1) (t)
R(1)
0
(t
,
t1
)
E(t1
)dt1
线性响应函数的特性:
t3)
E(t1)E(t2 )E(t3)dt1
极化强度与极化率张量
t
P(1) (t) 0R(1) (t t1) E(t1)dt1
P(1) (t) 0R(1) ( ) E(t )d
t t
0
P(2) (t)
R(2)
0
(t
t1,
t
t2
)
:
E(t1
)E(t2
)dt1dt2
P(n) (t) d
P(1) (t)
R(1)
0
(t
t1)
E(t1)dt1
因果关系
类似地,t1、t2时刻的电场对t时刻媒质的极化强 度也有贡献,这种贡献可以写成:
dP(2) (t) 0R(2) (t t1, t t2 ) : E(t1)E(t2 )dt1dt2
P(2) (t)
dt2
R(2)
0
(t
t1
,
电极化率可以理解为耦合系数。
在非线性光学中, 由于极化强度P与电场强度E之间是非线性关系,
或者说与光电场的强度有关, 因此,电极化率就与光电场强度或者说与光电场的强度有关。
2
介质分为光学上各向同性介质和各向异性介质。

第1章 非线性光学极化率的经典描述n

第1章 非线性光学极化率的经典描述n
1.1 极化率的色散特性 1.2 非线性光学极化率的经典描述 1.3 极化率的一般性质 习题
第1章 非线性光学极化率的经典描述
1.1 极化率的色散特性
1.1.1 介质中的麦克斯韦方程
由光的电磁理论已知, 光波是光频电磁波, 它在介
质中的传播规律遵从麦克斯韦方程组:
B E t D H J t D H 0
(r)
1 1 2 2 r r



第1章 非线性光学极化率的经典描述
如果组成光波的各个频率分量是不连续的,则极化强 度表示式中的积分由求和代替,表示为
P(1) (t ) 0 (1) (n ) E(n )eint
n
(1.1 - 39)
P(2) (t ) 0 (2) (m , n ) : E(m ) E(n )ei (m n )t
P (t ) 0 d1 d2 ( 2) (1, 2 ) : E (1 ) E (2 )ei (1 2 )t

(1.1 - 35)
第1章 非线性光学极化率的经典描述
并与(1.1 - 34)式进行比较, 可以得到二阶极化率张量 表示式为
(1,2 ) d1 d 2 R( 2) (1, 2 )ei (
参考书:
1、《非线性光学》
2、《量子电子学》 3、《非线性光学》
石顺祥 等著
A. 亚里夫 著 沈元壤 著 刘颂豪 等译
光与物质相互作用的半经典理论:
非线性光学现象的理论描述涉及到激光辐射场与物
质相互作用的问题,通常采用半经典理论处理。
第1章 非线性光学极化率的经典描述
第1章 非线性光学极化率的经典描述
以, 下面给出(r)和(r)mic在c.g.s./e.s.u.单位制中的单位:

第1章非线性光学极化率的经典描述2

第1章非线性光学极化率的经典描述2

(1.2 - 14) (1.2 - 15) (1.2 - 16)
第1章 非线性光学极化率的经典描述 章
e r1 = − E (ω ) exp(−ιωt ) F (ω ) + C.C. m
(1.2-17)
e2 r2 = 2 AE 2 (ω ) exp( −2ιω t ) F ( 2ω ) F (ω ) F (ω ) m e2 (1.2-18) + 2 AE (ω ) E * (ω ) exp( −2ιω t ) F (ω ) F ( −ω ) F (0) + C .C . m
第1章 非线性光学极化率的经典描述 章
P (t ) =


P ( k ) (t )
(1.2-20) (1.2-21)
k =1
P
(k )
(t ) = − nerk (t )
P ( 2) (t ) = −ner2 (t ) ne 3 = − 2 AE 2 (ω ) exp(−2ιωt ) F (ω ) F (ω ) F (2ω ) m (1.2-22) ne 3 − 2 AE (ω ) E * (ω ) F (ω ) F (−ω ) F (0) + C.C. m

1
ω − ω − 2ihω
2 0 2
(1.2 - 8)
ne2 (1) F (ω ) = χ ′(ω ) + iχ ′′(ω ) χ (ω ) = ε 0m
式中
(1.2 - 9)
ω02 − ω 2 ne 2 χ ′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2 2 ne 2 hω χ ′′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2

非线性光学极化率的描述n.pptx

非线性光学极化率的描述n.pptx

(2)
i (112 2 )
1 2
12
• 同理, 若将r阶非线性极化强度表示为
(1.1 - 36)
r
P(r) (t) 0
d1
d
2
dr
(
r
)
(1,2
,,
r
)
|
E
(1
)
E
(2
)
E
(r
i
)e
mt
m 1
(1.1 - 37)
式中, (r)(ω1,ω2,…,ωr)与E(ω1)之间的竖线表示 r 个点, 则第r阶极化率张量表示式为
有关, 这种 与波矢 k 的依赖关系, 叫做介质极化率的空间色散, 其空间色散关系
可以通过空间域的傅里叶变换得到。

因为在光学波段,光波波长比原子内电子轨道半径大的多通常,空间色
散可以忽略 。
第17页/共37页
• 极化率的单位

上面引入了宏观介质的极化率(r), 实际上在文献中还经常用到单个
原子极化率这个参量, 我们用符号(r)mic表示。 宏观极化率与单个原子极化率
(1.2 - 6)
(1) ()
P( ) 0 E ( )
ne2
0m
02
1
2
2ih
(1.2 - 7)
第22页/共37页
如果引入符号

F
(
)
02
1 2
2ih
(1)() ne2 F() () i() 0m
(1.2 - 8) (1.2 - 9)
• 式中
( )
ne2
0m
(02
02 2 2 )2 4h2 2
/0

非线性光学 非线性光学极化率与性质

非线性光学  非线性光学极化率与性质

Kramers-Kronig色散关系 极化率 是一个复函, 1 ' i '' ,其 实部和虚部之间的关系称为Kramers-Kronig色散关 系。 '' 1 ' P.V . d ' 1 '' P.V . d
假设波的振幅随空间和时间缓慢变化,即满足以下慢 变近似条件:
2 A( z, t ) A( z, t ) k z 2 z

2 A( z, t ) A( z, t ) t 2 t
可以在波动方程中略去场振幅的二阶时间导数和 二阶空间导数,从而得到以下一阶的波方程:
2 A( z, t ) 1 A( z, t ) ik0 PNL ( z, t )e i ( kzt ) z v t 2 0 k
波动方程变为
2 k0 d2 d ( 2 i 2k )E( z ) P NL ( z)ei ( k 'k ) z dz dz 0
假设:在波长量级的距离内光波振幅的变化非常慢,即

d 2 E( z ) dE ( z ) k dz 2 dz
2 ik dE( z ) ik02 NL i i ( k 'k ) NL ikz 0 P ( z )e P ( z )e P NL ( z )eikz dz 2 0 k 2 0 k 2 0 nc
极化率的实部和虚部分别对应于介质的色散和吸收,分别 描述介质中光波的位相和振幅的变化,色散关系表明,我 们可以通过介质的色散或吸收而得到另外一个物理量。
1
13/35
非线性极化率张量
P
2
t 0 d1 d 2 R 1 , 2 : E t 1 E t 2

(非线性光学课件)第二章 非线性光学极化强度和极化率的经典

(非线性光学课件)第二章 非线性光学极化强度和极化率的经典
0
(t
T
,
t1
)
E(t1
)dt1
R(1) (t, t1 T ) R(1) (t T , t1)
因果关系
t+T
t2 t1-T t1 R(1) (t, t1 T ) R(1) (t T , t1)
t 时间
响应函数和绝对时间t,t1无关,只和时间差t-t1有 关
R(1) (t, t1) R(1) (t t1)
4
2.1 非线性电极化率 2.1.1 极化强度的时域表达式

2.1.2极化强度的频域表达式 2.1.3 电极化率的对称性 2.1.4 简并因子 2.2 Kramers-Kronig色散关系 2.2.1 电极化率实部与虚部的关系 2.2.2 电极化率实部和虚部的物理意义 2.2.3 非线性折射率与非线性吸收系数间的关系 2.3 非线性介质的波方程 2.3.1 非线性介质的麦克斯韦方程 2.3.2 各向异性非线性介质的时域波方程 2.3.3 各向异性非线性介质的频域波方程 2.3.4 各向同性非线性介质频域波方程 2.3.5 各向同性非线性介质时域波方程
t
t2
)
:
E(t1)E(t2
)dt1
类似地,t1、t2、t3时刻的电场对t时刻媒质的极化 强度也有贡献,这种贡献可以写成:
dP(3)
(t
)
R (3)
0
(t
t1,
t
t2
,
t
t3
)
E(t1)E(t2 )E(t3)dt1dt2dt3
P(3) (t)
dt3
dt2
R(3)
0
(t
t1,t t2,t
对于各向异性介质,极化强度P与电场强度E的方向不再相同, 电极化率是一个张量。

非线性光学极化率的经典描述(1)极化率的色散特性

非线性光学极化率的经典描述(1)极化率的色散特性
非线性光学系列课程---
第一章 非线性光学极化率的经典
描述
1.1 极化率的色散特性
1.1.1 介质中的麦克斯
韦方程
介质中的麦克斯韦方程
介质中的麦克斯韦方程
光电场和极化强度
1.1.2 极化率的色散特

介质极化的响应函数
介质极化的响应函数
介质极化的响应函数
介质极化率的频率色散
线性极化率张量
线性极化率张量
线性极化率张量
非线性极化率张量
非线性极化率张量
非线性极化率张量
非线性极化率张量
介质极化率的空间色散
1.1.3 极化率的单位
ห้องสมุดไป่ตู้
极化率的单位
极化率的单位
THANKS!

非线性光学非线性极化率的微观表示

非线性光学非线性极化率的微观表示

H0i Eii
(i 1,2,n)
(3.2)
Ei为定态Φi的能量
将 向这组基函数展开 : cii (3.3) i
密度矩阵:
ρ cicj
i 1,2,,n j 1,2,,n
(3.4)
密度算符: ρ | |
(3.5)
▲因为 ij i | ρ | j i | | j cicj (3.6)
t
1 i
{[H
0
,
ρ
(1)
]
[Hint
,
ρ
(0)
]}
ρ (1)
t
T
(3.22)
ρ (2)
t
1 i
{[H0
,
ρ
(
2)
]
[Hint
,
ρ
(1)
]}
ρ (
t
2)
T
(3.23)
······
ρ (n)
t
1 i
{[H
0
,
ρ
(n)
]
[Hint
,
ρ
( n 1)
]}
ρ (
t
n)
T
(3.24)
······
(n) (i )
]}
ρ (2)
t
T
(3.22) (3.23)
ρ (n)
t
1 i
{[
H0
,
ρ
(
n)
]
[Hint
,
ρ
(
n1)
]}
ρ (n
t
)
T
······
逐级求出 (1) , (2) , (n) ,
P P(1) P(2) P(n)

光学介质的非线性电极化效应精选全文

光学介质的非线性电极化效应精选全文

= () + () + () + (+) + ( − )
08:10
(5-4)
10
讨论:
(1)从(5-4)式中可以看出,二次非线性电极化中包含了
直流项 (),二次谐波项 ( ) 和 ( ) ,和频项 (+ ),
差频项 ( − ) 。
21
o光折射率与光场的振动方向无关是一常数,e光折
射率与光场振动方向有关,选择适当的入射光的振动方
向,可以实现相位匹配条件。
08:10
22
负单轴晶体
ne<no (ve>vo )
光轴
m
k()
n2e ( m ) no
k() 是能实现相
位匹配的光波传
播方向。m为相
位匹配角
O
频率的o光


+


( + )
( − )


+ ( − )
+

( + ) − ( + )
+ ( − ) − ( − )
o
光轴
对于负单轴晶体,基频光和倍频
光的这种配置可表示为
O
o+o e
+ 2
注意:基频和倍频光具有不同偏振态
08:10
24
对非线性材料的要求
①具有非中心对称结构,即无对称中心;
②非线性光学系数要大;
③能实现相位匹配,最好能实现90°匹配。这要求材料具有大
的双折射(即ne-no大)和小的色散(即n2ω-nω小);
④材料的光学均匀性要好,折射率要处处均匀一致;

非线性光学复习总结

非线性光学复习总结

非线性光学复习总结非线性光学复习总结一. 非线性基本概念线性极化率的基本概念:一、电场的复数表示法:E(r,t)=1/2E(r,ω)exp(-iωt)+c.c. (1)E(r,t)=Re{E(r,ω)exp(-iωt)} (2)E(r,t)=1/2E(r,ω)exp(-iωt) (3)以上三者物理含义是一致的,其严格数学表示是(1)式。

(注意是数学表达式,所以这种表示法主要还是为了运算的方便,具体那些系数、共轭神马的物理意义是其次的,不用太纠结。

)称为复振幅,不存在。

1/2是归一化系数。

对于线性算符,可采用(3)式进行简化计算,然后加c.c.或Re{ }即可对非线性算符,必须采用(1)式的数学形式计算二、因果性原理:某时刻的电场只能引起在此时刻以后介质的响应,而对此时刻以前的介质响应没有贡献。

也可以这样说,当光在介质中传播时,t时刻介质所感应的极化强度P(t)不仅与t时刻的光电场有关,也与此前的光电场有关。

(先有电场E,后有极化P)与此相关的是时间不变性原理:在某时刻介质对外电场的响应只与此前所加电场的时间差有关,而与所取的时间原点无关。

于是,极化强度表达的思路即是先找到时刻t之前附近的一段微小时间t-τ=dτ内电场的作用,再对从电场产生开始以来的时间进行积分,求得总的效应。

τ时刻电场,影响其后的极化:t时刻的极化,来自其前面时刻的电场贡献:代表频率为的简谐振动,的频率仅是数学描述,物理上或t时刻的极化,来自前面时刻的电场贡献:三、线性极化率:其中四、介电常数(各向同性介质):五、色散:由于因果性原理,导致必然是频率的函数,即介质的折射率和损耗都随光波长变化,称为色散现象。

正常色散:折射率随波长增加而减小。

六、KK关系:以上两式为著名的KK色散关系,由K-K关系课件,只要知道极化率的实部和虚部中任何一个与频率的函数关系(光谱特性)就可通过此关系求出另外一个。

线性极化率张量同样满足真实性条件:,所以,这两式是线性极化率的KK关系。

非线性光学极化率的量子力学描述n.pptx

非线性光学极化率的量子力学描述n.pptx

d 21
dt
i0 21
i
E (t )(11
22 )
(8.1-6)
用类似方法可得
d 22
dt
i
E(t)(21
* 21
)
由归一化条件 11 22 1 得到
d dt
( 11
22 )
2i
E (t )( 21
* 21
)
第7页/共54页
(8.1-7)
碰撞项的考虑
当撤去微扰场 E(t) 时,可以预料与极化有关的 21 矩阵元将因碰撞
第6页/共54页
(8.1-5)
为了求出密度矩阵元,利用密度矩阵运动方程(3.16-5)式可以得到
d 21
dt
i
[(Hˆ
0
Hˆ ' ), ]21
i
(

' 21
11
E2 21
E1 21
22

' 21
)
i
[

' 21
(
11
22 )
(E2
E1 ) 21 ]
利用(8.1-6)式和共振频率 0 (E2 E1) / 可得
)
第13页/共54页
(8.1-19) (8.1-19)
令归一化洛仑兹线型函数 g( ) 为
g( )
2T2
1 4 2 ( 0 )2 T22
(
( / 2 )
0 )2
(
2
)2
半最大全宽度 (T2 )1
(8.1-20)
洛仑兹线型是表征因碰撞、自发辐射等引起的激发态有限寿命( , T2 )
起主导作用的跃迁特性。

非线性光学极化率的经典描述

非线性光学极化率的经典描述

• 在这20年中,大量的非线性光学专著得到出版,如在四 波混频,光学相位共轭,相干辐射的扩展,光学双稳态,多 光子过程,光纤和有机材料中的非线性光学效应等领域都有 相应的书籍。至于国际学术会议的论文集及一些著名学术刊 物所编辑的专集则为数极多。
• 这段时期中,关于非线性光学的基本原理和研究工作比较 全面总结的则首推Y.R.Shen的“The Principles of NonlineraOptics”。
Байду номын сангаас
•非线性光学效应的定义如下:凡物质对于外加电磁场 的响应,并不是外加电磁场振幅的线性函数的光学现 象,均属于非线性光学效应的范畴。
1.非线性光学的早期10年(1961—1970) 非线性光学的一个重要发展时期是早期的10年。
1961年,Franken将红宝石激光束入射到石英片上,确证 了新的SHG效应。SHG效应的发现极大地促进了无机 晶体材料在相干辐射产生中的应用,具有重要的意义。 1962年Woodbury在使用硝基苯材料研究调Q红宝 石激光器时发现,从激光器出射的谱线中,除了红宝石的 激光线外,还有另一条处于红区的766nm谱线。而且 这条出射光束具有与红宝石激光束同样的传播方向和小的 发散角。随之人们即分析出,这是与硝基苯的分子振动密 切有关的一种新的相干辐射,即受激拉曼散射SRS。
2.研究全面深入的20年
• 自1971年至1990年,非线性光学经历了深入发展的20年。 一些新的重要的非线性光学效应相继被发现,新型的非线性光 学晶体材料的试制成功,微微秒激光器件的广泛使用以及飞秒 激光器的研制进展,使得利用超快脉冲进行非线性光学的研究 得到重大推进。 • 在1970年代至1980年代,四波混频(FWM)作为一种重 要的产生相位复共轭光束的方法,在畸变相位的恢复,相位共 轭腔的设计方面得到了广泛的应用。DFWM所具有的复共轭 特性,NDFWM的窄带反射特性,共振DFWM的高反射等 等使得FWM这种技术可以用于消除激光束在大气中传播 时产生的相位畸变和研制光束自导迹系统。

第2章非线性光学极化率的量子力学描述

第2章非线性光学极化率的量子力学描述

因为力学量o是任意的, 所以, 如果令o=1, 则上式也应成 立。 这样就有
1 1 tr{ˆ}
即密度算符的迹等于1,
tr{ˆ} 1
第2章 非线性光学极化率的量子力学描述
2) 热平衡状态的密度算符 对于所讨论的实际问题, 总是认为系统开始处于热 平衡状态, 然后才受到外加光波作用。 由于密度算符的迹等于1, 所以热平衡状态下的密 度算符的迹也应等于1, 即
)

}
(2.2 - 38)
第2章 非线性光学极化率的量子力学描述
按(2.2 - 25)式, 有
H1I (t) Uˆ0(t)Hˆ1(t)Uˆ0(t) Uˆ0(t)[Rˆ E(t)]Uˆ0(t)
式中 Rˆ I (t) Uˆ0(t)RˆUˆ0(t)
(2.2 - 39)
(2.2 - 40)
是电偶极矩在光电场E(t)中的附加能量。 如果引入符号
ψ1, ψ2, …, ψn, … 相应的几率为
p1, p2, …, pn, …
第2章 非线性光学极化率的量子力学描述
在这种情况下, 就要从量子力学范围过渡到量子统 计的范围去讨论问题。 按(2.1 - 29)式, 系统处在各 可能状态上的力学量o的平均值分别是
tr{Pˆ(1)oˆ},tr{Pˆ(2)oˆ},,tr{Pˆ(n )oˆ},
第2章 非线性光学极化率的量子力学描述
第2章 非线性光学极化率的量子力学描述
2.1 密度算符及其运动方程 2.2 非线性极化率的微扰理论 2.3 近独立分子体系的极化率张量及性质 2.4 分子间有弱相互作用介质的极化率张量 2.5 共振增强的极化率 2.6 准单色波的非线性极化 2.7 带电粒子可自由移动介质的极化率 2.8 有效场极化率 2.9 二能级原子系统的极化率 习题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 非线性光学极化率
§1.1 导论
“非线性光学”研究什么?⇒“光”对介质“光学性质”的“非线性影响”。

“光”: 强光(Laser)
光强比较:)/(/2m W S W I =或用电场强度)/(m V E 表示
1)正午阳光: )/(2502
m W I =
(查书:P433) )/(1037.1)/(10324m V E m W I ⨯=−−→−=对应. 2E I ∝ , 2
3224)/(1037.1)/(250)/(10⎥⎦⎤⎢⎣⎡⨯=x m V m W m W , )/(16.2)/(216cm V m V x ==.
2)Laser :
历史:1960年: 梅曼 红宝石 ︒
A 6943,1961年: Franken 二次谐波
脉冲Laser: ⎪⎩⎪⎨⎧=∆--s s t 15121010皮秒飞秒 )(10/1019W t E ns t J E =∆⇒⎭
⎬⎫=∆= 21021001.0m mm S -==∆聚焦后
)/(1033.4/1010219m V E m W I ⨯=⇒=
3) 原子内场(以H 原子为例):
国际单位制[MKS+A(安培)]
2041r
e E at πε= C e 191060.1-⨯=;m F /1085.8)(120-⨯=真空中的介电系数ε;V C F /=
m A n a r 1011053.053.0)1,(-︒⨯====波尔半径
)/(106)(106112111m V m C F m E at ⨯=⋅⋅⋅⨯=---------与Laser 比较→同一量级。

高斯单位制[CGS+esu(静电单位)]
2r
e E at =
)1031();(108.4910esu C esu e ⨯=⨯=-
cm r 9
103.5-⨯=
)3001(;/106)/(102117V statvolt m V cm statvolt E at =⨯=⨯=(查书:P433) 两种单位制:“长枪、短炮各有优势”。

“光学性质”:
吸收(线性、非线性、饱和)
辐射(SHG 、SFG 、DFG 、OPO 、OPF 、FWMF )
散射(SRS 、SBS 、RS 、ARS )
折射率(电光效应、磁光效应、光学自聚焦)
“非线性”:归结为介质的P (极化强度)和E (外光场)的关系,)(E P P =。

“非线性影响”: 极化强度:V t P t P i
i ∑=)
()(
;)(~t P :表示P 是时间的快变量。

E P →的关系:
如果:E P ~~)1(χ=
(1.1.1) )1(χ为线性极化率
涉及的现象:线性光学、传统光学
如果: +++=3)3(2)2()1(~~~~E E E P χχχ
)()1()3()2()1(~~.~~~NL P P P P P +=+++=
(1.1.2)
式中,)1(χ:一阶(线性)极化率;)1(~P :一阶(线性)极化强度
)2(χ:二阶极化率;)2(~P :二阶极化强度(非线性)
)3(χ:三阶极化率;)3(~P :三阶极化强度(非线性)
)2(~)(≥n P n ,涉及的现象:非线性光学
矢量形式: +++⋅=→→→→
→→→
→→
三阶并矢二阶并矢E E E E E E P ~~~~~:~~)3()2()1(χχχ
→→)1(χ:二阶张量,932=个矩阵元,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=→→k k j k i k k j j j i j k i j i i i 333231232221131211)1(χχχχχχχχχχ (直角坐标系中)
→→→)2(χ
:三阶张量,2733=个矩阵元 →→→→)
3(χ:四阶张量,8134=个矩阵元 )(n χ的数值比较:
)1(χ:
⎪⎩
⎪⎨⎧++==)(1)(41)1()1(2)1(国际单位制高斯单位制χπχεn ,)1(ε为介电系数,n 为折射率 取5.1=n ,)4/25.1()1(πχ=~1(无量纲)
在(1.1.2)中,如果:~~)2(P
)1(~P (强度在一个量级),即E E )1(2)2(χχ= )(610//11)1()1()2(V
m E E at -===χχχ 同理,2211
2)1(2)1()3()()610(//V
m E E at -===χχχ
量纲
数值1111
)()()610(---=n n n V m χ,)()1(n n χχ>>- 求出P ~(介质)后,P ~
产生的非线性电磁波由电磁波的波动方程确定(2.1.9): 高斯单位制:2222222
~4~1~t P c t E c E ∂∂=∂∂-∇π (1.1.5) 国际单位制:2
202222~~1~t P t E c E ∂∂=∂∂-∇μ 把)()1()()1(~
~~~NL NL P E P P P +=+=χ代入(1.1.5)式,得 ⎩⎨⎧≠=∂∂=∂∂-∇)()(2)(222)(222)(2
~~:0:0.~4~~NL NL NL NL NL E P n t P c t E c n E 应的作为激励源激励产生相中原有的电磁波介质π, )1(241πχ+=n。

相关文档
最新文档