数学分析21.7n重积分(含习题及参考答案)

合集下载

重积分考试及答案

重积分考试及答案

重积分考试及答案一、单项选择题(每题3分,共15分)1. 重积分的定义域是()。

A. 一维区间B. 二维平面区域C. 三维空间区域D. 四维空间区域答案:B2. 计算二重积分时,通常需要先确定()。

A. 积分顺序B. 积分限C. 积分核D. 积分变量答案:B3. 以下哪个函数在区域D上连续,则该函数在D上的二重积分存在()。

A. f(x, y) = x^2 + y^2B. f(x, y) = 1/(x^2 + y^2)C. f(x, y) = sin(x)cos(y)D. f(x, y) = 1/√(x^2 + y^2)答案:A4. 以下哪个区域是无限区域()。

A. D: x^2 + y^2 ≤ 1B. D: x ≥ 0, y ≥ 0, x + y ≤ 1C. D: x^2 + y^2 ≥ 1D. D: x^2 + y^2 ≤ 4, x ≥ 0, y ≥ 0答案:C5. 以下哪个选项是正确的()。

A. ∫∫D f(x, y) dσ = ∫∫D g(x, y) dσ,当且仅当f(x, y) = g(x, y)在D 上几乎处处成立B. ∫∫D f(x, y) dσ = ∫∫D g(x, y) dσ,当且仅当f(x, y) = g(x, y)在D 上处处成立C. ∫∫D f(x, y) dσ = ∫∫D g(x, y) dσ,当且仅当f(x, y) = g(x, y)在D 上恒成立D. ∫∫D f(x, y) dσ = ∫∫D g(x, y) dσ,当且仅当f(x, y) = g(x, y)在D 上存在答案:A二、填空题(每题4分,共20分)6. 若f(x, y)在D上连续,则∫∫D f(x, y) dσ = ∫[a,b] ∫[c,d] f(x, y) dy dx,其中D是由x = a, x = b, y = c, y = d围成的区域。

7. 若D是由x = 0, x = 1, y = 0, y = x^2围成的区域,则∫∫D (x^2 + y^2) dσ = ∫[0,1] ∫[0,x^2] (x^2 + y^2) dy dx。

重积分习题与答案

重积分习题与答案

第九章重积分A1、填空题1)交换下列二次积分的积分次序(1)______________________________________________ (2)______________________________________________ (3)_______________________________________________ (4)___________________________________________ (5)______________________________________________ (6)________________________________________2)积分的值等于__________________________________3)设,试利用二重积分的性质估计的值则。

4)设区域是有轴、轴与直线所围成,根据二重积分的性质,试比较积分与的大小________________________________5)设,则积分___________________________________________6)已知是由所围,按先后再的积分次序将化为累次积分,则7)设是由球面与锥面的围面,则三重积分在球面坐标系下的三次积分表达式为2、把下列积分化为极坐标形式,并计算积分值1)2)3、利用极坐标计算下列各题1),其中是由圆周及坐标轴所围成的在第一象限内的闭区域.2),其中是由圆周及坐标轴所围成的在第一象限的闭区域.3),其中是由圆周及直线所围成的在第一象限的闭区域.4、选用适当的坐标计算下列各题1),其中是直线及曲线所围成的闭区域.2),其中是顶点分别为和的梯形闭区域.3),其中是圆周所围成的闭区域.4),其中是圆环形闭区域.5、设平面薄片所占的闭区域由螺线上一段弧与直线所围成,它的面密度为,求这薄片的质量(图9-5).6、求平面,,,以及球心在原点、半径为的上半球面所围成的在第一卦限内的立体的体积(图9-6).7、设平面薄片所占的闭区域由直线,和轴所围成,它的面密度,求该薄片的质量.8、计算由四个平面,,,所围成的柱体被平面及截得的立体的体积.9、求由平面,,所围成的柱体被平面及抛物面截得的立体的体积.10、计算以面上的圆周围成的闭区域为底,而以曲面为顶的曲顶柱体的体积.11、化三重积分为三次积分,其中积分区域分别是1)由双曲抛物面及平面所围成的闭区域.2)由曲面及所围成的闭区域.12、设有一物体,占有空间闭区域,在点处的密度为,计算该物体的质量.13、计算,其中是由曲面,与平面和所围成的闭区域.14、计算,其中为球面及三个坐标面所围成的在第一卦限内的闭区域.15、算,其中是由锥面与平面所围成的闭区域.16、利用柱面坐标计算三重积分,其中是由曲面及所围成的闭区域.17、利用球面坐标计算三重积分,其中是由球面所围成的闭区域.18、选用适当的坐标计算下列三重积分1),其中为柱面及平面,,所围成的在第一卦限内的闭区域.2),其中是两个球和的公共部分.3),其中是由曲面及平面所围成的闭区域.4),其中闭区域由不等式,所确定.19、利用三重积分计算下列由曲面所围成的立体的体积1)及.2)及(含有轴的部分).20、球心在原点、半径为的球体,在其上任意一点的密度大小与这点到球心的距离成正比,求这球体的的质量.21、求球面含在圆柱面内部的那部分面积.22、求锥面被柱面所割下部分的曲面面积.23、求由抛物线及直线所围成的均匀薄片(面密度为常数)对于直线的转动惯量.24、设薄片所占的闭区域如下,求均匀薄片的质心是半椭圆形闭区域.25、设平面薄片所占的闭区域由抛物线及直线所围成,它在点处的面密度,求该薄片的质心.25、利用三重积分计算下列由曲面所围立体的质心(设密度)1),2),,26、求半径为高为的均匀圆柱体对于过中心而平行于母线的轴的转动惯量(设密度).B1、根据二重积分的性质,比较下列积分的大小1)与,其中积分区域是由圆周所围成.2)与,其中是三角形闭区域,三顶点分别为,.2、计算下列二重积分1),其中2),其中是由直线,及所围成的闭区域3),,其中3、化二重积分为而次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域1)由轴及半圆周所围成的闭区域2)环形闭区域4、求由曲面及所围成的立体的体积.5、计算,其中为平面,,,所围成的四面体.6、计算下列三重积分1),其中是两个球:和的公共部分.2),其中是由球面所围成的闭区域.3),其中是由平面上曲线绕轴旋转而成的曲面与平面所围成的闭区域.7、设球体占有闭区域,它在内部各点处的密度的大小等于该点到坐标原点的距离的平方,试求这球体的球心.8、一均匀物体(密度为常量)占有的闭区域由曲面和平面,所围成1)求物体的体积;2)求物体的质心;3)求物体关于轴的转动.C1、利用二重积分的性质,估计积分,其中是由圆周所围成.2、用二重积分计算立体的体积,其中由平面,,,和所围成.3、计算二重积分,其中是由直线,以及曲线所围成的平面区域.4、设在积分域上连续,更换二次积分的积分次序.5、计算二重积分,其中积分区域是由和确定.6、求二重积分的值,其中是由直线,及围成的平面区域.7、计算,其中由曲面及围成.8、计算,其中是由曲面与平面及所围成的闭区域.9、设有一半径为的球体,是此球表面上的一个定点,球体上任一点的密度与该点到的距离的平方成正比(比例常数),求球体的重心的位置.10、设有一高度为(为时间)的雪堆在融化过程中,其侧面满足方程(设长度单位为cm,时间单位为h),已知体积减少的速率与侧面积成正比例(比例系数),问高度为130(cm)的雪堆全部融化需多少时间?第九章重积分答案习题答案(A)1、填空题1)①②③④⑤⑥2)3)4)5)6)7)2、1)2)3、1)2)3)4、1)2)3)4)5、6、7、8、9、10、11、1)2)12、13、14、15、16、17、18、1)2)3)4)19、1)2)20、21、22、23、24、25、,26、27、(为圆柱体的质量)(B)1、 1)2)2、1)2)3)3、1),2)4、5、; 6、1)2)3); 7、8、1)2)3)(C)1、解:令,关键是求在上的最大值和最小值,在内部,,,因此在内部无驻点,最值点一定在边界上取得,作由方程组解得驻点为,,比较可得最小值,最大值为,而的面积为,由估值定理得。

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割

必在某个小区域 上无界.
当 i≠k 时,任取

由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割

时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而

=0,则由上式

则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书

为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

由于
因此
所以
,同理可证


7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固

重积分习题及解答

重积分习题及解答

重积分练习一. 填空1.⎰⎰12),(xx dy y x f dx 交换积分次序后为_________________.2.用柱面坐标系化三重积分为三次积分________________),,(=⎰⎰⎰Ωdv z y x f其中2,1,1:22===+Ωz z y x 围成. 3. (化为柱面坐标中的三次积分)__________________),,(22222211111111==⎰⎰⎰--+-------dz z y x f dydxI y x y x x x (化为柱面坐标中的三次积分) 二.选择题1. =+⎰⎰-dy y x dxx x243221( ).A. ⎰⎰302πθrdr d . B.⎰⎰232ππθrdr d C.⎰⎰3022πθdr r d . D.⎰⎰2322ππθdr r d2.若区域D 由1)1(22=+-y x 所围,则⎰⎰Ddxdy y x f ),(化成累次积分为 ( )A.⎰⎰πθθθθ0cos 20)sin ,cos (rdr r r f d . B. ⎰⎰-ππθθθθcos 20)sin ,cos (rdr r r f dC.⎰⎰20cos 20)sin ,cos (2πθθθθrdr r r f d D. ⎰⎰-22cos 20)sin ,cos (ππθθθθrdr r r f d三.计算1.. 计算⎰⎰-+=+-⋅+22)(4122222x a a xady y x a y x dx2. 计算⎰⎰-Ddxdy y x ||,其中D 是由2,0,1,0====y y x x 所围成的区域.3. 求由x e z y 222-=+与平面1,0==x x 所围立体体积.4.D 由直线x y y x ===,2,4所围成,求⎰⎰--Dxdxdy x e 22.5.计算⎰⎰-=Dd y x I σ||,其中0,0,1:22≥≥≤+y x y x D .6.计算⎰⎰⎰Ω+dV z x )(,其中22221,:y x z y x z --=+=Ω所围的空间区域.四.应用题。

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

数学分析21.2直角坐标系下二重积分的计算(含习题及参考答案)

数学分析21.2直角坐标系下二重积分的计算(含习题及参考答案)

第二十一章 重积分 2直角坐标系下二重积分的计算定理21.8:设f(x,y)在矩形区域D=[a,b]×[c,d]上可积,且对每个x ∈[a,b], 积分⎰dc dy y x f ),(存在,则累次积分⎰⎰dc ba dy y x f dx ),(也存在,且⎰⎰Dd y x f σ),(=⎰⎰dc b ady y x f dx ),(.证:令F(x)=⎰dc dy y x f ),(, 分别对区间[a,b]与[c,d]作分割: a=x 0<x 1<…<x r =b, c=y 0<y 1<…<y s =d, 按这些分点作两组直线x=x i (i=1,2,…,r-1), y=y j (j=1,2,…,s-1), 它们把矩形D 分为rs 个小矩形, 记△ij 为小矩形[x i-1,x i ]×[y j-1,y j ] (i=1,2,…,r; j=1,2,…,s); 设f(x,y)在△ij 上的上确界和下确界分别为M ij 和m ij .在区间[x i-1,x i ] 中任取一点ξi , 于是有m ij △y j ≤⎰-jj y y i dy y f 1),(ξ≤M ij △y j ,其中△y j =y j -y j-1. ∴j sj ij y m ∆∑=1≤F(ξi )=⎰dc i dy y f ),(ξ≤j sj ij y M ∆∑=1,∑∑==∆∆r i i j sj ijx y m11≤∑=∆r i i i x F 1)(ξ≤∑∑==∆∆r i i j sj ij x y M 11, 其中△x i =x i -x i-1.记△ij 的对角线长度为d ij 及T =ji ,max d ij , 由于二重积分存在,由定理21.4,当T →0时,∑∆∆ki i j ij x y m ,和∑∆∆ki i j ij x y M ,有相同的极限,且极限值等于⎰⎰Dd y x f σ),(,∴∑=→∆ri i i T x F 1)(lim ξ=⎰⎰Dd y x f σ),(. 又当T →0时,必有i ri x ∆≤≤1max →0, 由定积分定义得∑=→∆ri i i T x F 1)(limξ=⎰b adx x F )(=⎰⎰d cb ady y x f dx ),(,∴⎰⎰Dd y x f σ),(=⎰⎰dcb a dy y x f dx ),(.定理21.9:设f(x,y)在矩形区域D=[a,b]×[c,d]上可积,且对每个y ∈[c,d],积分⎰badxyxf),(存在,则累次积分⎰⎰b adcdxyxfdy),(也存在,且⎰⎰Ddyxfσ),(=⎰⎰b adcdxyxfdy),(.注:特别地,当f(x,y)在矩形区域D=[a,b]×[c,d]上连续时,有⎰⎰Ddyxfσ),(=⎰⎰d cbadyyxfdx),(=⎰⎰b adcdxyxfdy),(.例1:计算⎰⎰Ddxdyxyy)sin(, 其中D=[0,π]×[0,1].解:⎰⎰Ddxdyxyy)sin(=⎰⎰π01)sin(dxxyydy=⎰-1)]cos(1[dyyπ=1.注:对一般区域,通常可以分解为如下两类区域来进行.称平面点集D={(x,y)|y1(x)≤y≤y2(x),a≤x≤b}为x型区域(如图1)称平面点集D={(x,y)|x1(y)≤x≤x2(y),c≤y≤d}为y型区域(如图2)如图3,区域D可分解成三个区域,I, III为x型区域,II为y型区域.定理21.10:若f(x,y)在x型区域D上连续,y1(x), y2(x)在[a,b]上连续,则⎰⎰Dd y x f σ),(=⎰⎰)()(21),(x y x y ba dy y x f dx .即二重积分可化为先对y ,后对x 的累次积分.证:∵y 1(x), y 2(x)在[a,b]上连续,∴存在R=[a,b]×[c,d]⊃D(如上图1), 记定义在R 上的函数F(x,y)=⎩⎨⎧∉∈D y x ,Dy x ,y x f ),(0),(),(, 则F 在R 上可积,且⎰⎰Dd y x f σ),(=⎰⎰Rd y x F σ),(=⎰⎰dcbadyy x F dx ),(=⎰⎰)()(21),(x y x y ba dy y x F dx =⎰⎰)()(21),(x y x y ba dy y x f dx .注:同理可证f(x,y)在y 型区域D 上连续,x 1(y), x 2(y)在[c,d]上连续, 则⎰⎰Dd y x f σ),(=⎰⎰)()(21),(y x y x dc dx y x f dy .例2:设D 是直线x=0,y=1及y=x 围成的区域(如图), 试计算:I=⎰⎰-Dy d e x σ22的值.解:∵D={(x,y)|0≤x ≤y,0≤y ≤1}, ∴I=⎰⎰-Dy d ex σ22=⎰⎰-yy dx e x dy 02102=⎰-103231dy e y y =e3161-.注:若取D={(x,y)|x ≤y ≤1,0≤x ≤1},则I=⎰⎰-12102x y dy e x dx =⎰⎰-11022x y dy e dx x ,∵2y e -的原函数无法用初等函数形式表示,∴无法直接求积.例3:计算二重积分⎰⎰Dd σ, 其中D 为由直线y=2x, x=2y 及x+y=3所围的三角形区域(如图).解:(如图)D 1={(x,y)|2x ≤y ≤2x,0≤x ≤1}, D 2={(x,y)|2x ≤y ≤3-x,1≤x ≤2}, ∴⎰⎰1D d σ=⎰⎰xx dy dx 2210=⎰1023xdx =43; ⎰⎰2D d σ=⎰⎪⎭⎫ ⎝⎛-21233xdx =493-. ⎰⎰Dd σ=⎰⎰1D d σ+⎰⎰2D d σ=23.例4:求两个底面半径相同的直交圆柱所围立体的体积V. 解:设圆柱底面半径为a, 两个圆柱底面方程为 x 2+y 2=a 2与x 2+z 2=a 2.第一封限部分的立体是曲顶柱体, 以z=22x a -为曲顶,以四分之一圆域D={(x,y)|0≤y ≤22x a -,0≤x ≤a}为底. ∴V=8⎰⎰-Dd x a σ22=8⎰⎰--220220x a ady x a dx =8⎰-adx x a 022=3316a .习题1、设f(x,y)在区域D 上连续,试将二重积分⎰⎰Dd y x f σ),(化为不同顺序的累次积分:(1)D 是由不等式y ≤x, y ≥a,x ≤b(0<a<b)所确定的区域; (2)D 是由不等式x 2+y 2≤1, x+y ≥1所确定的区域; (3)D 是由不等式y ≤x, y ≥0,x 2+y 2≤1所确定的区域;(4)D={(x,y)||x|+|y|≤1}.解:如图,(1)⎰⎰Dd y x f σ),(=⎰⎰xa ba dy y x f dx ),(=⎰⎰by b a dx y x f dy ),(.(2)⎰⎰Dd y x f σ),(=⎰⎰--21110),(x xdy y x f dx =⎰⎰--2111),(y ydx y x f dy .(3)⎰⎰D d y x f σ),(=⎰⎰xdy y x f dx 0220),(+⎰⎰-210122),(x dy y x f dx =⎰⎰-21220),(y ydx y x f dy .(4)⎰⎰Dd y x f σ),(=4⎰⎰-xdy y x f dx 1010),(=4⎰⎰-ydx y x f dy 1010),(.2、在下列积分中改变累次积分的顺序: (1)⎰⎰x x dy y x f dx 220),(;(2)⎰⎰----221111),(x x dy y x f dx ;(3)⎰⎰-axx ax ady y x f dx 22202),(;(4)⎰⎰2010),(x dy y x f dx +⎰⎰-)3(3131),(x dy y x f dx.解:如图,(1)⎰⎰xx dy y x f dx 220),(=⎰⎰y y dx y x f dy 220),(+⎰⎰2242),(y dx y x f dy .(2)⎰⎰----221111),(x x dy y x f dx =⎰⎰----221101),(y y dx y x f dy +⎰⎰---yydx y x f dy 1110),(.(3)⎰⎰-axx ax a dyy x f dx 22202),(=⎰⎰--22220),(y a a ayadx y x f dy +⎰⎰-+ay a a adx y x f dy 2022),(+⎰⎰aay a adx y x f dy 2222),(.(4)⎰⎰2010),(x dy y x f dx +⎰⎰-)3(3131),(x dy y x f dx =⎰⎰-y ydx y x f dy 2310),(.3、计算下列二重积分:(1)⎰⎰Dd xy σ2,其中D 是由抛物线y 2=2px 与直线x=2p(p>0)所围成的区域;(2)⎰⎰+Dd y x σ)(22,其中D={(x,y)|0≤x ≤1, x ≤y ≤x 2};(3)⎰⎰-Dxa d 2σ(a>0),其中D 为图中阴影部分;(4)⎰⎰Dd x σ,其中D={(x,y)|x 2+y 2≤x}.(5)⎰⎰Dd xy σ||,其中D=为圆域x 2+y 2≤a 2.解:(1)方法一:⎰⎰Dd xy σ2=⎰⎰-pxpx p dy y xdx 22220=⎰2025324pdx x p p =215p .方法二:⎰⎰Dd xy σ2=⎰⎰-2222p py pp xdx dy y =⎰-⎪⎪⎭⎫⎝⎛-p p dy p y p y 242281=215p . (2)⎰⎰+Dd y x σ)(22=⎰⎰+xxdy y x dx 22210)(=⎰⎪⎪⎭⎫ ⎝⎛+10232537dx x x =105128. (3)⎰⎰-Dxa d 2σ=⎰⎰----22)(002a x a a axa dy dx =⎰----ax a a x a a 0222)(=233822a ⎪⎭⎫⎝⎛-.(4)⎰⎰Dd x σ=⎰⎰---2210x x x x dy x dx =2⎰-11dx x x =158.(5)方法一:⎰⎰Dd xy σ||=⎰⎰adr r d 032cos sin 4θθθπ=⎰204cos sin πθθθd a=24a .方法二:⎰⎰Dd xy σ||=⎰⎰-22004x a aydy xdx =⎰-adx x a 0222)(=24a.4、求由坐标平面及x=2, y=3, x+y+z=4所围的角柱体的体积. 解:如图,V=⎰⎰--Dd y x σ)4(=⎰⎰--2020)4(dx y x dy +⎰⎰---ydx y x dy 4032)4(=⎰-20)26(dy y +⎰⎥⎦⎤⎢⎣⎡+---32222)4(816dy y y y=12-4+16-20-67+319=-591.5、设f(x)在[a,b]上连续,证明不等式2)(⎥⎦⎤⎢⎣⎡⎰ba dx x f ≤(b-a)⎰b a dx x f )(2, 其中等号仅在f(x)为常量函数时成立.证:2)(⎥⎦⎤⎢⎣⎡⎰ba dx x f =⎰⎰⋅b a b a dy y f dx x f )()(=⎰⎰D dxdy y f x f )()(≤⎰⎰+Ddxdy y f x f )]()([2122=⎰⎰⋅b a b a dx x f dy )(2=(b-a)⎰b a dx x f )(2.其中D={(x,y)|a ≤x ≤b, a ≤y ≤b}.若等号成立,则对任何(x,y)∈D ,有f 2(x)+f 2(y)=2f(x)f(y),即 [f(x)-f(y)]2=0,∴f(x)=f(y),即f(x)为常数函数.6、设平面区域D 在x 轴和y 轴的投影长度分别为l x 和l y ,D 的面积为S D ,(α,β)为D 内任一点,证明:(1)⎰⎰--Dd y x σβα))((≤l x l y S D ; (2)⎰⎰--Dd y x σβα))((≤41l x 2l y 2.证:设D 在x 轴和y 轴上的投影区间分别为[a,b]和[c,d],则 l x =b-a, l y =d-c ,且|x-α|≤l x , |y-β|≤l y.(1)⎰⎰--Dd y x σβα))((≤⎰⎰--D d y x σβα||||≤l x l y ⎰⎰Dd σ≤l x l y S D .(2)⎰⎰--Dd y x σβα))((≤⎰⎰-⋅-dc ba dy y dx x ||||βα.令x l a x -=t (0≤t ≤1), 记ρ=xl l(α-a) (0≤ρ≤1). |x-α|=|x-a+a-α|=|l x t-l x ρ|=l x |t-ρ|.⎰-b adx x ||α=l x ⎰-badx t ||ρ=l x2⎰-1||dtt ρ=l x 2⎥⎦⎤⎢⎣⎡-+-⎰⎰ρρρρ1)()(dt t dt t= l x 2⎥⎦⎤⎢⎣⎡--)1(21ρρ.∵0≤ρ≤1, ∴ρ(1-ρ)≥0,∴⎰-ba dx x ||α≤21l x 2. 同理可证,⎰-dc dy y ||β≤21l y 2. ∴⎰⎰--Dd y x σβα))((≤41l x 2l y 2.7、设D=[0,1]×[0,1],f(x,y)=⎪⎩⎪⎨⎧+中非有理点为当中有理点为当D y x ,D y x ,q q yx ),(0),(11, 其中q x 表示有理数x 化成既约分数后的分母.证明:f(x,y)在D 上的二重积分存在而两个累次积分不存在.证:∀ε>0, 只有有限个点使f(x,y)>2ε, ∴存在分割T ,使得S(T)-s(T)<ε, ∴二重积分存在且等于0.当y 取无理数时,f(x,y)≡0,∴⎰10),(dx y x f =0; 而当y 取有理数时,在x 为无理数处f(x,y)=0, 在x 为有理数处f(x,y)=y x q q 11+, 故函数f 在任何区间上振幅总大于yq 1, 即函数f(x,y)在x ∈[0,1]上关于x 的积分不存在.∴不存在先x 后y 的累次积分. 同理可证先y 后x 的累次积分不存在.8、设D=[0,1]×[0,1],f(x,y)=⎩⎨⎧=中其他点时为当时且中有理点为当D y x ,q q ,D y x ,y x ),(0),(1,其中q x 表示有理数x 化成既约分数后的分母. 证明:f(x,y)在D 上的二重积分不存在而两个累次积分存在.证:在正方形的任何部分内, f 的振幅等于1,∴二重积分不存在. 对固定的y ,若y 为无理数,则f 恒为0,若y 为有理数,则 函数仅有有限个异于0的值,因此⎰10),(dx y x f =0, ∴累次积分存在且⎰⎰110),(dx y x f dy =0,同理可证累次积分⎰⎰110),(dy y x f dx =0.。

数学分析21.5三重积分(含习题及参考答案)

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。

重积分习题参考答案Word版

重积分习题参考答案Word版

重积分习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1.(1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或21220122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)101(,)xdx f x y dy -⎰或11(,)ydy f x y dx -⎰;(4)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2.(1)402(,)x dx f x y dy ⎰⎰; (2) 101(,)ydy f x y dx ⎰⎰;(3)1102(,)y dy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3.(1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4.(1)92; (2)21122e e -+.5.335. 6.(1)20(cos ,sin )ba d f r r rdr πθθθ⎰⎰; (2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰; (3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 444(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7.(1)sec csc 440002(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰;(4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰. 8.(1)434a π; 1. 9.(1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10.4332a π. 习题11-2(B)1.(1)120(,)yy dy f x y dx -⎰⎰; (2) 110(,)dy f x y dx ⎰;(3)10121101(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)02420(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2.(1)0; (2)430; (3)8)3(4)1sin1-. 3.(1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(2)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4.(1)38π; (2)52π.5.(1)2π; (2)49 (3)22π-; (4)414a ; (5)2π.6.(1) 232a π; (2)22a ; (3)23π7.(1)43π; (2)7ln 23; (3)12e -; (4)2ab π. 8.6π.习题11-3(A)1.(1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32;3.15(ln 2)28-; 4.21162π-; 5.(1)1(1)e π--; (2)712π; (3)163π; (4)289a . 6.(1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7.(1)18; (2)8π; (3)10π; (4)ln 3ln 2)3π-. 8.4k R π习题11-3(B)1.(1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;2220sin (cos sin ,sin sin ,cos )ad d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;21(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;22400sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2. 222241()3x y x y f dz --+⎰;2224103r r d f dz πθ-⎰⎰,6π3.20200Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4.(1)835; (2)2845; (3)0; (4)559480R π. 5.336π; 6.π; 7.45π.习题11-4(A)2.1)6π.3.22(2)R π-.4.320. 5.(1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6.(1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7.(1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8.(1)483a ; (2)27(0,0,)60a ; (3) 611245a . 9.649k R π.习题11-4(B). 2.216R . 3.3535(,)4854.. 5.44()32b a πρ-.6.43512a π. 7.368105ρ. 8.(0,0,54a ).9.222(3)12a h a h π+. 10.2432;327r R R π=.11.2x F G μ=;0y F =; z F Ga πμ=.12.0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A二、1.(1)()x f x -; 2.(1,1)y y --; 3.54π;4.41(1)2e --; 5.42211()4R a b π+. 三、1.2409π-; 2.314()33R π-; 3.0; 4.2503π;5.200(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6.42π-.7.212A .8.8π. 9.5144. 10.以球心O 及0P 的连线作为x 轴正方向建立直角坐标系(,0,0)4R -友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

数学分析课本-习题及答案第二十一章

数学分析课本-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

(完整版)重积分习题及答案

(完整版)重积分习题及答案

第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。

(3) 在极坐标系中,面积元素为 。

2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。

(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。

3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。

4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。

5.交换积分()⎰⎰-2120,ydx y x f dy 的积分次序。

6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。

7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。

8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。

9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。

10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。

11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。

最新定积分重积分及其应用答案

最新定积分重积分及其应用答案

定积分重积分及其应用答案定积分、重积分及其应用一、基本题1、设«Skip Record If...»2、设«Skip Record If...»3、设«Skip Record If...»4、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»;«Skip Record If...»5、«Skip Record If...»;«Skip Record If...»6、下列式子中正确的是( B )«Skip Record If...»«Skip Record If...»«Skip Record If...» «Skip Record If...»无法确定7、设«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则( B )«Skip Record If...»8、设«Skip Record If...»在«Skip Record If...»上满足,«Skip Record If...»。

令«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则( B )«Skip Record If...»9、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»10、«Skip Record If...»;«Skip Record If...»11、«Skip Record If...»«Skip Record If...»12、«Skip Record If...»13、«Skip Record If...»«Skip Record If...»14、设«Skip Record If...»,则«Skip Record If...»15、判定下列广义积分的敛散性:1)«Skip Record If...»,发散«Skip Record If...»,发散;«Skip Record If...»,收敛;«Skip Record If...»,发散2)«Skip Record If...»,发散;«Skip Record If...»,发散;«Skip Record If...»,收敛;«Skip Record If...»,发散 3)«Skip Record If...»,收敛;«Skip Record If...»,发散4)«Skip Record If...»;«Skip Record If...»16、设«Skip Record If...»,则«Skip Record If...»17、设«Skip Record If...»,则«Skip Record If...»二重积分的几何意义18、平面区域«Skip Record If...»由«Skip Record If...»所围成,«Skip Record If...»,«Skip Record If...», «Skip Record If...»,则«Skip Record If...»的大小关系是«Skip Record If...»19、交换下列积分次序:1)«Skip Record If...»2)«Skip Record If...»20、二次积分«Skip Record If...»21、设«Skip Record If...»为«Skip Record If...»,«Skip Record If...»则«Skip Record If...»二、计算题1、«Skip Record If...»;«Skip Record If...»2、«Skip Record If...»;«Skip Record If...»;«Skip Record If...»3、«Skip Record If...»;«Skip Record If...»4、«Skip Record If...»;«Skip Record If...»; «Skip Record If...»;«Skip Record If...»5、«Skip Record If...»;«Skip Record If...»; «Skip Record If...»6、设«Skip Record If...»,求«Skip Record If...»7、设«Skip Record If...»,求«Skip Record If...»8、«Skip Record If...»;«Skip Record If...»9、设«Skip Record If...»在«Skip Record If...»上连续可导,«Skip Record If...»,计算«Skip Record If...»10、已知«Skip Record If...»,求«Skip Record If...»。

数学分析课本(华师大三版)-习题及答案第二十一章

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

数学分析第四版华东师大版21章_重积分

数学分析第四版华东师大版21章_重积分

设d max B(x),c min A(x).
x[ a ,b ]
x[ a ,b ]
D [a,b][c, d ] R.
构造一个定义在矩形区域
[a,b][c, d ] R上的二元函数
{f (x, y),(x, y) D,
F (x, y) 0, (x, y) R \ D.
证明
F (x, y)在矩形区域[a,b][c, d ] R上可积,且
a
I
(
x)dx也存
在,
并且
b dx d
a
c
f
(x,
y)dy
D
f
(x, y)d .
证明
对闭区间[a, b]作分割 a x0 x1 xm b, 对闭区间[c, d ]作分割 c y0 y1 yl d , 由此构成矩形区域D [a,b][c, d ]上的一个分割T , 它将矩形D分解为ml个小矩形. 记ik 为小矩形[xi1, xi ][ yk1, yk ], i 1,2, , m; k 1,2, ,l. xi xi xi1, yk yk yk1, ik的面积为| ik | xi yk ,|| T || maxi,k{d (ik )}
i1 k 1
i 1
i1 k 1
f (x, y)在D上的二重积分存在,
故 lim ||T ||0
i,k
mik • | ik
| lim ||T ||0
i,k
M ik • |
ik
|
f (x, y)dxdy.
D
m
lim
||T ||0
i 1
I (i )xi
f (x, y)dxdy.
D
b
bd
a I (x)dx a dxc f (x, y)dy D f (x, y)dxdy.

数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)

数学分析课本(华师大三版)-习题及答案第二十一章(20200511214824)

第十一章重积分§ 1二重积分的概念1•把重积分. .xydxdy作为积分和的极限,计算这个积分值,其中D=l0,1】0,1】,并用直线D「i j网x= ,y= (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为n n其界点•2•证明:若函数f在矩形式域上D可积,则f在D上有界•3•证明定理(20.3):若f在矩形区域D上连续,则f在D上可积•4•设D为矩形区域,试证明二重积分性质2、4和7.性质2若f、g都在D上可积,则f+g在D上也可积,且° f g = f °g •性质4若f、g在D上可积,且f _ g ,则岂D g ,性质7(中值定理)若f为闭域D上连续函数,则存在, D,使得D f =f , D5. 设D o、D1和D2均为矩形区域,且D o = D1 D 2, intD j int D j = •一,试证二重积分性质 3.性质3(区域可加性)若D o =D1 D2且int D1int D j —一,则f在D o上可积的充要条件是f在D2上都可积,且6. 设f在可求面积的区域D上连续,证明:(1) 若在D 上f x,y - 0,f x,y - 0则D f 0 ;(2) 若在D内任一子区域D D上都有D f 二0,则在D 上f x,y . = 0。

7・证明:若f在可求面积的有界闭域D上连续,,g在D上可积且不变号,则存在一点, D,使得f x,yg x,y dxdy=f , gx,y dxdy.D D8.应用中值定理估计积分r r dxdy2 2-凶砒o1OO cos x cos y的值§ 2二重积分的计算1.计算下列二重积分:⑴y -2x dxdy,其中D= 3,5】1,2】;D⑵xy2dxdy,其中(i )D= 0,2〕0,3 1( ii )D= 0,3】0,2】;D2.设f(x,y)= f l x f2 y为定义在D= a i, bj ^2, bj上的函数若f l在la i,b」上可积,f2在a2,b21上可积,则f在D上可积,且3. 设f在区域D上连续试将二重积分 f x,y dxdy化为不同顺序的累次积分D(1)D由不等式y-x,y-a,x-b 0-a-b所确的区域⑶!! cosx y dxdy,其中D=D⑷..Dx1 xydxdy,其中D= 0,1 0,11.2 2 2⑵D 由不等式x y _a 与x y <a (a>0)所确定的区域(3)D=如,y )x + y4. 在下列积分中改变累次积分的顺序5. 计算下列二重积分2(1) i ixy dxdy ,其中D 由抛物线y=2px 与直线D⑵ 11 ix 2 y 2 dxdy ,其中 D= :x,y 0 _ x _1, . x 乞 y 乞 2 一 x [D卄 dxdy(3) .. ------------- (a>0),其中D 为图(20— 7)中的阴影部分;D2a -x⑷ I l -xdxdy ,其中 D='x,y x 2 y 2 乞 x jD(5) Il xydxdy ,其中为圆域 x 2 ya 2.D6.写出积分11 f x,y dxdy 在极坐标变换后不同顺序的累次积分d2 2(1)D 由不等式x y 乞1,y^x ,y-0所确定的区域x(1) 0 dx x f (x,y dy ;11 ^x 2⑵ j d ^_1^2fx,y dy ;⑶ 0dy 0 f x,y dy + dxX 专(p >0)所围的区域;3dy .⑵D由不等式a2 _x2• y2 _b2所确定的区域(3)D= :x,y x2y2zy,x _0「7•用极坐标计算二重积分:⑴Il si n x2y2dxdy,其中D= ' x, y 二2乞x2y2<4~2';D(2) x y dxdy,其中D^ x,y x2y2_x y』;曽F rD(3) II「X2• y2dxdy,其中D为圆域x2R2.D8•在下列符号分中引入新变量后,试将它化为累次积分:2 2丄(1) 0 dx f (x, y )dy ,其中u=x+y,v=x-y;(2) i if x,y dxdy ,其中D=,x,y . x y 乞.a , x _ 0 , y _ 0』,若x= U cos4 v ,D4y 二U sin v .(3) i if x,y dxdy,其中D=,x,y x y — a ,x — 0, y — Of,若x+y=u,y=uv.9•求由下列曲面所围立体V的体积:(1) v由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;2 2 | 一 ,(2) v由z= x * y 和z=x+y围的立体;2 2 2 22 x v x v(3) v由曲面Z 和2Z= 所围的立体•4 9 4 911. 试作适当变换,计算下列积分:(1) 11 [x y sin x - y dxdy ,D= :x.y 0 _ x y _ 二0 _ x - y _ T;Dy(2)I ie x y dxdy ,D= x,y x y 岂1, x _ 0,y _ 0D12. 设f:[a,b] T R为连续函数,应用二重积分性质证明-b I2j b|[f(xdx I 兰(b—a)[f (xdx,其中等号仅在f为常量函数时成立。

高中数学(人教版)n重积分课件

高中数学(人教版)n重积分课件

V1 中取
1dx1dy1dz1 , 在 V2 中取质量微元
2dx2dy2dz2 ,
由万有引力定律知道,
V1 的微元对 的微元的引力 V2
在 x 轴上的投影为
§7 n 重积分
物理背景
定义
计算
dFx
其中
1 2 ( x1 x2 )dx1dy1dz1dx2dy2dz2
r
3
,
r ( x1 x2 )2 ( y1 y2 )2 ( z1 z2 )2 .于是 V1 与
这是一个递推公式.
由于当 n=1 时,
1 1,
因此
1 n . n!
于是最后得到
hn Tn . n!
§7 n 重积分
物理背景
定义
计算
例3 求 n 维球体

Vn x x x R n Vn dx1 dxn .
2 1 2 2 2 n
2 2 x1 xn R2
V
n
V
§7 n 重积分
物理背景
定义
计算
例1 求
n 5 5 I ( x1 xn )dx1 dxn , 其中 V
V
为 n 维立方体: 解 利用对称性,有
[0,1] [0,1].
n n n 5 I xi5dx1 dxn n xn dx1 dxn . V i 1
则有
I dx1 dx2 f (x1 , , xn )dxn .
a1 a2 an
b1
b2
bn
当 V 由一组不等式
a1 x1 b1 , a2 ( x1 ) x2 b2 ( x1 ), , an ( x1 ,, xn1 ) xn bn ( x1 ,, xn1 )

数学分析21重积分总练习题

数学分析21重积分总练习题

第二十一章 重积分总练习题1、求下列函数在所指定区域D 内的平均值: (1)f(x,y)=sin 2xcos 2y, D=[0,π]×[0,π];(2)f(x,y,z)=x 2+y 2+z 2, D={(x,y,z)|x 2+y 2+z 2≤x+y+z}. 解:(1)∵D 的面积为:π2, ∴平均值为:⎰⎰πππ02022cos sin 1ydy dx x =41. (2)由x 2+y 2+z 2=x+y+z 得(x-21)2+(y-21)2+(z-21)2=43, ∴V D =34π323⎪⎪⎭⎫ ⎝⎛=23π. 令x=21+rsin φcos θ, y=21+rsin φsin θ, z=21+rcos φ, 则平均值为:⎰⎰⎰++Ddxdydz z y x )(32222π=⎰⎰⎰⎥⎦⎤⎢⎣⎡++++ππϕϕθϕθϕϕθπ02302220sin )cos sin sin cos (sin 4332dr r r r d d =⎰⎰⎰⎥⎦⎤⎢⎣⎡++++ππϕθϕθϕϕϕθπ023043220)cos sin sin cos (sin 43sin 32dr r r r d d =⎰⎰⎥⎦⎤⎢⎣⎡+++ππϕϕϕθθϕϕθπ0220)cos sin )sin (cos sin 649sin 203332d d =⎰⎥⎦⎤⎢⎣⎡++πθθθππ20)sin (cos 1289103332d =53332ππ⋅=56.2、计算下列积分:(1)⎰⎰≤≤≤≤+2020][y x d y x σ;(2)⎰⎰≤++-42222)2sgn(y x d y x σ. 解:(1)如图,被积函数等价于[x+y]= ⎪⎪⎩⎪⎪⎨⎧∈∈∈∈4321),(3),(2),(1),(0D y x ,D y x ,D y x ,D y x ,,⎰⎰≤≤≤≤+2020][y x d y x σ=⎰⎰10D d σ+⎰⎰21D d σ+⎰⎰32D d σ+⎰⎰43D d σ=23+3+23=6. (2)如图被积函数为sgn(x 2-y 2+2)=⎩⎨⎧∈-∈321),(1),(1D D y x ,D y x , ,⎰⎰≤++-42222)2sgn(y x d y xσ=⎰⎰1D dxdy -⎰⎰2D dxdy -⎰⎰3D dxdy . 其中⎰⎰2D dxdy =⎰⎰-+-224211x x dy dx =⎰-+--1122)24(dx x x =32π-2ln 231+=⎰⎰3D dxdy . 又⎰⎰3D dxdy =4π-⎰⎰2D dxdy -⎰⎰3D dxdy ,∴⎰⎰≤++-42222)2sgn(y x d y x σ=4π-4 ⎝⎛32π-2ln ⎪⎪⎭⎫+231=34π+4ln )32(+.3、应用格林公式计算曲线积分:⎰-L ydx x dy xy 22, 其中 L 为上半圆周x 2+y 2=a 2从(a,0)到(-a,0)的一段. 解:由y ∂∂(-x 2y)=-x 2, x∂∂xy 2=y 2, 得 ⎰-Lydx x dy xy22=⎰⎰+Dd x y σ)(22=⎰⎰adr r d 030πθ=44a π.4、求⎰⎰≤+→222),(1lim2ρρσπρy x d y x f , 其中f(x,y)为连续函数.解:由中值定理知,存在(ξ,η), 使得⎰⎰≤+222),(ρσy x d y x f =f(ξ,η)πρ2, 其中(ξ,η)∈D={(x,y)|x 2+y 2≤ρ2}, ∴⎰⎰≤+→222),(1lim 2ρρσπρy x d y x f =22),(lim πρπρηξρf →=),(lim 0ηξρf →. 又f(x,y)为连续函数,∴⎰⎰≤+→222),(1lim2ρρσπρy x d y x f=f(0,0).5、求F ’(t),设(1)F(t)=⎰⎰≤≤≤≤ty t x ytxd e 1.01.02σ,(t>0);(2)F(t)=⎰⎰⎰≤++++2222)(222t z y x dV z y xf ,其中f(u)为可微函数;(3)F(t)=⎰⎰⎰≤≤≤≤≤≤tz t y t x dV xyz f 000)(,其中f(u)为可微函数.解:(1)令x=tu, y=tv, 则|J|=t 2, F(t)=t 2⎰⎰112dv e du v u.∴F ’(t)=2t ⎰⎰10102dv e du v u=t2F(t).(2)令x=rsin φcos θ, y=rsin φsin θ, z=rcos φ, 则F(t)=r d r f r d d t ⎰⎰⎰022020)(sin ϕϕθππ=4πr d r f r t⎰022)(, ∴F ’(t)=4πt 2f(t 2).(3)令x=tu, y=tv, z=tw, 则|J|=t 3,F(t)=⎰⎰⎰10331010)(dw uvw t f t dv du =⎰⎰⎰10310103)(dw uvw t f dv du t , ∴F ’(t)=⎰⎰⎰10310102)(3dw uvw t f dv du t +⎰⎰⎰'10310105)(3dw uvw t f uvw dv du t =)(3t F t+⎰⎰⎰≤≤≤≤≤≤'t z t y tx dV xyz f xyz t 000)(3.6、设f(t)=dx e t x ⎰-221, 求dt t tf ⎰10)(. 解:令dF(t)= 2x e-dx, 则f(t)=dx e t x ⎰-221=F(t 2)-F(1), f ’(t)=2tF ’(t 2)=2t 4t e -.dt t tf ⎰1)(=210)(21dt t f ⎰=21t 2f(t)|10-)(21102t df t ⎰=21f(1) -dt e t t ⎰-1034=-410441dt e t ⎰-=10441te -=41(e -1-1).7、证明:⎰⎰⎰Vdxdydz z y x f ),,(=abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(, 其中V :222222cz b y a x ++≤1;Ω:x 2+y 2+z 2≤1.证法一:若令x=arsin φcos θ, y=brsin φsin θ, z=crcos φ. 则⎰⎰⎰VdV z y x f ),,(=r d cr br ar f abcr d d ⎰⎰⎰12020)cos ,sin sin ,cos sin (sin ϕθϕθϕϕϕθππ;若令x=rsin φcos θ, y=rsin φsin θ, r=rcos φ. 则⎰⎰⎰ΩΩd cz by ax f ),,(=r d cr br ar f r d d ⎰⎰⎰12020)cos ,sin sin ,cos sin (sin ϕθϕθϕϕϕθππ;∴⎰⎰⎰Vdxdydz z y x f ),,(=abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(.证法二:令x=au, y=bv, z=cw, 则|J|=abc,⎰⎰⎰Vdxdydz z y x f ),,(= abc ⎰⎰⎰≤++1222),,(w v u dudvdw cw bv au f = abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(.8、试写出单位立方体为积分区域时,柱面坐标系和球面坐标系下的三重积分的上下限.解:在柱面坐标系下,用z=c 的平面截立方体,截口为正方形,∴单位立方体可表示为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤40cos 1010πθθr z 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤24sin 1010πθπθr z , ⎰⎰⎰11010),,(dzz y x f dy dx=⎰⎰⎰θπθθθcos 14010),sin ,cos (dr z r r rf d dz +⎰⎰⎰θππθθθsin 10241),sin ,cos (dr z r r rf d dz .在球面坐标系下,用θ=c 的平面截立方体,截口为长方形,∴单位立方体可表示为⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤ϕθϕπθcos 10cos tan 040r arcc 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤θϕπϕθπθcos sin 102cos tan 40r arcc 和⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤ϕθϕπθπcos 10sin tan 024r arcc 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤θϕπϕθπθπsin sin 102sin tan 24r arcc , ⎰⎰⎰1101),,(dzz y x f dy dx=⎰⎰⎰ϕπθϕθcos 140cos tan 0),,(dr w v u kf d d arcc +⎰⎰⎰θϕππθϕθcos sin 10402cos tan ),,(drw v u kf d d arcc+⎰⎰⎰ϕππθϕθcos 1024cos tan 0),,(dr w v u kf d d arcc +⎰⎰⎰θϕπππθϕθsin sin 10242cos tan ),,(dr w v u kf d d arcc ,其中k=r 2sin φ, u=rsin φcos θ, v=rsin φsin θ, w=rcos φ.9、证明:若函数f(x)和g(x)在[a,b]上可积, 则2)()(⎥⎦⎤⎢⎣⎡⎰b a dx x g x f ≤⎰⎰⋅b a b a dx x g dx x f )()(22.证:构造函数φ(t)=t2⎰badx x f )(2+2t ⎰b a dx x g x f )()(+⎰badxx g )(2=[⎰ba dx x f )(t 22+2tf(x)g(x)+]dx x g )(2=[]⎰+ba dx x g x f 2)()(t ≥0.∴函数φ(t)的图象与x 轴至多有一个交点,即△=2)()(2⎪⎭⎫ ⎝⎛⎰b a dx x g x f -4⎰⎰⋅ba b a dx x g dx x f )()(22≤0.∴2)()(⎥⎦⎤⎢⎣⎡⎰ba dx x g x f ≤⎰⎰⋅b a b a dx x g dx x f )()(22.注:当且仅当f(x)与g(x)线性相关时等号成立.10、设f(x,y)在[0,π]×[0,π]上连续,且恒取正值,试求:⎰⎰≤≤≤≤∞→ππσy x nn d y x f x00),(sin lim.解:∵f(x,y)在[0,π]×[0,π]上连续,∴存在最大值M 和最小值m ,即 0<m ≤f(x,y)≤M, (x,y)∈[0,π]×[0,π]. 从而⎰πdy m n≤⎰π),(dy y x f n≤⎰πdy M n→π (n →∞).∴⎰⎰≤≤≤≤∞→ππσy x n n d y x f x 00),(sin lim =⎰⎰∞→ππ00),(sin lim dy y x f xdx nn =2π.11、求由椭圆(a 1x+b 1y+c 1)2+(a 2x+b 2y+c 2)2=1所界面积, a 1b 2-a 2b 1≠0. 解1:令x=12212112)sin ()cos (b a b a c r b c r b ----θθ,y=12211221)cos ()sin (b a b a c r a c r a ----θθ,则J=122121122121122112122112sin cos cos sin cos sin sin cos b a b a r a r a b a b a a a b a b a r b r b b a b a b b -+-------θθθθθθθθ=1221b a b a r -.∴⎰⎰Dd σ=⎰⎰-⋅1122120dr b a b a rd πθ=1221b a b a -π. 解2:令u= a 1x+b 1y+c 1, v=a 2x+b 2y+c 2, 则),(),(v u y x ∂∂=),(),(/1y x v u ∂∂=12211b a b a -. ∴S=⎰⎰Dd σ=⎰⎰≤+-1122122v u b a b a dudv=1221b a b a -π.12、设△=333222111c b a c b a c b a ≠0, 求由平面a 1x+b 1y+c 1z=±h 1, a 2x+b 2y+c 2z=±h 2, a 3x+b 3y+c 3z=±h 3,所界平行六面体的体积.解:令u=a 1x+b 1y+c 1z, v=a 2x+b 2y+c 2z, w=a 3x+b 3y+c 3z, 则J=∆1. ∴V=⎰⎰⎰Ωdxdydz =⎰⎰⎰Ω∆dudvdw ||1=⎰⎰⎰---∆332211||1h h h h h h dw dv du =||8∆h 1h 2h 3.13、设有一质量分布不均匀的半圆弧x=rcos θ, y=rsin θ (0≤θ≤π), 其线密度为ρ=a θ(a 为常数), 求它对原点(0,0)处质量为m 的质点的引力. 解:r=(x,y), dF=k r r r ds m ⋅2ρ=km ⎪⎭⎫ ⎝⎛33,r y r x ρρds, (k 为引力常数) ∴dF x =3r x km ρds, dF y =3rykm ρds. F x =ds r x km L ⎰3ρ=θθθπd r ra km ⎰022cos =r amk 2-; F y =ds ry km L ⎰3ρ=θθθπd r a km ⎰0sin =r amkπ; ∴F=(F x ,F y )=⎪⎭⎫ ⎝⎛-r amk r amk π,2, 且|F|=24π+r amk .14、求螺旋线x=acost, y=asint, z=bt (0≤t ≤2π)对z 轴的转动惯量,设曲线的密度为1.解:ds=)()()(222t z t y t x '+'+'dt=22b a +dt. J z =ds y x L ⎰+)(22=dt b a a 22202+⎰π=2πa 222b a +.15、求摆线x=a(t-sint), y=a(1-cost) (0≤t ≤π)的质心,质量分布均匀. 解:由ds=)()(22t y t x '+'dt=t a t a 2222sin )cos 1(+-dt=2sin2ta dt ,得 ⎰L ds =2a dt t ⎰π02sin =4a;⎰L xds =2a 2dt t t t ⎰-π02sin )sin (=316a 2;∴⎰⎰=L L ds xds x /=34a .又⎰L yds =2a2dt t t ⎰-π2sin )cos 1(=316a 2;∴⎰⎰=L L ds yds y /=34a. ∴摆线质心的为⎪⎭⎫⎝⎛34,34a a .16、设u(x,y), v(x,y)是具有二阶连续偏导数的函数,证明:(1)⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v σ2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D d y v y u x v x u σ+ds n uv L ∂∂⎰; (2)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v y v x v u σ22222222=ds n u v n v u L ⎰⎪⎭⎫ ⎝⎛∂∂-∂∂, 其中D 为光滑曲线L 所围的平面区域,而n u ∂∂=),cos(∧∂∂x n x u +),sin(∧∂∂x n y u , n v ∂∂=),cos(∧∂∂x n xv+),sin(∧∂∂x n y v是u(x,y), v(x,y)沿曲线L 的外法线n 的方向导数. 证:在格林公式中,以P 代替Q ,-Q 代替P 得⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂D dxdy y Q x P =⎰-L Qdx Pdy =⎰∧∧+L ds x n Q x n P )],sin(),cos([. a 式(1)令P=vxu∂∂, Q=v y u ∂∂, 则由a 式有⎰⎰⎥⎦⎤⎢⎣⎡∂∂∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y v y u x v x u y u x u v 2222=⎰∧∧∂∂+∂∂L ds x n y uv x n x u v )],sin(),cos([,即⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y u x u v 2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D dxdy y v y u x v x u +⎰∂∂L ds n u v . b 式 (2)令P=uxu∂∂, Q=u y u ∂∂, 则由a 式有⎰⎰⎥⎦⎤⎢⎣⎡∂∂∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y v y u x v x u y u x u u 2222=⎰∧∧∂∂+∂∂L ds x n y uu x n x u u )],sin(),cos([,即⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y u x u u 2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D dxdy y v y u x v x u +⎰∂∂L ds n u u . c 式由c 式-b 式得:⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v y v x v u σ22222222=ds n u v n vu L ⎰⎪⎭⎫ ⎝⎛∂∂-∂∂.17、求指数λ, 使得曲线积分k=dy r yx dx r y x y x y x λλ22),(),(0-⎰与路线无关(r 2=x 2+y 2), 并求k.解:设P=λr yx , Q=λr y x 22-, 则y P ∂∂=])([2222x y x y x r λλ++--, x Q ∂∂=-])(2[232222λλy x y x y x r ++-,由y P ∂∂=x Q ∂∂得 x y x yx λ++-)(222=λ23222)(2y x y x y x ++, 得λ=-1. 这时k 与路径无关,且P=22yx y x +, Q=2222y x y x +-. d(y y x 22+)=22yx y x+dx-2222y x y x +dy. ∴k=dy y x y xdx yx y xy x y x 2222),(),(220+-+⎰=()),(,2200y x y x y yx +=yy x 22++C.。

陈纪修《数学分析》(第2版)(下册)课后习题-重积分(圣才出品)

陈纪修《数学分析》(第2版)(下册)课后习题-重积分(圣才出品)

第13章重积分§1 有界区域上的重积分1.设一平面薄板(不计其厚度),它在xy平面上的表示是由光滑的简单闭曲线围成的闭区域D.如果该薄板分布有面密度为的电荷,且在D上连续,试用二重积分表示该薄板上的全部电荷.解:设电荷总量为Q,则2.设函数在矩形上有界,而且除了曲线段外,在D上其他点连续.证明f在D上可积.证明:设,将D用平行于两坐标轴的直线分成n个小区域,记,不妨设,将曲线段包含在内,于是在有界闭区域上连续,因此在上可积,即,当时,而当时,取,当时,就有所以f在D上可积.3.按定义计算二重积分,其中解:将D分成n2个小正方形取,则4.设一元函数f(x)在[a,b]上可积,.定义二元函数,证明F(x,y)在D上可积.证明:将[a,b]、[c,d]分别作划分:和则D分成了nm个小矩形记是f(x)在小区间上的振幅,是F在上的振幅,则于是由f(x)在[a,b]上可积,可知,所以即F(x,y)在D上可积.5.设D是R2上的零边界闭区域,二元函数在D上可积.证明和也在D上可积.证明:首先有设,将D划分成n个小区域,利用不等式,可得于是所以由f,g在D上可积,可知即在D上可积.类似地可得从而在D上也可积.§2 重积分的性质与计算1.证明重积分的性质8.证明:不妨设,M、m分别是f(x)在区域Ω上的上确界、下确界,由、性质1和性质3,可得当,积分中值定理显然成立.当,有所以存在,使得即如果f在有界闭区域Ω上连续,由介值定理,存在,使得所以2.根据二重积分的性质,比较下列积分的大小:(1),其中D为x轴、y轴与直线x+y=1所围的区域;(2),其中D为闭矩形[3,5]×[0,1].解:(1)因为在D上成立0<x+y<1,所以,于是(2)因为在D上成立x+y≥3,所以,于是3.用重积分的性质估计下列重积分的值:(1),其中D为闭矩形[0,1]×[0,1];(2),其中D为区域(3),其中Ω为单位球解:(1)因为在D上成立,所以(2)因为在D上成立,所以(3)因为在Ω上成立,所以4.计算下列重积分:(1),其中D为闭矩形[0,1]×[0,1];(2),其中D为闭矩形[a,b]×[c,d];(3),其中Ω为长方体[1,2]×[1,2]×[1,2].解:5.在下列积分中改变累次积分的次序:(改成先y方向,再x方向和z方向的次序积分);(改成先x方向,再y方向和z方向的次序积分).解:6.计算下列重积分:(1),其中D为抛物线和直线所围的区域;(2),其中D为圆心在(a,a),半径为a并且与坐标轴相切的圆周上较短的一段弧和坐标轴所围的区域;(3),其中D为区域(4),其中D为直线和0)所围的区域;(5),其中D为摆线的一拱与x轴所围的区域;(6),其中D为直线和x=1所围的区域;。

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常⼆重积分(含习题及参考答案)第⼆⼗⼀章重积分 8 反常⼆重积分⼀、⽆界区域上的⼆重积分:定义1:设f(x,y)为定义在⽆界区域D 上的⼆元函数. 若对于平⾯上任⼀包围原点的光滑封闭曲线γ, f(x,y)在曲线γ所围的有界区域E γ与D 的交集 D ∩E γ=D γ上恒可积. 令d γ=min{22y x +|(x,y)∈γ}. 若极限σγγd y x f Dd ??∞→),(lim存在且有限,且与γ的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛,并记σd y x f D),(=σγγd y x f Dd ??∞→),(lim,否则称f(x,y)在D 上的反常⼆重积分发散,或简称σd y x f D),(发散.定理21.17:设在⽆界区域D 上f(x,y)≥0, γ1, γ2,…, γn ,…为⼀列包围原点的光滑封闭曲线序列,满⾜:(1)d n =inf{22y x +|(x,y)∈γn }→+∞, (n →∞);(2)I=σd y x f nD n),(sup <+∞, 其中D n 为γn 所围的有界区域E n 与D 的交集,则反常⼆重积分σd y x f D),(收敛,且有σd y x f D),(=I.证:设γ’为任何包围原点的光滑封闭曲线,这曲线所围的区域记为E ’, 并记D ’=E ’∩D. ∵∞→n lim d n =+∞, ∴存在n, 使得D ’?D n ?D. 由f(x,y)≥0,有σd y x f D ??'),(≤σd y x f n),(sup , ?ε>0, ?n 0, 使得σd y x f nD ??0),(>I-ε. 对充分⼤的d ’, 区域D ’⼜可包含D 0n, 使得σd y x f D ??'),(>I-ε. 由I-ε<σd y x f D ??'),(≤I, 知f(x,y)在D 上的反常⼆重积分存在,且σd y x f D),(=I.定理21.18:若在⽆界区域D 上f(x,y)≥0, 则反常⼆重积分σd y x f D),(收敛的充要条件是:在D 的任何有界⼦区域上f(x,y)可积,且积分值有上界.例1:证明反常⼆重积分σd eDy x ??+-)(22收敛,其中D 为第⼀象限部分,即D=[0,+∞)×[0,+∞).证:设D R 是以原点为圆⼼, 半径为R 的圆与D 的交集,即该圆第⼀象限部分. ∵) (22y x e +->0,∴⼆重积分σd e Dy x ??+-)(22关于R 递增.⼜σd eRD y x ??+-)(22=dr r e d Rr ??-0202πθ=)1(4D y x R ??+-+∞→)(22lim =)1(4lim 2R R e -+∞→-π=4π. 即对D 的任何有界⼦区域D ’, 总存在⾜够⼤的R ,使得D ’?D R , ∴σd e D y x ??' +-)(22≤σd e RD y x ??+-)(22≤4π.由定理21.18知,反常⼆重积分σd e Dy x ??+-)(22收敛,⼜由定理21.17有,σd e Dy x ??+-)(22=4π.注:由例1结论,可推出反常积分?+∞-02dx e x 的值(常⽤于概率论). 考察S a =[0,a]×[0,a]上的积分σd eaS y x ??+-)(22=??--ay ax dy edx e22x dx e .由D a ?S a ?aD2(如图)知σd eaD y x ??+-)(22≤σd eaS y x ??+-)(22=202??? ???-ax dx e ≤σd e aDy x ??+-222)(. 令a →+∞, 则得202lim ??? ???-+∞→a x a dx e =σd e D y x ??+-)(22=4π, ∴?+∞-02dx e x =2π.例2:证明:若p>0, q>0, 则B(p,q)=)()()(q p q p +ΓΓΓ.证:令x=u 2, 则dx=2udu, Г(p)=?+∞--01dx e x x p =2?+∞--0122du e u u p , 从⽽ Г(p)Г(q)=4?+∞--+∞--?0ydx exy q x p =4??----+∞→?Ry q Rx p R dy e y dx ex1201222lim.令D R =[0,R]×[0,R], 由⼆重积分化为累次积分计算公式有σd eyxy x D q p R)(121222+---??=??----?Ry q Rx p dy e y dx ex1201222.∴Г(p)Г(q)= 4σd e y x y x D q p R R)(121222lim +---+∞2+---??, 其中D 为平⾯上第⼀象限部分. 记D r ={(x,y)|x 2+y 2≤r 2, x ≥0, y ≥0}. 于是有 Г(p)Г(q)=4σd e y x y x Dq p )(121222+---??=4σd e y x y x D q p r r)(121222lim +---+∞→??,应⽤极坐标变换,有Г(p)Г(q)=4??----++∞→rr q p q p r rdr e r d 012122)(2202sin cos lim θθθπ=4??--+--+∞→rr q p q p r dr e r d 01)(22012122sin cos lim πθθθ=2?+Γ?--201212)(sin cos πθθθq p d q p =B(p,q)Г(p+q). ∴B(p,q)=)()()(q p q p +ΓΓΓ.定理21.19:函数f(x,y)在⽆界区域D 上的反常⼆重积分收敛的充要条件是|f(x,y)|在D 上的反常⼆重积分收敛.证:[只证充分性]设σd y x f D|),(|收敛,其值为A. 作辅助函数f +(x,y)=2),(|),(|y x f y x f +, f -(x,y)=2),(|),(|y x f y x f -, 则0≤f +(x,y)≤|f(x,y)|, 0≤f -(x,y)≤|f(x,y)|.∴在D 的任何有界⼦区域σ上, 恒有σd y x f D+),(≤σd y x f D|),(|=A,σd y x f D即f +(x,y)与f -(x,y)在D 上的反常⼆重积分收敛. ⼜f(x,y)=f +(x,y)-f -(x,y), ∴f(x,y)在D 上的反常⼆重积分也收敛.定理21.20:(柯西判别法)设f(x,y)在⽆界区域D 的任何有界⼦区域上⼆重积分存在, r 为D 内的点(x,y)到原点的距离r=22y x +. (1)若当r ⾜够⼤时, |f(x,y)|≤p rc, 其中常数c>0, 则当p>2时,反常⼆重积分σd y x f D),(收敛;(2)若f(x,y)在D 内满⾜|f(x,y)|≥p rc,其中D 是含有顶点为原点的⽆限扇形区域, 则当p ≤2时,反常⼆重积分σd y x f D),(发散.⼆、⽆界函数的⼆重积分定义2:设P 为有界区域D 的⼀个聚点,f(x,y)在D 上除点P 外皆有定义,且在P 的任何空⼼邻域内⽆界,△为D 中任何含有P 的⼩区域,f(x,y)在D-△上可积. ⼜设d 表⽰△的直径,即 d=sup{221221)()(y y x x -+-|(x 1,y 1),(x 2,y 2)∈△}. 若极限-→D d d y x f σ),(lim存在且有限,且与△的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛. 记作-D d y x f σ),(=-→D d d y x f σ),(lim 0,否则称f(x,y)在D 上的反常⼆重积分??Dd y x f σ),(发散.定理21.21:(柯西判别法)设f(x,y)在有界区域D 上除点P(x 0,y 0)外处处有定义, 点P(x 0,y 0)为瑕点,则: (1)若在点P 附近有|f(x,y)|≤a rc, 其中c 为常数, r=2020)()(y y x x -+-, 则当a<2时,反常⼆重积分σd y x f D),(收敛; (2)若在点P 附近有|f(x,y)|≥a rc, 且D 含有以点P 为顶点的⾓形区域, 则当a ≥2时,反常⼆重积分σd y x f D),(收敛.习题1、试讨论下列⽆界区域上⼆重积分的收敛性: (1)??≥++1σ?d y x y x y p≤≤++1022)1(),(, (0解:(1)令x=rcos θ, y=rsin θ, 则≥++12222)(y x m y x d σ=??+∞12201rdr r d m πθ=??+-+∞→d m d dr r d 11220lim πθ=-2π?+-+∞→d m d dr r 11 2lim . ∵?+-+∞→dm d dr r 112lim 当2m-1>1时, 收敛;当2m-1≤1时, 发散;∴≥++12222)(y x m y x d σ当m>1时, 收敛;当m ≤1时, 发散. (2)由区域的对称性和被积函数关于x,y 的偶性得原积分=4??+∞+∞++001111dy ydx x q p . ∵?+∞+011dx x p当p>1时, 收敛;当p ≤1时, 发散. ∴原积分当p>1, q>1时收敛,其它情况发散.(3)∵0y x y x )1(),(22++?≤p x M)1(2+,∴当p>21时, 由σd x My p ??≤≤+102)1(收敛,得原积分收敛;当p<21时, 由σd x my p ??≤≤+1∞-+-+∞∞-+dx y x e dy y x )cos(22)(22. 解:令x=rcos θ, y=rsin θ, 则+∞∞-+-+∞∞-+dx y x e dy y x)cos(22)(22=??+∞-0220cos 2dr r re d r πθ=π?-+∞→du d udu e 0cos lim=2π.3、判别下列积分的收敛性: (1)≤++12222)(y x m y x d σ;(2)??≤+--12222)1(y x m y x d σ. 解:令x=rcos θ, y=rsin θ, 则(1)??≤++12222)(y x m y x d σ=??102201rdr r d m πθ=2π?+-→1120lim d m d dr r . ∵?+-→1 120lim dm d dr r 当2m-1<1时, 收敛;当2m-1≥1时, 发散;∴??≤++1 2222)(y x m y x d σ2222)1(y x m y x d σ =??-10220)1(rdr r d d m σθπ=π?-→-d m d du u 01)1(lim . ∴当m<1时, 由?-→-dmd du u 01)1(lim 收敛知,原积分收敛;当m ≥1时, 由?-→-dm d du u 01)1(lim 发散知,原积分发散.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 重积分7 n 重积分引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为32221112121)(rdz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-.将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =⎰⎰⎰⎰⎰⎰-Vdz dy dx dz dy dx rx x z y x z y x 22211132122221111))(,,(),,(ρρ.这是在由六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示.概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2.设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n Vdx dx dx x x x f ⋯⋯⋯⋯⎰⎰2121),,,(.性质:1、若f(x 1,x 2,…,x n )在n 维有界区域V 上连续,则存在n 重积分. 2、若积分区域为长方体[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ],则有 I=n n Vdx dx dx x x x f ⋯⋯⋯⎰⎰2121),,,(=⎰⎰⎰⋯⋯nnb a n n b a b a dx x x x f dx dx ),,,(21212211.3、当V 由不等式组a 1≤x 1≤b 1, a 2(x 1)≤x 2≤b 2(x 1),…, a n (x 1,…,x n-1)≤x n ≤b n (x 1,…,x n-1) 表示时,则有I=⎰⎰⎰--⋯⋯⋯⋯),,,(),,,(21)()(21121121121211),,,(n n n nx x x b xx x a n n x b x a b a dx x x x f dx dx .4、设变换T :⎪⎪⎩⎪⎪⎨⎧⋯=⋯⋯⋯=⋯=),,,(),,,(),,,(2121222111n n n nn x x x x x x ξξξξξξξξξ把n 维ξ1,ξ2,…,ξn 空间区域V ’ 一对一地映射成n 维x 1,x 2,…,x n 空间的区域V ,且在V ’上函数行列式J=),,,(),,,(2121n n x x x ξξξ⋯∂⋯∂=n nn n n n x x x x x x x x x ξξξξξξξξξ∂∂⋯∂∂∂∂⋯⋯⋯⋯∂∂⋯∂∂∂∂∂∂⋯∂∂∂∂212221212111恒不为零,则有n 重积分换元公式:I= n n n Vdx dx x x f ⋯⋯⎰⋯⎰11),,(个=n n n n n Vd d J x x f ξξξξξξ⋯⋯⋯⋯⎰⋯⎰1111||)),,(,),,,((个.例1:求n 维单纯形T n :x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h 的体积. 解:作变换x 1=h ξ1,x 2=h ξ2,…,x n =h ξn , 则J=h n , 单纯形T n 的体积为△T n =h nn n D d d d ξξξ⋯⎰⋯⎰211个=h n a n . 其中D 1={(ξ1,ξ2,…,ξn )|ξ1+ξ2+…+ξn ≤1, ξ1≥0, ξ2≥0,…, ξn ≥0},则a n =1211101--⋯⎰⋯⎰-⎰n n T n d d d d n ξξξξ个, 其中T n-1={(ξ1,ξ2,…,ξn-1)|ξ1+ξ2+…+ξn-1≤1-ξn , ξ1≥0, ξ2≥0,…, ξn-1≥0}. 又对积分a n 作变换ξ1=(1-ξn )ζ1,…, ξn-1=(1-ξn )ζn-1, 则J=(1-ξn )n-1,a n = 12111012)1(---⋯⎰⋯⎰-⎰n n D n n n d d d d ζζζξξ个= a n-1⎰--101)1(n n n d ξξ=na n 1-, 其中D 2={(ζ1, ζ2,…, ζn-1)| ζ1+ζ2+…+ζn-1≤1, ζ1≥0, ζ2≥0,…, ζn-1≥0}.当n=1时,a 1=1, ∴a n =!1n , 于是单纯形T n 的体积为△T n =!n h n .例2:求n 维球体V n :x 12+x 22+…+x n 2≤R 2的体积.解法一:作变换x 1=R ξ1,x 2=R ξ2,…,x n =R ξn , 则J=R n , 球体V n 的体积为△V n =R nn n d d d n ξξξξξ⋯⎰⋯⎰≤+⋯+211221 个=R n b n . 其中b n =121111122121---≤+⋯+-⋯⎰⋯⎰-⎰n n n d d d d nn ξξξξξξξ 个=⎰-11n d ξ△V n-1=b n-1⎰---11212)1(n n n d ξξ. 令ξn =cos θ, 则有b n =b n-1⎰-01cos sin πθθd n =2b n-1⎰20sin πθθd n . 又⎰20sin πθθd n =⎪⎪⎩⎪⎪⎨⎧+=+=-12!)!12(!)!2(22!!2!)!12(m n ,m m m n ,m m π, 及b 1=2, ∴△V n =R nb n =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.解法二:作变换x 1=rcos φ1,x 2=rsin φ1cos φ2, x 3=rsin φ1sin φ2cos φ3,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1, x n =rsin φ1sin φ2…sin φn-1, 则 J=r n-1sin n-2φ1sin n-3φ2…sin 2φn-3sin φn-2, 积分区域为:0≤r ≤R, 0≤φ1,φ2,…,φn-2≤π, 0≤φn-1≤2π, 从而 △V n =⎰⎰⎰⎰------⋯⋯πππϕϕϕϕϕϕ20122312102001sin sin sin n n n n n n Rd r d d dr=⎰⎰⎰----⋯πππϕϕϕϕϕ2010220112sin sin n n n n n d d d n R =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.注:特别地,当n=1,2,3时,有△V 1=2R ,△V 2=πR 2,△V 3=34πR 3.求n 维空间中的曲面面积:设x n =f(x 1,…,x n-1), f(x 1,…,x n-1)∈△⊂R n-1为n 维空间中的曲面,则其面积为 11212111---∆⋯⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫⎝⎛∂∂+⎰⋯⎰n n n nn dx dx x x x x 个.例3:求n 维单位球面x 12+x 22+…+x n 2=1的面积.解:n 维单位球面上半部为:x n =)(12121-+⋯+-n x x (2121-+⋯+n x x ≤1), 又21211⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫ ⎝⎛∂∂+-n n n x x x x =n x 1, ∴上半球面面积为 21△S=n n n x x x dx dx n 11112121--≤+⋯+⋯⎰⋯⎰- 个=)(1212111112121---≤+⋯++⋯+-⋯⎰⋯⎰-n n n x x x x dx dx n个=⎰---+⋯+-+⋯+------≤+⋯++⋯+-⋯⎰⋯⎰)(1)(1212112121222122212121)(1n n n x x x x n n n n x x xx dx dx dx个. 又⎰--+⋯+-+⋯+----+⋯+-)(1)(12121122212221)(1n n x x x x n n x x dx =π, ∴21△S=π21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个=πb n-2, 其中b n-2=21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个为n-2维空间中单位球体体积.由例2得n 维球面面积为:△S=2πb n-2=⎪⎪⎩⎪⎪⎨⎧+=-=-12!)!12()2(22)!1(2m n ,m m n ,m mmππ.注:特别地,当n=1,2,3时,有△S 1=2,△S 2=2π,△S 3=4π.习题1、计算五重积分⎰⎰⎰⎰⎰Vdxdydzdudv , 其中V :x 2+y 2+z 2+u 2+v 2≤r 2.解:根据例2的结论,当n=5时V 5=!!5)2(225πr =15852r π.2、计算四重积分⎰⎰⎰⎰++++----Vdxdydzdu u z y x u z y x 2222222211, V :x 2+y 2+z 2+u 2≤1.解:令x=rcos φ1, y=rsin φ1cos φ2, z=rsin φ1sin φ2cos φ3, u=rsin φ1sin φ2sin φ3, 原式=⎰⎰⎰⎰+-102123222030201sin sin 11dr r rr d d d ϕϕϕϕϕπππ =⎰⎰+-132011211sin 4dr r r r d πϕϕπ=2π2⎰+-1032211dr r r r =π2(1-4π).3、求n 维角锥x i ≥0,nn a x a x a x +⋯++2211≤1, a i >0 (i=1,2,…,n)的体积. 解:令ξi =iia x (i=1,2,…,n), 则V=n n a x dx dx n i ii ⋯⎰∑⋯⎰≤=111个=a 1…a n n n d d n i i ξξξ⋯⎰∑⋯⎰≤=111个.由例1得V=!1n a 1…a n .4、把Ω:x 12+x 22+…+x n 2≤R 2上的n(n ≥2)重积分n n n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个化为单重积分,其中f(u)为连续函数. 解:令x 1=rcos φ1, x 2=rsin φ1cos φ2,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1,x n =rsin φ1sin φ2…sin φn-2sin φn-1, 则nn n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个=⎰⎰⎰⎰⎰------⋯⋯ππππϕϕϕϕϕϕϕ2012231202020101sin sin sin )(n n n n n Rn d d d d dr r f r ,∵⎰π0sin tdt n =2⎰20cos πtdt n =⎪⎭⎫⎝⎛+Γ⎪⎭⎫⎝⎛+Γ2221n n π. ∴原式=⎰-⎪⎭⎫ ⎝⎛ΓR n hdr r f r h 012)(22π.。

相关文档
最新文档