第四讲 中值定理与不等式证明
考研数学一:微分中值定理(37)(22题)
f ' () f ' () 1
利用拉格朗日中值定理得
f ( ) f ( ) f (0) f ' ( ) , (0, ) f (1) f ( ) f ' ( )(1 ) , ( ,1) 1 f ( ) f ' ( )
说明:辅助函数导数可以和原方程相差一非零因子
例4 设 f (x) 可导, λ为任意实数, 则 f (x)的任意两个零
点之间, 必有 f ( x ) f ' ( x ) 的零点
解 设 x1< x2 是 f (x) 的任意两个零点,要证:存在
ξ(x1, x2) 使
f ( ) f ' ( ) 0
f ' () 0
y y 说明:
A B
2
1) 几何意义
0 o
a
b xx
2) 罗尔定理涉及了方程根的问题
例2 若 f (x)在 0, 1上连续, 在 (0,1)内可导, 且 f (1)=0 ,
则在 (0,1) 内存在点ξ, 使
f ' ( ) f
解
f ( ) f ' ( ) f ' ( ) f ( ) 0, (0,1)
[ xf ( x )]' x 0, (0,1)
取辅助函数 F ( x ) xf ( x ) ,则 F(x)在 0, 1上连续, 在 (0,1)内可导,且F(0) = F(1) = 0, 根据罗尔定理, 存在 ξ(0,1) , 使
中值定理证明不等式
中值定理证明不等式摘要:不等式是初等数学中最基本的内容之一。
中值定理是数学分析中最重要的定理之一,是研究数学问题的重要工具,并且它在数学解题中有着广泛的应用。
本文本文要介绍的是如何利用中值定理证明不等式,对各种不同特点的问题类型进行分析、总结,并结合典型例子给出恰当的方法,对提高证明题的能力有很大的帮助。
关键字:中值定理、证明、不等式。
The identification of inequality by adopting isovaluetheoremAbstracts:Inequality is that the elementary mathematics is hit by one of the most fundamental content.The isovalue theoremis one of the important theorems,which is an importanttool to study in mathematic problems,and has a greatapplication in solving mathematics problems.The paperfocuses on how to identify inequality,analying andsummariz ing the solutions according to problems withdifferent characteristics,combining typical examples toshow resonable solutions to them.It can improve theability of identification greatly.Key words:Isovalue theorem;identification;inequality.引言我们在日常教学中会常常遇到不等式的证明问题,不等式是初等数学中最基本的内容之一。
利用拉格朗日中值定理证明不等式
利用拉格朗日中值定理证明不等式
《利用拉格朗日中值定理证明不等式》
拉格朗日中值定理是一个有用的数学定理,它可以用来证明不等式。
定理指出,如果在一个多边形内有n个点,那么它们的中点必须满足以下条件:这n个点的中点到多边形的任
意一边的距离之和等于这n个点到多边形的任意一边的距离之和。
这个定理可以用来证明不等式。
假设有一个多边形,它的边长为a,b,c,d,e,f,g,h,那么拉格朗日中值定理告诉我们,这些边长的中点到多边形的任意一边的距离之和等于这些边长到多边形的任意一边的距离之和。
根据这个定理,我们可以得出结论:a + b + c + d + e + f + g + h ≥ 2(a + b + c + d + e + f + g + h)。
这就是一个不等式,也就是说a + b + c + d + e + f + g + h ≥ 2。
综上所述,拉格朗日中值定理可以用来证明不等式,其中a + b + c + d + e + f + g + h ≥ 2。
它提供了一种有效的方法来证明不等式,并且可以被广泛应用于数学中的其他证明。
利用中值定理证明积分不等式
利用中值定理证明积分不等式
中值定理是计算积分的一种方法,它是以定积分为例进行证明的。
这句话可以简单理解为:如果一个函数在某一个闭区间上可以积分,那么该闭区间上这个函数的积分与函数在这个闭区间上的中值成正比。
假设函数f(x)在闭区间[a,b]上可以积分,那么可以用中值定理在区间[a,b]上证明积分不等式:
设置M即f(x)在[a,b]区间上的一阶导数的极值点,则根据中值定理可得:
∫a b f(x)dx=f(M)∫a b dx
即f(x)的积分∫a b f(x)dx等于函数在区间[a,b]上的中值f(M)乘以[a,b]区间的长度,此时由于f(M)为最大值,则记∫a b f(x)dx=M(b-a),于是得出结论:
∫a b f(x)dx≤M(b-a)
当然积分不等式也可以用最大值和最小值对函数f(x)进行比较来证明:
设置N即f(x)在[a,b]区间上的最小值,则根据最大值定理可得:
∫a b f(x)dx≥N(b-a)
有了以上两个结论,就可以推出:
N(b-a) ≤ ∫a b f(x)dx≤M(b-a)
由此可见,中值定理是一种有用的工具,它能够证明闭区间上某一函数的积分与该函数在闭区间上的中值成正比,也能证明积分不等式,即积分的最小值与该函数在闭区间上的最小值的乘积的一定不等于积分的最大值与该函数在闭区间上的最大值的乘积,这就是中值定理所证明的积分不等式。
(完整版)利用微分中值定理证明不等式
微分中值定理证明不等式微分中值定理主要有下面几种:1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有0()0f x '=.2、罗尔中值定理:若函数()f x 满足如下条件:(1)()f x 在闭区间[,]a b 上连续;(2)()f x 在开区间(,)a b 内可导;(3)()()f a f b =,则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3、拉格朗日中值定理:若函数()f x 满足如下条件:(1)()f x 在闭区间[,]a b 上连续;(2)()f x 在开区间(,)a b 内可导;则在开区间(,)a b 内至少存在一点ξ,使得()()()f b f a f b aξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件:(1)在闭区间[,]a b 上连续;(2)在开区间(,)a b 内可导;(3)()f x ',()g x '不同时为零;(4)()()g a g b ≠;则在开区间(),a b 内存在一点ξ,使得()()()()()()f f b f ag g b g a ξξ'-='-.微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决.例1、 设 ⑴(),()f x f x '在[,]a b 上连续;⑵()f x ''在(,)a b 内存在;⑶()()0;f a f b ==⑷在(,)a b 内存在点c ,使得()0;f c >求证在(,)a b 内存在ξ,使()0f ξ''<.证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2!f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<.例2 、设0b a <≤,证明ln a b a a b a b b--≤≤.证明 显然等式当且仅当0a b =>时成立.下证 当0b a <<时,有ln a b a a b a b b--<< ① 作辅助函数()ln f x x =,则()f x 在[,]b a 上满足拉格朗日中值定理,则(,)b a ξ∃∈使ln ln 1a b a b ξ-=- ② 由于0b a ξ<<<,所以111a bξ<< ③ 由②③有1ln ln 1a b a a b b-<<-,即 ln a b a a b a b b--<<. 总结: 一般证明方法有两种①利用泰勒定理把函数()f x 在特殊点展开,结论即可得证. ②利用拉格朗日中值定理证明不等式,其步骤为: 第一步 根据待证不等式构造一个合适的函数()f x ,使不等式的一边是这个函数在区间[,]a b 上的增量()()f b f a -;第二步 验证()f x 在[,]a b 上满足拉格朗日中值定理的条件,并运用定理,使得等式的另一边转化为()()f b a ξ'-;第三步 把()f ξ'适当放大或缩小即可。
用拉格朗日中值定理证明不等式
用拉格朗日中值定理证明不等式拉格朗日中值定理是微积分中一个非常重要的定理,它通常用于证明不等式。
下面我们将介绍如何用拉格朗日中值定理证明不等式。
首先,让我们回顾一下拉格朗日中值定理的表述:设函数$f(x)$在区间$[a,b]$上具有一阶和二阶导数,则存在一个$xiin(a,b)$,使得$f(b)-f(a)=f'(xi)(b-a)$,或者写成$f'(c)=frac{f(b)-f(a)}{b-a}$,其中$c$介于$a$和$b$之间。
现在,我们来考虑如何用拉格朗日中值定理证明不等式。
假设我们要证明一个形如$a<b$的不等式,我们可以先将不等式化简为$f(b)-f(a)>0$的形式,其中$f(x)$是某个函数。
然后,我们可以找到一阶导数$f'(x)$和二阶导数$f''(x)$,并使用拉格朗日中值定理来得到:$f(b)-f(a)=f'(xi)(b-a)$由于$a<b$,所以$b-a>0$,因此我们可以将式子改写为:$frac{f(b)-f(a)}{b-a}=f'(xi)>0$由此可见,不等式成立当且仅当$f'(xi)>0$,即函数$f(x)$在$(a,b)$上单调递增。
因此,我们可以通过证明函数$f(x)$在$(a,b)$上单调递增来证明不等式。
例如,考虑证明$x^2+1>2x$。
我们可以定义$f(x)=x^2-2x+1$,则不等式可以写成$f(x)>0$的形式。
我们发现$f'(x)=2x-2$和$f''(x)=2$都存在,因此我们可以使用拉格朗日中值定理得到:$f(x)-f(0)=f'(xi)x$当$x>0$时,由于$f'(x)=2x-2>0$,因此$f(x)>f(0)$,即$f(x)-f(0)>0$。
当$x<0$时,由于$f'(x)=2x-2<0$,因此$f(x)<f(0)$,即$f(x)-f(0)<0$。
(完整版)利用中值定理证明不等式
利用中值定理证明不等式拉格朗日中值定理的证明过程是基于罗尔定理上的, 并将拉格朗日中值定理作为罗尔定理的推广, 找出辅助函数满足罗尔定理条件得证的:定理3.2[8] 罗尔定理: 如果函数()f x 在闭区间[],a b 上连续,在开区间(),a b 内可导, 且在区间端点的函数值相等, 即()()f a f b =那么在(),a b 内至少存在一点ζ使得函数在该点的导数值等于零. 即()'0f ζ=。
(3.1)证明 由于()f x 在闭区间[],a b 上连续, 所以()f x 在[],a b 上一定取到最小值与最大值, 分别设为m 与M .(1)当m M =,则()f x 在[],a b 是常值函数,即()()[]',0,,f x m f x x a b =≡∈.因此,ξ可取(),a b 内任意一点,有()'0f ξ=。
(2)当m M <时,由于()()f a f b =,所以最大值、最小值至少有一个在内部取到,不妨设最大值M 在内部取到。
设()()',,a b f M ξξ∈=, 则()f ξ为极大值。
由()f x 在(),a b 内可导,知()'f ξ存在。
由费马定理知, ()'0f ξ=定理3.3[8] 拉格朗日中值定理: 如果函数()f x 在闭区间[],a b 上连续, 在开区间(),a b 内可导, 那么在(),a b 内至少存在一点使等式()()()()'f b f a f b a ζ-=- (3。
2)成立.证明 构造一个函数,设()()()()()()f b f a F x f x x a f a b a-=----, 由于()[]()(),,,F x C a b F x D a b ∈∈, 且()()0F a F b ==。
所以由罗尔定理知至少存在一点(),a b ξ∈, 使()'0F ξ=. 又()()()()''f b f a F x f x b a -=--, 所以()()()'0f b f a f b aξ--=-, 于是 ()()()'f b f a f b aξ-=- 例3.2[4]证明0,1x x e x ≠>+ 分析:因为0x ≠当0x >时, 将不等式1x e x >+ 改写成()()00,0,x e e e x x ζζ-=-∈ 当0x <时, 将不等式1x e x >+改写成()()00,,0x e e e x x ζζ-=-∈证明 令()x f x e =当0x > 时, 对()x f x e =在[]0,x 上应用拉格朗日中值定理。
拉格朗日中值定理证明不等式的技巧
拉格朗日中值定理证明不等式的技巧为了证明不等式,我们可以利用拉格朗日中值定理来转化函数的性质。
以下是一些常见的技巧:1. 构造函数:我们可以人为地构造一个满足定理条件的函数。
例如,我们可以定义一个新函数g(x) = f(b) - f(a) - kf'(x)(b - a) ,其中k为一些常数。
然后,我们可以使用拉格朗日中值定理来证明不等式,即证明g(x)满足一些条件。
通过巧妙地选择k的值,我们可以得到需要的结果。
2.使用导数的性质:通过研究函数的导数,我们可以从函数的变化率中获得有关不等式的信息。
例如,如果我们证明了函数f(x)在[a,b]上的导数满足一些条件,比如导数大于零或导数单调递增,那么可以推断出函数在这个区间上是递增的,从而可以得到不等式。
若证明f'(x)>0,则有f(a)<f(b),即f(x)在[a,b]上是单调递增的函数。
3.利用函数的凸性与凹性:如果函数f(x)在一些区间上是凸函数,那么可以使用拉格朗日中值定理来证明不等式。
如果函数f(x)满足f''(x)≥0,那么我们可以通过证明f(b)-f(a)≥f'(c)(b-a),其中c∈(a,b),来得到所需的不等式。
4.最大最小值:如果函数在一些区间上的最大值或最小值发生在区间的端点上,那么可以利用拉格朗日中值定理来证明不等式。
通过假设函数的最大值或最小值在(a,b)之间的特定点c处达到,我们可以使用函数的导数来推导出不等式的限制条件。
5.二分法与中值的选择:在证明不等式时,我们可以应用二分法来选择合适的区间,并使用拉格朗日中值定理来证明不等式。
通过逐步缩小区间的范围,并选择合适的中值点,我们可以得到不等式的证明过程。
这些技巧只是在使用拉格朗日中值定理证明不等式时的一些常见方法和思路。
在具体的证明过程中,我们还需要根据不等式的具体形式和所给的条件灵活选择合适的方法。
同时,还需要注意在使用拉格朗日中值定理时,对函数和导数的要求,以及定理条件的合理性。
大学微积分(上)第四章 中值定理
2
证 设 f ( x ) arcsin x arccos x , x [1,1]
f ( x ) ( 1 1 x
2
) 0.
f ( x) C ,
x [1,1]
又 f (0) arcsin 0 arccos 0 0 , 2 2 即C . 2 arcsin x arccos x . 2
o
a
x1 x2
x4
x5 b
x
一、函数的极值
定义: 在其中当 (1) 时,
则称
称
为
的极大点 ,
为函数的极大值 ;
(2)
则称 称
为
的极小点 , 为函数的极小值 .
y 2 1
o
极大点与极小点统称为极值点 . 为极大点 , 为极小点 , 是极大值 是极小值
1 2
x
注意: 1) 函数的极值是函数的局部性质. 2) 对可导函数, 极值可能出现在导数为 零的点
第四章 中值定理及导数的应用
在本章中, 要利用导数来研究函数的性质与形态.
如: 函数增量与自变增量之间的关系;
凹凸、最大,最小、图形等.
函数的单调、
中值定理是利用导数研究函数的理论基础.
第一节 中值定理
洛尔定理 拉格朗日中值定理 柯西中值定理
y
x 1 , x4 为极大点 x 2 , x5 为极小点
解:∵ f (x)在[0, ]上连续,在(0, )上可导, 且 f(0) = f() ∴由洛尔定理知: 在(0, )内至少有一点,使 f ()=0,
即: cos =0, 故=/2。
例2
验证洛尔定理对函数 f ( x ) x 3 4 x 2 7 x 10 在 [1,2]上的正确性。 解:∵ f (x)在[-1, 2]上连续,在(-1, 2)上可导, 且 f(-1) = f(2) ∴由洛尔定理知:
第四章 微积分中值定理与证明
.
若 ,我们取 或 ,结论显然成立.若 ,则
根据零点定理, 有 ,所以有 .
(方法2:利用介值定理)由于 在 上连续,所以 在 上可以达到最
大值和最小值, 使得 ,当然 ,所以
,
故
,
从而有
,
根据介值定理, 有
,
所以有
.
例2设 在 上连续, ,证明: ,使得 .
证明引入辅助函数 ,则
4.设 , 在 上连续,在 可导,证明:在 内至少存在一
点 ,使得 .
(提示:对两个函数 和 在 上应用柯西中值定理)
5.设 在 上连续,在 可导,且 ,证明:在 ,使得 .
(提示:引入辅助函数 ,在 上满足罗尔定理条件)
6.设 在 上可导,且 ,证明:
(1) ,使得 .
(2)在 上存在 ,使得 .
所以
整理得到
.
例12设 在 上连续,且 ,证明:存在 满足
.
分析解方程 ,即 ,所以辅助函数为
.
例13和例14对数三考生不做要求:
例13若 在 上有三阶导数,且 ,设 ,证明:
在 内至少存在一个 使得 .
证明由于 具有三阶导数,于是
由于
,
所以 ,故
,
因为 ,所以 ,即存在一个 使得 .
例14设 在区间 上具有三阶连续导数,且 , ,
柯西中值定理,有
, ;
, .
将上面两式相除,整理得到
.
4.1练习
1.试证方程 ,其中 至少有一个正根并且不超过 .
(提示:只需证明函数 在 至少有一个根)
2.试证方程 恰有两个实根.
(提示:函数 是偶函数,关于 轴对称)
利用中值定理证明不等式
利用中值定理证明不等式中值定理是微积分中的一条重要定理,常被应用于证明不等式。
下面我们通过一个具体的例子来说明如何利用中值定理证明不等式。
假设我们要证明的不等式为:对于任意实数x,有f(x)>g(x)。
首先,我们需要明确中值定理的内容。
中值定理的表述如下:若函数f(x)在[a,b]上连续,在(a,b)上可导,那么在(a,b)上至少存在一点c,使得f'(c)=(f(b)-f(a))/(b-a)。
在证明不等式时,我们可以设h(x)=f(x)-g(x),然后证明h'(x)>0。
若对于任意x,有h'(x)>0,则可得到f(x)>g(x)。
具体的证明步骤如下:步骤1:设h(x)=f(x)-g(x),其中f(x)和g(x)是两个实数函数。
步骤2:在(a,b)上,我们先验证h(x)在[a,b]上连续。
根据函数的连续性定义,我们需要证明当x趋向于a或者b时,h(x)趋向于h(a)或者h(b)。
这一步可以通过利用f(x)和g(x)的连续性以及加减法的性质来完成。
步骤3:在(a,b)上,验证h(x)在(a,b)上可导。
根据函数可导的定义,我们需要证明当x趋向于a或者b时,h(x)的导数存在。
这一步可以通过利用f(x)和g(x)的可导性以及加减法的性质来完成。
步骤4:根据中值定理,存在至少一点c,满足h'(c)=(h(b)-h(a))/(b-a)。
步骤5:根据步骤4,我们可以得到h'(c)=(f(b)-g(b)-f(a)+g(a))/(b-a)=(f(b)-f(a))/(b-a)-(g(b)-g(a))/(b-a)。
根据前提假设f'(c)>0,我们可以得到h'(c)>0。
步骤6:根据步骤5,我们得到在(a,b)上存在至少一点c,使得h'(c)>0。
因此,根据导数的定义,我们可以得到在(a,b)上h(x)严格递增(h'(x)>0)。
利用微分中值定理证明不等式
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)0 前言 (1)1 知识准备 (1)2 利用罗尔中值定理证明 (2)3 利用拉格朗日中值定理证明 (3)4 利用柯西中值定理证明不等式 (5)5 利用泰勒中值定理证明 (7)6 综合利用微分中值定理证明不等式........................................................ (10)参考文献 (11)利用微分中值定理证明不等式摘要:微分中值定理是证明不等式的一种重要的方法,本文讨论了各个中值定理在证明不等式中的不同用法以及综合利用微分中值定理证明不等式.关键词:微分中值定理;不等式Using differential mean value theoremproving inequalityAbstract:Useing the mean value theorem to prove that inequality is a kind of important method , this paper discusses various of mean value theorems to proof inequality in the different usage, and proving inequality by useing comprehensive utilization differential mean value theorem.Key Words:differential mean value theorem;inequalities0前言不等式是数学中的重要内容,也是数学中的重要的方法和工具.在微分学中,微分中值定理,函数单调性判定定理及极值等重要的结论都可以用来证明不等式.本文通过几个具体的例子来具体说明微分中值定理在证明不等式中的运用,以及不同的微分中值定理在解决证明不等式的区别.1知识准备微分中值定理是数学分析中非常重要的基本定理.微分中值定理是指罗尔中值定理,拉格朗日中值定理,柯西中值定理以及泰勒中值定理.微分中值定理在数学分析及高等数学中的地位是不容置疑的,且在解题中的应用也是十分广泛的.在这里我们就利用微分中值定理证明不等式的方法作一简述.首先我们要先介绍一下微分中值定理:定理1罗尔中值定理:如果函数()f x在闭区间[],a b上连续,在开区间(),a b内可导,且满足()()fξ'=.=,那么在(),a b内至少存在一点ξ,使得()0f a f b定理2拉格朗日中值定理:如果函数()f x在闭区间[],a b上连续,在开区间(),a b 内可导, 那么在(),a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ'-=-.当函数()f x 在(),a b 内的变化范围已知时,有()m f x M '≤≤,于是可以利用拉格朗日定理来证明()()()()m b a f b f a M b a -≤-≤-一类的不等式.定理3 柯西中值定理:如果函数(),()f x g x 在闭区间[],a b 上连续,在开区间(),a b 内可导,且()g x '在(),a b 内每一点均不为零,那么在(),a b 内至少存在一点ξ,使得()()()()()()f b f a fg b g a g ξξ'-='-. 定理4 泰勒中值定理:如果函数()f x 在含有点0x 的区间D 上有直到(1)n +阶的导数,则函数()f x 在D 内可表示成一个多项式()n P x 与一个余项式()n R x 的和:20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+. 其中11()()()(1)!n n n f R x x n ξξ++=-+,0(,)x x ξ∈. 注:当0n =时,即为拉格朗日中值定理,所以泰勒中值定理是拉格朗日中值定理的推广.这个公式又称为带有朗格朗日型余项的泰勒公式.在微分学中,微分中值定理在证明不等式中起着很大的作用,我们可以根据不等式的两边的代数式选取不同的函数()f x ,应用微分中值定理得出一个等式之后,对这个等式根据x 取值范围的不同进行讨论,得到不等式,以下通过例子来说明微分中值定理在证明不等式的应用.2利用罗尔中值定理证明不等式罗尔中值定理的几何意义:在满足定理条件下,在曲线()y f x =上必有一点,使得过该点(,())P f ξξ的切线平行于x 轴.在一般情况下,利用罗尔中值定理很容易证明关于方程的根的问题,但是仅用罗尔中值定理却很难证明不等式,所以在利用罗尔中值定理证明时要综合利用其他的微分中值定理,这类内容会放在第六部分详细介绍, 这里就不再赘述. 3利用拉格朗日中值定理证明不等式拉格朗日中值定理的几何意义:在满足定理条件下,在曲线()y f x =上必有一点(,())P f ξξ,使得过该点的切线平行于曲线两端点的连线(,())a f a ,(,())b f b 两点的弦.我们在证明中引入的辅助函数()()()()()()f b f a F x f x f a x a b a-=----,正是曲线()y f x =与弦线之差. 拉格朗日中值定理是罗尔中值定理的推广,当()()f a f b =时,本定理即为罗尔中值定理的结论,这表明罗尔中值定理是朗格朗日定理的一个特殊情形()y f x =.拉格朗日中值定理的其它表示形式:(1) ()()()()f b f a f b a ξ'-=-,a b ξ<<;(2) ()()(())()(01)f b f a f a b a b a θθ'-=+--<<;(3) ()()(),0 1.f a h f a f a h θθ'+-=+<<值得注意的是:拉格朗日中值定理无论对于a b <,还是a b >都成立.而ξ则是介于a 与b 之间的某一定数,而(2),(3)两式的特点,在于把中值点ξ表示成了()a b a θ+-,使得不论a ,b 为何值,θ总可为小于1的某一整数.例1 (1)如果0x >,试证ln(1)1x x x x<+<+; (2)求证: arctg arctg αβαβ-≤-.证明 (1)令()ln(1)f x x =+,()f x 在区间[]0,(0)x x >上连续,在()0,(0)x x >内可导,应用拉格朗日中值定理,则有ln(1)ln(1)1x x ξ+-=+,(0,)x ξ∈. 由于在闭区间[]0,x 上,有11x x x x ξ<<++,所以ln(1)1x x x x <+<+(0)x >. (2)当αβ=时,显然等号成立.当αβ≠时,不妨设αβ>.设()(),,f x arctgx x βα=∈,由拉格朗日中值定理得,211arctg arctg αβαβξ-=-+ ,(,)ξβα∈.则有 21()1arctg arctg αβαβξ-=-+ 所以 21()1arctg arctg αβαβαβξ-=-≤-+. 以上两个例子都是利用拉格朗日中值定理来证明不等式,有些不等式利用此定理时,方法要灵活些.例2 当0x ≥时,函数()f x 在其定义域上可导,且()f x '为不增函数,又()0f x =, 0,1,2,...,,i x i n ≥=求证 11()()n ni i i i f x f x ==≤∑∑.证明 用数学归纳法当1n =时,显然不等式成立.当2n =时,若12,x x 均为0,或者一个为0时,当一个为0时,显然有 1212()()()f x x f x f x +=+.设12,x x 均大于0,不妨设12x x ≤,在[]10,x 应用拉格朗日中值定理可得:()1111111()()(0)(),0,0f x f x f f x x ξξξ-'==∈-. 在[]212,x x x +上再次利用拉格朗日中值定理可得:()122122222121122()()()()(),,f x x f x f x x f x f x x x x x x x ξξ+-+-'==∈++- 显然12ξξ<,由题设知, 12()()f f ξξ''≥.所以 122111()()()f x x f x f x x x +-≤, 即 12122()()()f x x f x x f x +≤++.假设当n k =时不等式成立,即 11()()k ki i i i f x f x ==≤∑∑.取1111()()k ki i k i i f x f x x ++===+∑∑,显然10k x +=的情况不证而明,,所以只考虑10k x +>的情况.取1ki i u x ==∑,由前面已证的结论有11()()()k k f u x f u f x +++≤+,再用归纳假设可得 1111()()k k i i i i f x f x ++==≤∑∑,即当1n k =+时结论成立.所以11()()n ni i i i f x f x ==≤∑∑.4利用柯西中值定理证明不等式柯西中值定理是研究两个函数(),()f x g x 的变量关系的中值定理,当一个函数(不妨设此函数为()g x )取作自变量自身时它就是拉格朗日中值定理,所以用拉格朗日中值定理能证明的不等式一定能用柯西中值定理来证明,反之则不然.下面举例来说明:对例1用柯西中值定理证明,这里仅用第一个小题来说明,其证法如下:证明 (1)令()ln(1)f x x =+,()g x x =.(),()f x g x 在区间[]0,(0)x x >上连续,在()0,(0)x x >内可导,且()g x '在[]0,(0)x x >内每一点都不为零,那么由柯西中值定理可得:ln(1)ln(1)1(1)11x x ξ+-=+-+,(0,)x ξ∈ 则有 ln(1)ln(1)1x x ξ+-=+,(0,)x ξ∈. 下面与例1中解法同,这里就不再赘述了. 例3 (1)设0x >,对01α<<的情况,求证: 1x x ααα-≤-.(2)设0x >,求证: sin 1x x e <-.证明 (1)设()f t x α=,()g t x α=.当1x =时结论显然成立.当1x ≠时,取[],1x 或[]1,x ,(),()f x g x 在闭区间[],1x 或[]1,x 上连续,在开区间(),1x 或()1,x 可导,且()g x '在内(),1x 或()1,x 每一点均不为零,由柯西中值定理可得:()(1)()()(1)()f x f fg x g g ξξ'-='-,(,1)x ξ∈或(1,)x ξ∈ 即 111x x ααααξξααα---==-. 所以1x x ααα-≤-得证.(2)设()sin f t t =,()t g t e =,[]0,t x ∈,(),()f x g x 在闭区间[]0,x 上连续,在开区间()0,x 内可导,且()g x '在()0,x 内每一点均不为零,那么由柯西中值定理可得:()(0)()()(0)()f x f fg x g g ξξ'-='-,()0,x ξ∈. 即sin cos 1t x e e ξξ=-,()0,x ξ∈. 因为10x e ->,10e ξ>>,所以sin cos 11t x e eξξ=<-. 即 sin 1x x e <-.注意:例3中的两个不等式能用柯西中值定理来证明,但不能用拉格朗日中值定理证明.例 4 如果函数()f x 满足两个条件:(1)在闭区间[],a b 上有二阶导数()f x '';(2) ()()0f a f b ''==.试证明:在开区间(),a b 内至少存在一点c ,使得 24()()()()f c f b f a b a ''≥--. 证明 令24()()()k f b f a b a =--.在此我们利用用反证法来证明本题, 我们不妨假设()f x k ''<,a x b <<.对于构造的辅助函数[]000()()()()()F x f x f x f x x x '=-+-及20()()G x x x =-(其中0x 是[],a b 中任意固定的一点),两次利用柯西中值定理,可得:200001()()()()()()2f x f x f x x x x x f ξ'''=+-+- 其中ξ介于0x 与x 之间(即0x x ξ<<或0x x ξ<<),x 为[],a b 上任意点,特别地,在上式中取0x a =,2a b x +=,并利用已知条件()0f a '=,则有: 21()()()()28a b b a f f a f c +-''=+,其中1c 满足12a b a c +<<, 于是 2()()()28a b b a f f a k +--<. 同理再取0x b =,2a b x +=,并利用已知条件()0f b '=,则得: 22()()()()28a b b a f f b f c +-''=+,其中2c 满足22a b c b +<<. 于是: 2()()()28a b b a f b f k +--<. 因此,2()()()()()()()()()224a b a b b a f b f a f b f f f a k f b f a ++--≤-+-<=-. 这是不可能的.所以在区间(),a b 内至少存在一点c ,使得 24()()()()f c f b f a b a ''≥--. 5利用泰勒中值定理证明不等式泰勒公式的余项大体分两种:佩亚诺型余项,拉格朗日型余项.与带拉格朗日型余项的泰勒公式相比,带佩亚诺型余项的泰勒公式对函数()f x 的假设条件较少,只需函数()f x 在0x 处n 阶可导,不需要1n +阶可导,也不需要在0x 的邻域内存在n 阶连续导数,因此应用范围较广.但是在证明不等式时,精确度却不如带拉格朗日型余项的泰勒公式好.利用此原理可以证明一般的不等式,积分不等式,估值不等式等多种不等式,这种方法的用法非常广泛.证明方法:(1)根据已知条件,围绕证明目标,寻取适当的点将函数在该点展成泰勒展式.(2)根据已知条件,向着有利于证明不等式的方向对上面的展式作适当的处理,直到可以结合已知条件证出不等式为止.下面举例来说明:例5 当02x π<<时,求证:2221200(1)sin (1)(21)!(21)!k k k kn n k k x x x k x k -==--<<++∑∑. 分析:由于朗格朗日中值定理很容易证明sin 01x x<<, 而利用泰勒中值定理时,当1n =时,不等式为:224sin 113!3!5!x x x x x -<<-+. 显然第二个比前一个的不等式的精确度高得多,随着n 的增大,不等式的精确度会大幅度地提高,所以我们在做题过程中,按题目的要求来选择适当的方法来证明不同的不等式.证明 令()sin f x x =,那么函数()f x 在00x =点展开前2n 项的泰勒公式,余项取拉格朗形式,那么有:212430(1)sin ()(21)!k k nn k x x R x k ++=-=++∑43434343433sin()sin cos 2()(43)!(43)!(43)!n x n n n n x R x x x x n n n ξπξξ+=+++++-===+++. 因为02x πξ<<<,所以cos 0ξ>,从而21()0n R x +<,所以有 2120(1)sin (21)!k k n k x x k +=-<+∑.即 220(1)sin (21)!k knk x x k =-<+∑. 同理,因为412sin()2()0(41)!n n R x x n πξ++=>+,所以左端的不等号也成立. 另外,在遇到高阶导数的不等式,一般都首先考虑泰勒中值定理.像之前的例4.我们也可以用泰勒中值定理来证明,下面具体来说明:例4的另一种证法:由题设条件,应用泰勒展开式有:211()()()()()2222a b b a b a f f a f a f ξ+--'''=++,221()()()()()2222a b a b a b f f b f b f ξ+--'''=++, 其中1ξ介于a 与2a b +之间,2ξ介于2a b +与b 之间. 上述两式相减,且有()()0f a f b ''==,得:2211()()()[()()]22a b f b f a f f ξξ-''''-=⋅-, ()221()()()()()8a b f b f a f f ξξ-''''-≤+. 令21max{(),()}()f f f ξξξ''''''=,(,)a b ξ∈,则有:2()()()()4a b f a f b f ξ-''-≤,(,)a b ξ∈. 即 24()()()()f f b f a b a ξ''≥--. 例6 设函数()f x 在[],a b 上二阶可导,且()0f x ≥,()0f x ''<.求证:对任意的[],x a b ∈,有2()()b a f x f t b a≤-⎰. 证明: 对任意的[],x a b ∈,将()f x 在t 点展开[](,)t a b ∈.2()()()()()()2!f f x f t f t x t x t ξ''=+-+-(其中ξ介于x 与t 之间). 注意到()0f x ''<,所以有()()()f x f t f x t '≤+-.对上述不等式的两边对t 积分,得:()()()()bb b a a af x dt f t dt f t x t dt '≤+-⎰⎰⎰ ()()()()()()b bb a a a b a f x f t dt f x x t f t dt -≤+-+⎰⎰2()()()()()ba f t dt fb x b f a x a =+---⎰ 因为()0()()()()0f x f b x b f a x a ≥⇒---≤.所以2()()b a f x f t b a≤-⎰. 6综合利用微分中值定理证明不等式 利用拉格朗日中值定理能够很方便的判断出函数的单调性,其方法是:如果函数()f x 在[],a b 上连续,在(),a b 内可导,则有:(1)如果在在(),a b 内函数()f x 的导数()0f x '>,则函数()f x 在[],a b 上单调增加;(2) 如果在在(),a b 内函数()f x 的导数()0f x '<,则函数()f x 在[],a b 上单调减少.另外,函数()f x 在(),a b 内除有个别点外,仍有()0f x '>(或()0f x '<),则函数()f x 在[],a b 上单调增加(或减少)的,即连续函数在个别点处无导数并不影响函数的单调性.再利用函数的单调性及函数图象上峰值点与各极值点的性质,便可以方便地求出函数的极值,从而证明出不等式.其方法为:确定函数()f x 的定义域,然后求出定义域内的所有驻点,并找出()f x 连续但()f x '不存在的所有点,讨论所有驻点和不可导点左右两侧附近()f x '的符号变化情况,确定函数()f x 的极值点,并求出相应的极大值点与极小值点,从而进一步证明不等式.例7 求证 (1)当0x >时,证明2ln(1)2x x x +>-成立. (2)当(0,)2x π∈时,证明tan sin x x x x>成立. 证明 (1)令2()ln(1)2x f x x x =+>-,因为函数()f x 在[0,)+∞上连续,在(0,)+∞内可导,且 21()111x f x x x x'=-+=++. 当0x >时,2()01x f x x'=>+,所以当0x >时,函数()f x 是单调递增的.故当0x >时,有:()(0)0f x f >=,即()0f x >,从而 2ln(1)2x x x +>-成立. (2)因为(0,)2x π∈,所以sin 0x >,tan 0x >.令函数2()sin tan f x x x x =-,则有: 21()sin sec sin 2tan (cos )cos f x x x x x x x x'=+-=+因为(0,)2x π∈时, 1cos 2cos x x +>,tan x x >,所以()0f x '>.即()f x 在(0,)2x π∈时严格递增的,又因为()0f x =,所以()0((0,))2f x x π>∈,即tan sin x x x x>成立. 例8 设函数()f x 在闭区间[],a b 上二次可微,且满足()0f x ''>,试证:当a x b <<时,有不等式: ()()()()f x f a f b f a x a b a--<--成立. 证明 令()()()f x f a x x a ϕ-=-,那么()()()()f x f x a x x aξϕξ''-'=<<-. 由于()0f x ''>,可知()f x '在闭区间[],a b 上是严格递增的,即()()f x f ξ''>,从而有 ()0x ϕ'>,故函数()x ϕ在闭区间[],a b 上也是严格递增的,于是当[],x a b ∈时,有:()()x b ϕϕ<,即 ()()()()f x f a f b f a x a b a--<--成立. 参考文献[1]D.S.密斯特利诺维奇.解析不等式[M].北京:科学出版社.1987.[2]Γ.Μ.菲赫金哥尔茨.微积分学教程(第八版).北京:高等教育出版社.2006.[3]R.科朗等.微积分和数学分析引论[M].北京:科学出版社.2002.[4]华东师范大学数学系.数学分析[M].北京:高等教育出版社,1991.[5]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1994.[6]刘玉莲.数学分析讲义[M].北京:高等教育出版社,1999.[7]林丽绿.利用微分中值定理证明不等式[J].泉州师专学报,1997,第一卷.[8]赵文祥.微分中值定理与不等式[J].天津电大学报,2007,增刊.[9]孙学敏.微分中值定理的应用[J].数学教学研究,2008,第28卷第10期.。
中值定理在不等式证明中的应用
本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍•关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式AbstractThis paper idea wrote in in equality proof of use freque ntly duri ng several of the mea n value theorem, which in the Lagra nge mea n value theorem proving in equality in the application of the three methods to speak: direct formula method, variable value method, the method to con struct auxiliary fun ctio n. in the applicati on of proof in equalities of the Taylor mea n value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the fun cti on extreme value point or the most value point, the in terval of known at any point. And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify in equality. And Cauchy mid-value theorem and in tegral mea n value theorem in the applicati on process to prove the in equality were briefly discussedKey words:The Lagrange Mean Value Theorerp Taylor's Formula; Cauchy Mean Value Theorem; In equality ;The Mean Value Theorem for In tegrals摘要 (I)Abstract (I)1引言 (1)2拉格朗日中值定理在不等式证明中的应用 (2)2.1拉格朗日中值定理 (2)2.2利用拉格朗日中值定理证明不等式 (2)2.2.1 直接公式法( 2) 2.2.2 变量取值法( 4) 2.2.3 辅助函数构造法 (5)3泰勒中值定理在不等式证明中的应用 (7)3.1 泰勒中值定理............................... ( 7) 3.2利用泰勒公式证明不等式( 7) 3.2.1 中点取值法( 7) 3.2.2 端点取值法( 9) 3.2.3 极值取值法( 9) 3.2.4 任意点取值法(11)4柯西中值定理在不等式证明中的应用 (14)4.1柯西中值定理 (14)4.2利用柯西中值定理证明不等式 (14)5积分中值定理在不等式证明中的应用 (16)5.1 积分中值定理(16)5.2利用积分证明不等式 (16)结束语 (18)参考文献 (19)致谢 (20)1引言不等式也是数学中的重要内容,也是数学中重要方法和工具.中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理以及积分中值定理等.以拉格朗日中值定理(也称微分中值定理)为中心,介值定理是中值定理的前奏,罗尔定理是拉格朗日中值定理的特殊情形,而柯西中值定理、泰勒中值定理及定积分中值定理则是它的推广.利用中值定理证明不等式,是比较常见和实用的方法.人们对中值定理的研究,从微积分建立之后就开始了以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,它们建立了函数值与导数值之间的定量联系,中值定理的主要作用在于理论分析和证明;应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态. 此外,在极值问题中有重要的实际应用.微分中值定理是数学分析乃至整个高等数学的重要理论,它架起了利用微分研究函数的桥梁.微分中值定理从诞生到现在的近300年间,对它的研究时有出现.特别是近十年来,我国对中值定理的新证明进行了研究,仅在国内发表的文章就近60篇.不等式的证明不仅形式多种多样,而且证明方式多变,常见的方法有:利用函数的单调性证明,利用微分中值定理证明,利用函数的极值或最值证明等,在众多方法中,利用中值定理证明不等式比较困难,无从下手,探究其原因,一是中值定理的内容本身难理解,二是证明不等式,需要因式而变,对中值定理的基础及灵活性要求较高.我们在日常教学中常常遇到不等式的证明问题,不等式是初等数学中最基本的内容之一,我们有必要把这类问题单独拿出来进行研究,找出它们的共性,以方便我们日后的教学研究工作的开展.2拉格朗日中值定理在不等式证明中的应用2.1拉格朗日中值定理拉格朗日(grange , 1736-1813,法国数学家,力学家,文学家)• 拉格朗日中值定理设函数f x在闭区间[a,b]上连续,在开区间a,b内可导,则在开区间(a,b)内至少存在一点X。
高中数学证明不等式之泰勒展式和拉格朗日中值定理
证明不等式之泰勒展式和拉格朗日中值定理【典型例题】例1.已知函数f (x )=ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f (x )的极小值点.(ⅰ)证明:12<a <1;(ⅱ)求f (x )在区间(-∞,π)上的零点个数;(2)若a =1,f (x )x =1-x π 1+x π 1-x 2π 1+x 2π 1-x 3π 1+x 3π ⋯1-x n π 1+xn π ⋯,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n x 2n (2n )!+⋯,n ∈N *.证明:112+122+132+⋯+1n2+⋯=π26.【解析】解:(1)证明:(ⅰ)由题意得:f (x )=ln a (1-x )e -x +a cos x (a >0),因为x =0为函数f (x )的极值点,所以f (0)=ln a +a =0,令g (x )=ln x +x (x >0),则g (x )=1x+1>0,g (x )在(0,+∞)上单调递增,因为g (1)>0,g 12=ln 12+12=ln e 2<0,所以g (x )=ln x +x (x >0)在12,1上有唯一的零点a ,所以12<a <1;(ⅱ)由(ⅰ)知:ln a =-a ,f (x )=a (sin x -xe -x ),f (x )=a [cos x -(1-x )e -x ],①当x ∈(-∞,0)时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1得:f (x )<0,所以f (x )在(-∞,0)上单调递减,f (x )>f (0)=0,所以f (x )在区间(-∞,0)上不存在零点;②当x ∈(0,π)时,设h (x )=cos x -(1-x )e -x ,则h (x )=(2-x )e -x -sin x ,1°若x ∈0,π2,令m (x )=(2-x )e -x -sin x ,则m (x )=(x -3)e -x-cos x <0,所以m (x )在0,π2 上单调递减,因为m (0)=2>0,m π2 =2-π2 e -π2-1<0;所以存在α∈0,π2,满足m (α)=0,当x ∈(0,α)时,m (x )=h (x )>0,h (x )在(0,α)上单调递增;当x ∈α,π2时,m (x )=h(x )<0,h (x )在α,π2 上单调递减;2°若x ∈π2,2,令φ(x )=(2-x )e -x ,x ∈π2,2 ,则φ (x )=(x -3)e -x <0,所以φ(x)在区间π2,2上单调递减,所以φ(x)<φπ2 =2-π2e-π2<1e,又因为sin x≥sin2=sin(π-2)>sin π6=12,所以h (x)=(2-x)e-x-sin x<0,h(x)在π2,2上单调递减;3°若x∈(2,π),则h (x)=(2-x)e-x-sin x<0,h(x)在(2,π)上单调递减;由1°2°3°得,h(x)在(0,α)上单调递增,h(x)在(α,π)单调递减,因为h(α)>h(0)=0,h(π)=(π-1)e-π-1<0,所以存在β∈(α,π)使得h(β)=0,所以当x∈(0,β)时,f (x)=h(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0,当x∈(β,π)时,f (x)=h(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点;综上,f(x)在区间(-∞,π)上的零点个数为2个;(2)因为sin xx =1-x2π21-x24π21-x232π2⋯1-x2n2π2⋯①对cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+⋯,两边求导得:-sin x=-x1!+x33!-x55!+⋯+(-1)n x2n-1(2n-1)!+⋯,sin x=x1!-x33!+x55!+⋯+(-1)n-1x2n-1(2n-1)!+⋯,所以sin xx=1-x23!+x45!+⋯+(-1)n-1x2n-2(2n-1)!+⋯②比较①②式中x2的系数,得:-13!=-1π2112+122+132+⋯+1n2+⋯所以112+122+132+⋯+1n2+⋯=π26.例2.已知函数f(x)=x2+ln x-ax.(1)求函数f(x)的单调区间;(2)若f(x)≤2x2,对x∈[0,+∞)恒成立,求实数a的取值范围;(3)当a=1时,设g x =xe x2-f x -x-1.若正实数λ1,λ2满足λ1+λ2=1,x1,x2∈(0,+∞)(x1≠x2),证明:g(λ1x1+λ2x2)<λ1g(x1)+λ2g(x2).【解析】解:(1)f′(x)=2x+1x-a=2x2-ax+1x,x>0,△=a2-8,①a≤22时,f′(x)≥0恒成立,故函数f(x)在(0,+∞)递增,无递减区间,②a >22时,f ′(x )>0⇒0<x <a -a 2-84或x >a +a 2-84,故函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,综上,a ≤22时,函数f (x )在(0,+∞)递增,无递减区间,a >22时,函数f (x )在0,a -a 2-84 ,a +a 2-84,+∞ 递增,在a -a 2-84,a +a 2-84递减,(2)f (x )≤2x 2,对x ∈[0,+∞)恒成立,即x ∈[0,+∞)时,a ≥ln xx-x 恒成立,令F (x )=ln x x -x ,(x >0),则F ′(x )=1-ln x -x 2x 2,令G (x )=1-ln x -x 2(x >0),则G ′(x )=-1x-2x <0,∴G (x )在(0,+∞)递减且G (1)=0,∴x ∈(0,1)时,G (x )>0,F ′(x )>0,F (x )递增,当x ∈(1,+∞),G (x )<0,F ′(x )<0,F (x )递减,∴F (x )max =F (1)=-1,综上,a 的范围是[-1,+∞).(3)证明:当a =1时,g (x )=xe -(ln x -x )-x -1=xe x -ln x -x -1=e x -x -1,g ′(x )=e x -1>0(x >0),不妨设0<x 1<x 2,下先证:存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),构造函数H (x )=g (x )-g (x 1)-g (x 2)-g (x 1)x 2-x 1(x -x 1),显然H (x 1)=H (x 2),且H ′(x )=g ′(x )-)-g (x 2)-g (x 1)x 2-x 1,则由导数的几何意义可知,存在ξ∈(x 1,x 2),使得H ′(ξ)=g ′(ξ)-)-g (x 2)-g (x 1)x 2-x 1=0,即存在ξ∈(x 1,x 2),使得g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1),又g ′(x )=e x -1为增函数,∴g (x 2)-g (x 1)=g ′(ξ)(x 2-x 1)>g ′(x 1)(x 2-x 1),即g (x 2)>g (x 1)+g ′(x 1)(x 2-x 1),设x 3=λ1x 1+λ2x 2(λ1+λ2=0),则x 1-x 3=(1-λ1)x 1-λ2x 2,x 2-x 3=(1-λ2)x 2-λ1x 1,∴g (x 1)>g (x 3)+g ′(x 3)(x 1-x 3)=g (x 3)+g ′(x 3)[(1-λ1)x 1-λ2x 2]①,g (x 2)>g (x 3)+g ′(x 3)(x 2-x 3)=g (x 3)+g ′(x 3)[(1-λ2)x 2-λ1x 1]②,由①×λ1+②×λ2得,λ1g (x 1)+λ2g (x 2)>g (x 3)=g (λ1x 1+λ2x 2),即g (λ1x 1+λ2x 2)<λ1g (x 1)+λ2g (x 2).例3.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x33!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f(x)=m sin x,若区间[a,b]满足当f(x)定义域为[a,b]时,值域也为[a,b],则称为f(x)的“和谐区间”,(ⅰ)m=1时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由;(ⅱ)m=-2时,f(x)是否存在“和谐区间”?若存在,求出f(x)的所有“和谐区间”,若不存在,请说明理由.【解析】(1)证明:由已知当x∈0,π2时,sin x>x-x33!,得sin xx>1-x26>1-π226=1-π224>12,所以当x∈0,π2时,sin x x>12.(2)(i)m=1时,假设存在,则由-1≤f(x)≤1知-1≤a<b≤1,注意到1<π2,故[a,b]⊆-π2 ,π2,所以f(x)在[a,b]单调递增,于是f(a)=af(b)=b,即a,b是方程sin x=x的两个不等实根,易知x=±π2不是方程的根,由已知,当x∈0,π2时,sin x<x,令x=-t,则有t∈-π2 ,0时,sin(-t)<-t,即sin t>t,故方程sin x=x只有一个实根0,故f(x)不存在和谐区间.(ii)m=-2时,假设存在,则由-2≤f(x)≤2知-2≤a<b≤2,若a,b≥0,则由[a,b]⊆[0,π),知f(x)≤0,与值域是[a,b]⊆[0,π)矛盾,故不存在和谐区间,同理,a,b≤0时,也不存在,下面讨论a≤0≤b,若b≥π2,则0,π2⊆[a,b],故f(x)最小值为-2,于是a=-2,所以-π2 ,π2⊆[a,b],所以f(x)最大值为2,故b=2,此时f(x)的定义域为[-2,2],值域为[-2,2],符合题意.若b<π2,当a≤-π2时,同理可得a=-2,b=2,舍去,当a>-π2时,f(x)在[a,b]上单调递减,所以a=-2sin bb=-2sin a,于是a+b=-2(sin a+sin b),若b>-a即a+b>0,则sin b>sin(-a),故sin b+sin a>0,-2(sin a+sin b)<0,与a+b=-2(sin a+sin b)矛盾;若b<-a,同理,矛盾,所以b>-a,即b2=sin b,由(1)知当x∈0,π2时,sin x>x2,因为b∈0,π2,所以b=0,从而,a=0,从而a=b,矛盾,综上所述,f(x)有唯一的和谐区间[-2,2].例4.给出以下三个材料:①若函数f(x)可导,我们通常把导函数f (x)的导数叫做f(x)的二阶导数,记作f (x).类似地,二阶导数的导数叫做三阶导数,记作f (x),三阶导数的导数叫做四阶导数⋯⋯一般地,n-1阶导数的导数叫做n阶导数,记作f(n)(x)=[f(n-1)(x)]′,n≥4.②若n∈N*,定义n!=n×(n-1)×(n-2)×⋯×3×2×1.③若函数f(x)在包含x0的某个开区间(a,b)上具有n阶的导数,那么对于任一x∈(a,b)有g(x)=f(x0)+f (x0)1!(x-x0)+f (x0)2!(x-x0)2+f (x0)3!(x-x0)3+⋯+f(n)(x0)n!(x-x0)n,我们将g(x)称为函数f(x)在点x=x0处的n阶泰勒展开式.例如,y=e x在点x=0处的n阶泰勒展开式为1+x+12x2+⋯+1n!x n.根据以上三段材料,完成下面的题目:(1)求出f1(x)=sin x在点x=0处的3阶泰勒展开式g1(x),并直接写出f2(x)=cos x在点x=0处的3阶泰勒展开式g2(x);(2)比较(1)中f1(x)与g1(x)的大小.(3)已知y=e x不小于其在点x=0处的3阶泰勒展开式,证明:x≥0时,e x+sin x+cos x≥2+2x.【解析】(1)解:因为f1(x)=sin x,则f1 (x)=cos x,f1 (x)=-sin x,f1 (x)=-cos x,所以f1 (0)=1,f1 (0)=0,f1 (0)=-1,故g1(x)=sin0+11!(x-0)+02!(x-0)2+-13!(x-0)3,即g1(x)=x-16x3,同理可得,g2(x)=1-12x2;(2)解:由(1)可知,f1(x)=sin x,g1(x)=x-16x3,令h(x)=f1(x)-g1(x)=sin x-x+16x3,则h (x)=cos x-1+12x2,则h (x)=-sin x+x,h (x)=1-cos x≥0,所以h (x)在R上单调递增,又h (0)=0,故当x<0时,h (x)<0,故h (x)单调递减,当x>0时,h (x)>0,故h (x)单调递增,所以h (x)的最小值为h (0)=1-1+0=0,所以h (x)≥0,故h(x)在R上单调递增,又h(0)=0,所以当x<0时,h(x)<0,当x>0时,h(x)>0,综上所述,当x<0时,f1(x)<g1(x);当x=0时,f1(x)=g1(x);当x>0时,f1(x)>g1(x).(3)证明:令φ(x)=f2(x)-g2(x)=cos x-1+12x2,则φ (x)=-sin x+x,所以φ (x)=1-cos x≥0.则φ (x)在R上单调递增,又φ (0)=0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即cos x≥1-12x2,因为y=e x在点x=0处的3阶泰勒展开式为:1+x+12x2+16x3,所以e x≥1+x+12x2+16x3,又y=sin x在x=0处的3阶泰勒展开式为:x-16x3,当x≥0时,sin x≥x-16x3,所以当x≥0时,e x+sin x+cos x≥1+x+12x2+16x3+x-16x3+1-12x2≥2+2x,故e x+sin x+cos x≥2+2x(x≥0).例5.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数F(x)表示成F(x)=d(x-b)(x-c) (a-b)(a-c)+e(x-a)(x-c)(b-a)(b-c)+f(x-a)(x-b)(c-a)(c-b)的形式.(1)若a=1,b=2,c=3,d=4,e<f,把F(x)的二次项系数表示成关于f的函数G(f),并求G(f)的值域(此处视e为给定的常数,答案用e表示);(2)若a<b<c,d>0,e<0,f>0,求证:a+b<d(b2-c2)+e(c2-a2)+f(a2-b2)d(b-c)+e(c-a)+f(a-b)<b+c.【解析】(1)解:由题意G(f)=d(a-b)(a-c)+e(b-a)(b-c)+f(c-a)(c-b)=4-1×(-2)+e1×(-1)+f2×1=12f-e+2,又f>e,所以G(f)>12e-e+2=-12e+2,当e≤4时,G(f)>-12e+2≥0,则G(f)的值域是-12e+2,+∞;当e>4时,-12e+2<0,所以G(f)的值域是-12e+2,0∪(0,+∞).(2)证明:因为a<b<c,d>0,e<0,f>0,所以d(b-c)+e(c-a)+f(a-b)<0,(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2) =d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c),因为a<b<c,d>0,e<0,f>0,所以d(b-c)(a-c)>0,e(c-a)(b-c)>0,所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c) =d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a),因为a<b<c,d>0,e<0,f>0,所以e(c-a)(b-a)<0,f(a-b)(c-a)<0,所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2)+e(c2-a2)+f(a2-b2) d(b-c)+e(c-a)+f(a-b),综上,原不等式成立.例6.用拉格朗日中值定理证明不等式:x1+x<ln(1+x)<x(x>0).【解析】证明:设g(t)=ln t,t∈(a,b),则g(x)符合拉格朗日中值定理的条件,即存在t0∈(a,b),使g′(t0)=g(b)-g(a) b-a,因为g′(t)=1t,由t∈(a,b),0<a<b,可知g ′(t )∈1b ,1a,b -a >0,即1b <g ′t 0)=g (b )-g (a )b -a <1a ,可得1b <g (b )-g (a )b -a =ln b -ln a b -a<1a ,即有b -a b<ln b a <b -aa ,令b a=1+x ,可得x =ba-1,即有x1+x<ln (1+x )<x (x >0).例7.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0)的图象在(2,f (2))处的切线与x 轴平行.(1)求n ,m 的关系式并求f (x )的单调减区间;(2)证明:对任意实数0<x 1<x 2<1,关于x 的方程:f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解;(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f (x )是在闭区间[a ,b ]上连续不断的函数,且在区间(a ,b )内导数都存在,则在(a ,b )内至少存在一点x 0,使得f (x 0)=f (b )-f (a )b -a.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:当0<a <b 时,b -a b <ln b a <b -a a (可不用证明函数的连续性和可导性).【解析】解:(1)因为f (x )=3mx 2+2nx ,------(1分)由已知有f (2)=0,所以3m +n =0即n =-3m ------(2分)即f (x )=3mx 2-6mx ,由f (x )>0知mx (x -2)>0.当m >0时得x <0或x >2,f (x )的减区间为(0,2);-----(3分)当m <0时得:0<x <2,f (x )的减区间为(-∞,0)和(2,+∞);-----(4分)综上所述:当m >0时,f (x )的减区间为(0,2);当m <0时,f (x )的减区间为(-∞,0)和(2,+∞);-----(5分)(2)∵f (x 2)-f (x 1)x 2-x 1=m (x 21+x 22+x 1x 2-3x 1-3x 2),------------(6分)∴f ′(x )-f (x 2)-f (x 1)x 2-x 1=0,可化为3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2=0,令h (x )=3x 2-6x -x 21-x 22-x 1x 2+3x 1+3x 2----(7分)则h (x 1)=(x 1-x 2)(2x 1+x 2-3),h (x 2)=(x 2-x 1)(x 1+2x 2-3),即h (x 1)h (x 2)=-(x 1-x 2)2(2x 1+x 2-3)(x 1+2x 2-3)又因为0<x 1<x 2<1,所以(2x 1+x 2-3)<0,(x 1+2x 2-3)<0,即h (x 1)h (x 2)<0,-----------(8分)故h (x )=0在区间(x 1,x 2)内必有解,即关于x 的方程f (x )-f (x 2)-f (x 1)x 2-x 1=0在(x 1,x 2)恒有实数解-----(9分)(3)令g (x )=ln x ,x ∈(a ,b ),-----------(10分)则g (x )符合拉格朗日中值定理的条件,即存在x 0∈(a ,b ),使g (x 0)=g (b )-g (a )b -a =ln b -ln ab -a-----------(11分)因为g ′(x )=1x ,由x ∈(a ,b ),0<a <b 可知g ′(x )∈1b ,1a,b -a >0-----(12分)即1b <g ′(x 0)=g (b )-g (a )b -a =ln b -ln a b -a =ln bab -a<1a ,∴b -a b<ln b a <b -a a -----(14分)例8.已知f (x )=23x 3-2x 2+cx +4,g (x )=e x -e 2-x +f (x ),(1)若f (x )在x =1+2处取得极值,试求c 的值和f (x )的单调增区间;(2)如图所示,若函数y =f (x )的图象在[a ,b ]连续光滑,试猜想拉格朗日中值定理:即一定存在c ∈(a ,b ),使得f (c )=f (b )-f (a )b -a,利用这条性质证明:函数y =g (x )图象上任意两点的连线斜率不小于2e -4.xyabcA By =f x【解析】解:(1)f ′(x )=2x 2-4x +c ,(1分)依题意,有f (1+2)=0,即c =-2(1+2)2+4(1+2)=-2.(2分)∴f (x )=23x 3-2x 2-2x +4,f ′(x )=2x 2-4x -2.令f ′(x )>0,得x <1-2或x >1+2,(5分)从而f (x )的单调增区间为:(-∞,1-2]及[1+2,+∞);(6分)(2)f (c )=f (b )-f (a )b -a;g (x )=e x -e 2-x +f (x )=e x -e 2-x +23x 3-2x 2-2x +4,(7分)g ′(x )=e x+e2-x+2x 2-4x -2(9分)=e x+e 2ex +2(x -1)2-4≥2e x ⋅e 2e x +2⋅0-4=2e -4.(12分)由(2)知,对于函数y =g (x )图象上任意两点A 、B ,在A 、B 之间一定存在一点C (c ,g ′(c )),使得g ′(c )=K AB ,又g ′(x )≥2e -4,故有K AB =g ′(c )≥2e -4,证毕.(14分)【同步练习】一、单选题1.十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ,0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是()A.sin57°B.sin36°C.sin33°D.sin30°【答案】C【解析】因为sin x =x -x 33!+x 55!-x 77!+⋯+(-1)n -1x 2n -1(2n -1)!+⋯,则(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+(-1)n -1x 2n -2(2n -2)!+⋯,当x =1时,则有cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯,又cos1=sin π2-1 ,则1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1 ≈sin0.57=sin 0.57×180π °≈sin32.7°≈sin33°,故选∶C .2.公元1715年英国数学家布鲁克·泰在他的著作中陈述了“泰勒公式”,如果满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值构建一个多项式来近似表达这个函数.泰勒公式将一些复杂函数近似地表示为简单的多项式函数,使得它成为分析和研究许多数学问题的有力工具,例如:e x=+∞n =0x nn !=x 00!+x 11!+x 22!+x 33!+⋯+x n n !+⋯,其中x ∈R ,n ∈N *,试用上述公式估计e 的近似值为(精确到0.001)()A.1.647 B.1.649 C.1.645 D.1.646【答案】B【解析】由题意可知,结果只需精确到0.001即可,令x =0.5,取前6项可得:e =+∞n =00.5n n ! ≈5n =00.5n n ! =0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649所以e 的近似值为1.649,故选:B .3.计算器是如何计算sin x ,cos x ,πx ,ln x ,x 等函数值的呢?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×⋯×n ,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到sin π2+1 的近似值为()A.0.50 B.0.52C.0.54D.0.56【答案】C【解析】由题意可得,sin π2+1=cos1,故cos1=1-122!+144!-166!+⋯=1-12+124-1720+⋯≈1-0.5+0.041-0.001+⋯=0.54.故选:C .二、填空题4.英国数学家泰勒(1685-1731)以发现泰勒公式和泰勒级数闻名于世,由泰勒公式,我们得到e =1+11!+12!+13!+⋯+1n !+e θ(n +1)!(其中e 为自然对数的底数,0<θ<1,n !=n ×n -1 ×n -2 ×...×2×1),其拉格朗日余项是R n =e θ(n +1)!.可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确.若3(n +1)!近似地表示e 的泰勒公式的拉格朗日余项R n ,R n 不超过11000时,正整数n 的最小值是_____【答案】6【解析】依题意得3n +1 !≤11000,即n +1 !≥3000,5+1 !=6×5×4×3×2×1=720<3000,6+1 !=7×6×5×4×3×2×1=5040>3000,所以n 的最小值是6.故答案为:6三、解答题5.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x ;(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的4阶泰勒展开式为:1+x +12x 2+16x 3+124x 4,∴e x =1+x +12x 2+16x 3+124x 4≥1+x +12x 2+16x 3,当且仅当x =0时取等号,①当x ≥0时,由(2)可知,sin x ≥x -16x 3,当且仅当x =0时取等号,所以e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②当x<0时,设F x =e x+sin x+cos x-2-2x,F0 =0,F x =e x+cos x-sin x-2=e x+2cos x+π4-2,F x =e x-sin x-cos x,当x∈-1,0,由(2)可知sin x<x-16x3,所以,F x =e x-sin x-cos x>1+x+12x2+16x3+16x3-x-cos x=1-cos x+16x23+2x>0,即有F x <F 0 =0;当x∈-∞,-1时,F x =e x+2cos x+π4-2<1e+2-2<12+2-2<0,所以,x<0时,F x 单调递减,从而F x >F0 =0,即e x+sin x+cos x>2+2x.综上所述:e x+sin x+cos x≥2+2x.6.在高等数学中,我们将y=f x 在x=x0处可以用一个多项式函数近似表示,具体形式为:f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),以上公式我们称为函数f x 在x=x0处的泰勒展开式.(1)分别求e x,sin x,cos x在x=0处的泰勒展开式;(2)若上述泰勒展开式中的x可以推广至复数域,试证明:e iπ+1=0.(其中i为虚数单位);(3)若∀x∈0,32,e a sin x>x+1恒成立,求a的范围.(参考数据ln52≈0.9)【解析】(1)因为函数f x 在x=x0处的泰勒展开式为f x =f x0+f′x0x-x0+f x02!x-x02+⋅⋅⋅+f n x0n!x-x0n+⋅⋅⋅(其中f n x 表示f x 的n次导数),所以e x,sin x,cos x在x=0处的泰勒展开式分别为:e x=1+x+12!x2+⋯+1n!x n+⋯,sin x=x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯,cos x=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯;(2)证明:把e x在x=0处的泰勒展开式中的x替换为ix,可得e ix=1+(ix)+12!(ix)2+13!(ix)3+14!(ix)4+⋯+1n!(ix)n+⋯=1-12!x2+14!x4+⋯+(-1)n(2n)!x2n+⋯+i⋅x-13!x3+15!x5+⋯+(-1)n-1(2n-1)!x2n-1+⋯=cos x+i⋅sin x,所以e iπ=cosπ+i⋅sinπ=-1,即e iπ+1=0;(3)由sin x在x=0处的泰勒展开式,先证∀x∈0,32,sin x>x-16x3,令f(x)=sin x-x+16x3,f′(x)=cos x-1+12x2,f′′(x)=x-sin x,f (x)=1-cos x,易知f (x)>0,所以f′′(x)在0,32上单调递增,所以f′′(x)>f′′(0)=0,所以f′(x)在0,3 2上单调递增,所以f′(x)>f′(0)=0,所以f(x)在0,3 2上单调递增,所以f(x)>f(0)=0,再令g(x)=x-16x3-ln(x+1),x∈0,32,易得g′(x)=-12x(x-1)(x+2)x+1,所以g(x)在(0,1)上单调递增,在1,3 2上单调递减,而g(0)=0,g32=1516-ln52>0,所以∀x∈0,3 2,g(x)>0恒成立,当a≥1时,a sin x≥sin x>x-16x3>ln(x+1) ,所以e a sin x>x+1成立,当a<1时,令h(x)=a sin x-ln(x+1),x∈0,3 2,易求得h (0)=a-1<0,所以必存在一个区间(0,m),使得h(x)在(0,m)上单调递减,所以x∈(0,m)时,h(x)<h(0)=0,不符合题意.综上所述,a≥1.7.英国数学家泰勒发现了如下公式:sin x=x-x33!+x55!-x77!+⋯,其中n!=1×2×3×4×⋯×n,此公式有广泛的用途,例如利用公式得到一些不等式:当x∈0,π2时,sin x<x,sin x>x-x33!,sin x<x-x3 3!+x55!,⋯.(1)证明:当x∈0,π2时,sin x x>12;(2)设f x =m sin x,若区间a,b满足当f x 定义域为a,b时,值域也为a,b,则称为f x 的“和谐区间”.(i)m=1时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由;(ii)m=-2时,f x 是否存在“和谐区间”?若存在,求出f x 的所有“和谐区间”,若不存在,请说明理由.【解析】(1)由已知当x∈0,π2时,sin x>x-x33!,得sin x x >1-x 26>1-π226=1-π224>12,所以当x ∈0,π2 时,sin x x >12.(2)(i )m =1时,假设存在,则由-1≤f x ≤1知-1≤a <b ≤1,注意到1<π2,故a ,b ⊆-π2,π2 ,所以f x 在a ,b 单调递增,于是f a =af b =b,即a ,b 是方程sin x =x 的两个不等实根,易知x =±π2不是方程的根,由已知,当x ∈0,π2时,sin x <x ,令x =-t ,则有t ∈-π2,0 时,sin -t <-t ,即sin t >t ,故方程sin x =x 只有一个实根0,故f x 不存在“和谐区间”.(ii )m =-2时,假设存在,则由-2≤f x ≤2知-2≤a <b ≤2,若a ,b ≥0,则由a ,b ⊆0,π ,知f x ≤0,与值域是a ,b ⊆0,π 矛盾,故不存在“和谐区间”,同理,a ,b ≤0时,也不存在,下面讨论a ≤0≤b ,若b ≥π2,则0,π2⊆a ,b ,故f x 最小值为-2,于是a =-2,所以-π2,π2⊆a ,b ,所以f x 最大值为2,故b =2,此时f x 的定义域为-2,2 ,值域为-2,2 ,符合题意.若b <π2,当a ≤-π2时,同理可得a =-2,b =2,舍去,当a >-π2时,f x 在a ,b 上单调递减,所以a =-2sinb b =-2sin a ,于是a +b =-2sin a +sin b ,若b >-a 即a +b >0,则sin b >sin -a ,故sin b +sin a >0,-2sin a +sin b <0,与a +b =-2sin a +sin b 矛盾;若b <-a ,同理,矛盾,所以b =-a ,即b2=sin b ,由(1)知当x ∈0,π2 时,sin x >x 2,因为b ∈0,π2,所以b =0,从而,a =0,从而a =b ,矛盾,综上所述,f x 有唯一的“和谐区间”-2,2 .8.计算器是如何计算sin x ,cos x ,e x ,ln x ,x 等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1⋅2⋅3⋅⋯⋅n .英国数学家泰勒(B .Taylor ,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得到的sin x 和cos x 的值也就越精确.例如,我们用前三项计算sin0.9,就得到sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075.像这些公式已被编入计算器内,计算器利用足够多的项就可确保其显示值是精确的.试用你的计算器计算sin0.9,并与上述结果进行比较.【解析】用计算器计算sin0.9得sin0.9=0.783326909627,和数值0.78342075比较发现,通过sin0.9≈0.9-(0.9)33!+(0.9)55!≈0.78342075计算的答案只能精确到小数点后第3位.9.给出以下三个材料:①若函数f x 可导,我们通常把导函数f x 的导数叫做f x 的二阶导数,记作f x .类似地,二阶导数的导数叫做三阶导数,记作f x ,三阶导数的导数叫做四阶导数⋯⋯一般地,n -1阶导数的导数叫做n 阶导数,记作f n x =f n -1 x ,n ≥4.②若n ∈N ∗,定义n !=n ×n -1 ×n -2 ×⋅⋅⋅×3×2×1.③若函数f x 在包含x 0的某个开区间a ,b 上具有n 阶的导数,那么对于任一x ∈a ,b 有g x =f x 0 +f x 0 1!x -x 0 +f x 0 2!x -x 0 2+f x 0 3!x -x 0 3+⋅⋅⋅+f n x 0 n !x -x 0 n,我们将g x 称为函数f x 在点x =x 0处的n 阶泰勒展开式.例如,y =e x 在点x =0处的n 阶泰勒展开式为1+x +12x 2+⋅⋅⋅+1n !x n .根据以上三段材料,完成下面的题目:(1)求出f 1x =sin x 在点x =0处的3阶泰勒展开式g 1x ,并直接写出f 2x =cos x 在点x =0处的3阶泰勒展开式g 2x ;(2)比较(1)中f 1x 与g 1x 的大小.(3)已知y =e x 不小于其在点x =0处的3阶泰勒展开式,证明:e x +sin x +cos x ≥2+2x .【解析】(1)∵f 1x =cos x ,f 2x =-sin x ,f 3x =-cos x ,∴f 10 =1,f 20 =0,f 30 =-1,∴g 1x =sin0+11!x -0 +02!x -0 2+-13!x -0 3,即g 1x =x -16x 3;同理可得:g 2x =1-12x 2;(2)由(1)知:f 1x =sin x ,g 1x =x -16x 3,令h x =f 1x -g 1x =sin x -x +16x 3,则h x =cos x -1+12x 2,∴h x =-sin x +x ,h x =1-cos x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0,h x 单调递减;当x ∈0,+∞ 时,h x >0,h x 单调递增;∴h x min =h 0 =1-1+0=0,∴h x ≥0,∴h x 在R 上单调递增,又h 0 =0,∴当x ∈-∞,0 时,h x <0;当x ∈0,+∞ 时,h x >0;综上所述:当x <0时,f 1x <g 1x ;当x =0时,f 1x =g 1x ;当x >0时,f 1x >g 1x .(3)令φx =f 2x -g 2x =cos x -1+12x 2,则φ x =-sin x +x ,∴φ x =1-cos x ≥0,∴φ x 在R 上单调递增,又φ 0 =0,∴φx 在-∞,0 上单调递减,在0,+∞ 上单调递增,∴φx ≥φ0 =0,即cos x ≥1-12x 2;∵y =e x 在点x =0处的3阶泰勒展开式为:1+x +12x 2+16x 3,∴e x ≥1+x +12x 2+16x 3,①由(2)知:当x ≥0时,sin x ≥x -16x 3,∴当x ≥0时,e x +sin x +cos x ≥1+x +12x 2+16x 3 +x -16x 3 +1-12x 2 =2+2x ;②由(2)知:当x <0时,sin x <x -16x 3,∴e x +sin x +cos x ≥2+x +16x 3+sin x >2+2sin x ,令m x =sin x -x x <0 ,则m x =cos x -1≤0,∴m x 在-∞,0 上单调递减,∴m x >m 0 =0,即当x <0时,sin x >x ,∴2+2sin x >2+2x ,∴e x +sin x +cos x >2+2x ;综上所述:e x +sin x +cos x ≥2+2x .10.已知函数f x =ln a ⋅xe -x +a sin x ,a >0.(1)若x =0恰为f x 的极小值点.①证明:12<a <1;②求f x 在区间-∞,π 上的零点个数;(2)若a =1,f x x =1-x π 1+x π 1-x 2π 1-x 3π 1+x 3π ⋅⋅⋅1-x n π 1+xn π⋅⋅⋅,又由泰勒级数知:cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅n ∈N * ,证明:112+122+132+⋅⋅⋅+1n 2+⋅⋅⋅=π26【解析】(1)①由题意得:f x =ln a 1-x e -x +a cos x ,因为x =0为函数f x 的极值点,所以,f 0 =ln a +a =0,令g x =ln x +x x >0 ,则g x =1x+1>0,g x 在(0,+∞)上单调递增.因为g 1 =1>0,g 12=ln 12+12=ln e 2<0,所以g x =ln x +x 在12,2上有唯一的零点a ,所以12<a <1;②由①知:ln a =-a ,f x =a sin x -xe -x ,f x =a cos x -1-x e -x ,(i )当x ∈-∞,0 时,由a >0,-1≤cos x ≤1,1-x >1,e -x >1,得f x <0,所以f x 在-∞,0 上单调递减,f x >f 0 =0,所以f x 在区间-∞,0 上不存在零点;(ii )当x ∈0,π 时,设h x =cos x -1-x e -x ,则h x =2-x e -x -sin x .(a )若x ∈0,π2,令m x =2-x e -x -sin x ,则m x =x -3 e -x-cos x <0,所以m x 在0,π2上单调递减,因为m 0 =2>0,m π2 =2-π2 e -π2-1<0,所以存在a ∈0,π2,满足m a =0,当x ∈0,a 时,m x =h x >0,h x 在0,a 上单调递增;当x ∈a ,π2时,m x =hx <0,h x 在a ,π2 上单调递减;(b )若x ∈π2,2,令φx =2-x e -x ,x ∈π2,2 ,则φ x =x -3 e -x <0,所以φx 在区间π2,2上单调递减,所以φx <φπ2=2-π2 e -π2<1e,又因为sin x ≥sin2=sin π-2 >sin π6=12,所以h x =2-x e -x -sin x <0,h x 在π2,2上单调递减;(c )若x ∈2,π ,则h x =2-x e -x -sin x <0,h x 在2,π 上单调递减.由(a )(b )(c )得,h x 在0,a 上单调递增,h x 在a ,π 单调递减,因为h a >h 0 =0,h π =π-1 e -π-1<0,所以存在β∈a ,π 使得h β =0,所以,当x ∈0,β 时,f x =h x >0,f x 在0,β 上单调递增,f x >f 0 =0,当x ∈β,π 时,f x =h x <0,f x 在β,π 上单调递减,因为f β >f 0 =0,f π <0,所以f x 在区间β,π 上有且只有一个零点.综上,f x 在区间-∞,π 上的零点个数为2个;(2)因为sin x x =1-x 2π21-x 24π21-x 232π2 ⋅⋅⋅1-x 2n 2π2,(*)对cos x =1-x 22!+x 44!-x 66!+⋅⋅⋅+-1 n x 2n2n !+⋅⋅⋅,两边求导得:-sin x =-x 1!+x 33!-x 55!+⋅⋅⋅+-1 n x 2n -12n -1 !+⋅⋅⋅,sin x =x 1!-x 33!+x 55!+⋅⋅⋅+-1 n -1x 2n -12n -1 !+⋅⋅⋅,所以sin x x =1-x 23!+x 45!+⋅⋅⋅+-1 n -1x 2n -22n -1 !+⋅⋅⋅,(**)比较(*)(**)式中x 2的系数,得-13!=-1π2112+122+132+⋅⋅⋅+1n2+⋅⋅⋅所以112+122+132+⋅⋅⋅+1n2+⋅⋅⋅=π26.11.英国数学家泰勒发现了如下公式:sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,其中n !=1×2×3×4×5×⋯×n .这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.比如,用前三项计算cos0.3,就得到cos0.3≈1-0.322!+0.344!=0.9553375.试用你的计算工具计算cos0.3,并与上述结果比较.【解析】依题意,用前5项计算,即cos0.3≈1-0.322!+0.344!-0.366!+0.388!≈1-0.045+0.0003375-0.0000010125+0.00000000163≈0.95533648.与用前三项计算cos0.3的结果比较可以发现,用前5项计算的结果精确度更高,同时可知,当取的项数足够多时,可以达到更高的精确度,甚至达到任意精确度的要求.四、双空题12.记f (n )(x )为函数f (x )的n 阶导数且f 2 x =f x ,f n x =f n -1 x n ≥3,n ∈N * .若f (n )(x )存在,则称f x n 阶可导.英国数学家泰勒发现:若f (x )在x 0附近n +1阶可导,则可构造T n x =f x 0 +f x 0 1!x -x 0 +f 2 x 0 2!x -x 0 2+⋯+f n x 0 n !x -x 0 n(称为n 次泰勒多项式)来逼近f (x )在x0附近的函数值.据此计算f(x)=e x在x0=0处的3次泰勒多项式为T3(x)=_________;f(x)=-1x在x0=-1处的10次泰勒多项式中x3的系数为_________【答案】1+x+x22+x36330【解析】∵f(x)=e x,∴f(n)(x)=e x,f(n)(0)=1,n∈N∗∴T3(x)=f(0)+(x-0)+12!(x-0)2+13!(x-0)3,∴T3(x)=1+x+x22+x36;∵f(x)=-1x,∴f(x)=x-2,f(2)(x)=-2x-3,f(3)(x)=(3!)x-4,⋯,f(9)(x)=(9!)x-10,f(10)(x)=-(10!) x-11,∴f (-1)=1,f(2)(-1)=2,f(3)(-1)=3!,⋯,f(9)(-1)=9!,f(10)(-1)=10!,∴T10(x)=1+(x+1)+(x+1)2+(x+1)3+⋅⋅⋅+(x+1)10.故x3的系数为C03+C14+C25+⋅⋅⋅+C710=C44+C34+C35+⋅⋅⋅+C310=C45+C35+⋅⋅⋅+C310=⋅⋅⋅=C410+C310=C411= 330.故答案为:1+x+x22+x36;330.。
2021考研:如何用中值定理和函数最值证明不等式
2021考研:如何用中值定理和函数最值证明不等式
在上一篇文章中,向大家介绍了如何用单调性和凹凸性证明不等式,以及如何根据题目条件和欲证的结论作辅助函数,在这篇文章中,考研辅导老师将进一步向大家介绍证明不等式的另外两种常用方法——利用中值定理(包括微分中值定理和积分中值定理)和函数的最值证明不等式,供各位考生参考。
关于不等式的证明这类问题,在历年的考研数学中经常出现,所以各位考生一定要重视,要做到能够熟练地解答这类问题。
用中值定理和函数最值证明不等式的基本思路:
如果不等式涉及到函数值之差,则可以考虑利用微分中值定理,如果涉及到积分,则可以尝试利用积分中值定理;如果只涉及函数值大小,则可以考虑用函数的最值进行证明;有时需要结合运用单调性和凹凸性来证明不等式。
上面就是考研数学中高等数学部分的如何用中值定理和函数最值证明不等式这类问题的解题方法,供考生们参考借鉴。
在以后的时间里,考研辅导老师还会陆续向考生们介绍其它常考重要题型及解题方法,希望各位考生留意查看。
最后预祝各位学子在2021考研中取得佳绩。
第 1 页共1 页。
微分中值定理和不等式的证明
淮北师范大学2013届学士学位论文微分中值定理和不等式的证明学院、专业数学科学学院数学与应用数学研究方向函数论学生姓名谢晨西学号20091101169指导教师姓名卓泽朋指导教师职称副教授2013年4月20日微分中值定理及不等式的证明谢晨西(淮北师范大学数学科学学院,淮北,235000)摘要微分中值定理在数学分析中具有重要作用,不等式在初等数学中是最基本的内容之一,微分中值定理主要包括:拉格朗日中值定理,罗尔中值定理,以及柯西中值定理.本文采用举例的方式归纳了微分中值定理在不等式证明中的几种常见方法和技巧,并对中值定理进行了适当的推广,同时结合几个常见的实例论述了罗尔中值定理,拉格朗日中值定理在证明不等式面的应用,从而加深对两个定理的理解,总结了微分中值定理在不等式证明中的基本思想和方法.关键词:微分中值定理,柯西中值定理,费马定理,不等式Differential Mean Value Theorem and Proof of InequalityXie Chenxi(School of Mathematical science,Huaibei Normal University,Huaibei,2350000)AbstractDifferential mean value theorem plays an important role in mathematical analysis.Inequality is one of the most important elements in elementary mathematics.Differential mean value theorem include: lagrange mean value theorem, rolle theorem, cauchy mean value theorem.This article summarizes several common methods and techniques of differential mean value theorem to prove inequality..Appropriate promotion differential mean value bined with a few common examples discussed rolle theorem of lagrange mean value theorem in proving inequalities surface.So as to deepen the understanding of the two theorems,summarize the basic method of differential mean value theorem to prove inequalityKey words:Differential mean value theorem,Cauchy Mean Value Theorem,generalized Fermat's theorem;,inequalities目录引言 (1)1 预备知识 (1)2 微分中值定理及其证明 (1)2.1 费马引理 (1)2.2 罗尔中值定理及其推广 (2)2.3 拉格朗日中值定理及其推广 (3)2.4 柯西中值定理及其推广 (3)2.5 泰勒中值定理 (4)3 利用微分中值定理证明不等式 (4)3.1 罗尔中值定理证明不等式 (4)3.2 利用拉格朗日中值定理证明不等式 (5)3.3 利用柯西中值定理证明不等式 (6)3.4 利用泰勒中值定理证明不等式 (8)3.5综合利用微分中值定理证明不等式 (10)结论 (11)参考文献 (11)引言在高等数学课程中罗尔定理、拉格朗日中值定理及柯西中值定理等统称为微分中值定理,他们是微分中值学中最基本、最重要的定理为加深学生对微分中值定理的理解.它的出现是一个过程,聚集了众多数学家的研究成果.从费马到柯西不断发展,理论知识也不断完善,成为了人们引进微分学以后,数学研究中的重要工具之一,而且应用也越来越广泛.微分中值定理在函数在某一点的局部性质;函数图象的走向;曲线凹凸性的判断;积分中值定理;级数理论;等式及不等式证明等问题的研究中也发挥着十分重要的作用.因此,微分中值定理已经成为整个微分学基础而又举足轻重的内容.1 预备知识 微分中值定理是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲+中值定理与不等式证明第五讲中值定理及不等式证明考试内容精讲一、连续函数的介值定理1、(介值定理)若函数f?x?在?a,b?上连续,?是介于f?a?与f?b?(或最大值M与最小值m之间的任一实数,则在?a,b?上至少?一个?,使得f?????.?a???b? 2、(零点定理或根的存在性定理)设函数f?x?在?a,b?上连续,且f?a??f?b??0,则在?a,b?内至少?一个?,使得f????0.?a???b? 二、微分学中值定理1、(费尔马定理)若函数f(x)满足条件:(1)函数f(x)在x0的某邻域内有定义,并且在此邻域内恒有f(x)?f(x0)或f(x)?f(x0) (2)f(x)在x0处可导。
则有f?(x0)?0 几何意义:若函数f(x)在x?x0处取得极值,则相应的曲线y?f(x)在点?x0,f(x0)?处存在切线,若切线不垂直x轴,则切线必平行于x轴。
2设函数f(x)在[a,b]上满足三个条件:(1)f(x)在[a,b]上连续; (2)f(x)在(a,b)内可导;(3)f(a)?f(b),则存在??(a,b)使f?(?)?0。
几何意义:若连续曲线y?f(x)在A?a,f(a)?,B?b,f(b)?两点间的每一点都有不垂直于x轴的切线,又A,B两点纵坐标相等,则A,B间至少存在一点P??,f(?)?,使得在处的切线平行于必x 轴。
【推论】:设函数y?f(x)在[a,b]上连续,在(a,b)内可导,且f(x)的最大值在点??(a,b)达到,则f?(?)?0 3.设函数f(x)在[a,b]上连续,在(a,b)内可导, 则存在??(a,b),使f?(?)?f(b)?f(a) b?a 【评注】1.拉格朗日中值公式f(b)?f(a)?f?(?)(b?a),??(a,b) 2.有限增量公式f(x0??x)?f(x0)?f?(?)?x 或f(x??x)?f(x)?f?(x???x)?x,0???1.3.涉及一个函数的函数改变量与函数某点导数关系的命题,一般可用拉格朗日定理处理。
【推论】1):若f(x)在(a,b)内可导,且f’(x)?0,则f(x)在(a,b)内恒为常数。
2).若对?x??a,b?,有f?(x)?g??x?,则f(x)?g?x??C,其中C为一常数。
4(柯西定理)设函数f(x)和g(x)满足条件:(1)在[a,b]上连续,(2)在(a,b)内可导,且g?(x)?0,则存在??(a,b),使f?(?)f(b)?f(a)。
?g?(?)g(b)?g(a)【评注】涉及两个不同函数的函数改变量与其在某点导数关系的命题,一般可用柯西中值定理定理处理。
5 设f(x)在x0的邻域I内有直到(n?1)阶导数,那么对?x?I,至少存在一个?使f??(x0)f(n)(x0)2f(x)?f(x0)?f?(x0)(x?x0)?(x ?x0)???(x?x0)n?Rn(x)2!n!f(n?1)(?)其中Rn(x)?(x?x0)n?1 ?在x0与x之间. (n?1)!定理2设f(x)在x0点n阶可导,那么f??(x0)f(n)(x0)2f(x)?f(x0)?f?(x0)(x?x0)?(x ?x0)???(x?x0)n?Rn(x)2!n!其中Rn(x)??(x?x0)n, (x?x0).【评注】1)若泰勒公式中x0?0,则称该公式为麦克劳林公式应熟记简单初等函数的麦克劳林公式: x2xn1?xn?1e?1?x?????ex [余项或?(xn)] 2!n!(n?1)!xx31x2k?1k?12k?1ksinx?x????(?1)x?(?1)cos?x[余项或?(x2k)] 3!(2k?1)!(2k?1)!2k?1x21xcosx?1????(?1) k?1x2k?(?1)kcos?x[余项或?(x2k?1)] 2!(2k)!(2k?2)!(1?x)??1??x??(??1)2!x2???? (??1)?(??n?1)n!xn??(??1)?(??n)(n?1)!(1?? x)??n?1 [余项或?(xn)] nn?1x2x3xxln(1?x)?x?????(?1)n?1?(?1)n( 1??x)?n?1 23nn?1(x?1) [余项或?(xn)] 【练习1】(1)求函数f(x)?tanx的一阶麦克劳林公式; (2)当x0?4时,求函数y?x的一阶泰勒公式. 解(1)f(x)?tanx f?(x)?sec2x f??(x)?2sec2xtanx f(0)?0 f?(0)?1 f(x)?f(0)?f?(0)x?f??(?)2x2!tanx?x?sin?2x?在0与x之间. 3cos?(2) 当x0?4时,求函数y?x的一阶泰勒公式. 1f??(?)(x?4)2 23f(x)?f(4)?f?(4)(x?4)?f(4)?21f?(4)?41?f? ?(x)??x243111?2?x?2?(x?4)?(??)(x?4)2. 424 三、积分学中值定理如果f?x?在区间?a,b?连续,则在?a,b?至少存在一点?,使?f?x?dxab?b(?a)f(?),常1bf?x?dx 为函数f?x?在区间?a,b?的平均值称b?a?a常考题型与典型例题【题型一】闭区间上连续函数的命题方法一先利用最值定理m?f(x)?M,然后利用介值定理适用于:在闭区间[a,b]上存在?,使得关于?的关系成立方法二作辅助函数F(x),若作F(x)的过程无积分运算,则验证F(x)满足零值定理,若作F(x)的过程有积分运算,则验证F(x)满足罗尔定理适用于:在开区间(a,b)上存在?,使得关于?的关系成立辅助函数的作法:1)将欲证结论?改为x 2)移项整理使一端为0,另一端记为F3)令F(x)?F???x? ?x?,若F??x?满足零值定理,则F??x?为辅助函数。
?4)若不满足则改令F’(x)?F??x?,此时F(x)?F?x?dx,??再验证F(x)?F?x?dx 是否满足罗尔定理,若满足则得证。
?5)若不满足则令F(x)?F’’?,?x??F(x)再将F(x)在指定点展开成一阶泰勒公式,命题即可得证。
【例1】设函数f(x),g(x)在[a,b]上连续,且g(x)?0.利用闭区间上连续函数性质,证明存在一点??[ab,],使f(x)g(x)dxf?(?)g(x)dx ??bbaa【详解】方法1:因为f(x)与g(x)在?a,b?上连续,所以存在x1x2使得f(x1)?M?maxf(x),f(x2)?m?minf(x),x?[a,b]x?[a,b]满足m?f(x)?M.又g(x)?0,故根据不等式的性质mg(x)?f(x)g(x)?Mg(x) 根据定积分的不等式性质有m?bag(x)dx??f(x)g(x)dx?M?g(x)dx, aabb?所以m?baf(x)g(x)dx?bag(x)dx?M. ?连续函数的介值定理知,存在??[a,b],使f(?)?即有baf(x)g(x)dx?b ag(x)dx?baf(x)g(x)dx?f(?)?g(x)dx.ab【例2】设函数f(x)在?0,??上连续,且??,试证f(x)dx?0,f(x)cosxdx?0??00明:在(0,?)内至少存在两个不同的点?1,?2,使 f (?)?f(?)?【证明】方法1:令F(x)?又题设?x0f(t)dt,0?x??,有F(0)?0,题设有F(?)?0. ??00??0f(x)cosxdx?0,用分部积分,有0??f(x)cosxdx??cosxdF(x) ?F(x)cosx 再令G?x??x0?0??F(x)sinxdx??F(x)sinxdx 00???F?x?sinxdx,则G?0??G????0,即在区间上满足罗尔定理条件故存在??(0,?)使G?(?)?0,即F???sin??0;因为??(0,?),sin??0,所以推知存在??(0,?),使得F(?)?0. 再在区间[0,?]与[?,?]上对F(x)用罗尔定理,推知存在?1?(0,?),?2?(?,?)使F?(?1)?0,F?(?2)?0,即f(?1)?0,f(?2)?0 【练习】设f(x),g?x?在?a,b?上连续,证明:????a,b?使f????g?x?dx?g????f?x?dx ?ab?【详解】【证明】F(x)?又F(a)?aa?xag?t?dt?f?t?dt,则F(x)在?a,b?上连续,在?a,b?内可导,bbbabx?g?t?dt?f?t?dt?0,F(b)??g?t?dt?f?t?dt?0所以,F(x)在?a,b?上ab满足罗尔定理,故????a,b?使得F(?)?0,即f???’??bg?x?dx?g????f?x?dxa?【例3】设y?f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0?(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y?f(x)为曲边的梯形面积.(1) 写出f(x)的带拉格朗日余项的一阶麦克劳林公式; 3(2) 证明在[?a,a]上至少存在一点?,使af??(?)?3?f(x)dx. ?aa 【应用定理】闭区间上连续函数的介值定理:设f(x)在?a,b?上连续,f(a)?f(b),则对f(a)与f(b)之间的任何数?,必存在c(a?c?b),使得f(c)??. 【详解】(1)麦克劳林公式其实就是泰勒公式中,把函数在零点展开. f(x)的拉格朗日余项一阶麦克劳林公式为:f(x)?f(0)?f?(0)x?1f??(?)2f??(?)x2?f?(0)x?x ,22其中?位于0和x为端点的开区间内,x???a,a?. (2)方法1:将f(x)从?a到a积分?a?af(x)dx??f?(0)xdx??aa1a2??f (?)xdx. ??a2而??a?aax2af?(0)xdx?f?(0)?xd x?f?(0)??0 ?a2?aa从而有?af(x)dx?1a2??f(?)xdx. ??a2因f??(x)在??a,a?上连续,故有f??(x)在??a,a?上存在最大值M,最小值m(闭区间上的连续函数必有最大值和最小值),即m?minf??(x),M?maxf??(x),[?a,a][?a,a]易得m?f??(x)?M,x?[?a,a]. aa1a11x3aMa322f(x)dx??f??(?)xdx?M?xd x?M?, ?a?a?a22233因此??aaa1a11322??同理?f(x)dx??f(?)xdx?m?xdx?ma.?a2?a2?a33a因此m?3?f(x)dx?M. a?a连续函数介值定理知,存在????a,a?,使f??(?)?3a3?a?af(x)dx,即af??(?)?3?f(x)dx. ?a3a方法2 :观察要证的式子,做变限函数:F(x)??x?xf(t)dt,易得F(0)?0,F?(x)?f(x)?f(?x)(变限积分求导)F??(x)??f(x)?f(?x)???f?(x)?f?(?x) F???(x)??f?(x)?f?(?x)???f??(x)?f??(?x)则有F?(0)?f(0)?f(?0)?0?0?0 F??(0)?f?(0)?f?(?0)?f?(0)?f?(0)?0 将它展开成2阶带拉格朗日余项麦克劳林公式:11F(x)?F(0)?F?(0)x?F??(0)x2?F???(?)x3 23!11?0?0?F???(?)x3?(f??(?)?f??(??))x3 66其中??(0,x),x???a,a? 于f??(x)在??a,a?上连续,则连续函数介值定理,存在?????,??,使f??(?)?11(f??(?)?f??(??))(因为(f??(?)?f??(??))?f??(x),x???a,a?) 22于是有,存在????a,a?,使1111F(x)?0?0?F???(?)x3??(f??(?)?f??(??)) x3?f??(?)x36323a1a33f??(?) ????a,a? 把x?a代入F(x)有:F(a)?f??(?)a,即?f(x)dx??a33即af??(?)?33?a?af(x)dx ????a,a? 【例20】设函数f?x?在闭区间??1,1?上具有三阶连续导数,且f??1??0,f?1??1,f??0??0,证明:在开区间??1,1?内至少存在一点?,使f???????3. 【详解】解法1:麦克劳林公式得f(x)?f(0)?f?(0)x?11f??(0)x2?f???(?)x3,其中?介于0与x之间,x?[?1,1] 2!3!分别令x??1,x?1并结合已知条件得f(?1)?f(0)?11f??(0)?f???(?1)?0,?1??1?0 2611f(1)?f(0)?f??(0)?f???(?2)?1,0??2?1 26两式相减,得f???(?2)?f???(?1)?6 f???(x)的连续性,知f???(x)在区间[?1,?2]上有最大值和最小值,设它们分别为M 和m,则有m?1?f???(?2)?f???(?1)??M 2再连续函数的介值定理知,至少存在一点??[?1,?2]?(?1,1),使f???????1?f???(?2)?f???(?1)??3 2解法2:构造函数?(x),使得x?[?1,1]时??(x)有三个0点,???(x)有两个0点,从而使用罗尔定理证明?必然存在. 设具有三阶连续导数?(x)?f(x)?ax3?bx2?cx?d 1?a?????(?1)?f(?1)?a?b?c?d?02f?1?0????? ?(0)?f(0)?d?01???令?,将?f?1??1代入得?b?f(0)?2?f??0??0???(1)?f(1)?a?b?c?d?0??c?0????(0)?f?(0)?c?0?d??f(0)?代入?(x)得?(x)?f(x)?131x?(f(0)?)x2?f(0) 22罗尔定理可知,存在?1?(?1,0),?2?(0,1),使??(?1)?0,??(?2)?0 又因为??(0)?0,再罗尔定理可知,存在?1?(?1,0),?2?(0,?2),使得???(?1)?0,???(?2)?0 再罗尔定理知,存在??(?1,?2)?(?1,?2)?(?1,1),使????(?)?f???(?)?3?0 即f???(?)?3. 【题型六】微分不等式证明方法一:利用单调性程序:1)构造辅助函数F?x?2)利用单调性判定定理,判定F?x?在所讨论范围内的单调性3)求F?x?在所讨论范围的某个端点的函数值或极限值的符号,从而推出不等式。