计量经济学 第九章 分布滞后和自回归模型.

合集下载

庞皓版计量经济学课件 (1)

庞皓版计量经济学课件 (1)
7-22
三、阿尔蒙法
目的:消除多重共线性的影响。 基本原理:在有限分布滞后模型滞后长度 s 已
知的情况下,滞后项系数有一取值结构,把它 看成是相应滞后期 i 的函数。在以滞后期 i 为 横轴、滞后系数取值为纵轴的坐标系中,如果 这些滞后系数落在一条光滑曲线上,或近似落 在一条光滑曲线上,则可以由一个关于 i 的次 数较低的 m次多项式很好地逼近,即
,
* β0 = β0
, u t* = u t - λu t -1
则库伊克模型(7.10)式变为
* Yt = α * + β 0 X t + β 1* Y t -1 + u t*
(7.12)
这是一个一阶自回归模型。
7-33
库伊克变换的优点
1.以一个滞后被解释变量代替了大量的滞后解 释变量,使模型结构得到极大简化,最大限度 地保证了自由度,解决了滞后长度难以确定的 问题; 2.滞后一期的被解释变量与 X t 的线性相关程 度将低于 X 的各滞后值之间的相关程度,从而 在很大程度上缓解了多重共线性。
7-28
库伊克假定:
对于如下无限分布滞后模型:
Yt = α + β0 X t + β1 X t-1 + β2 X t- 2 ++ut
(7.6)
可以假定滞后解释变量 X t-i 对被解释变量 Y 的影 响随着滞后期 i 的增加而按几何级数衰减。即滞 后系数的衰减服从某种公比小于1的几何级数:
βi = β0 λi , 0 λ 1 , i 0,1,2,
计量经济学
分布滞后模型与自回归模型
7-1
引子: 货币政策效应的时滞
货币供给的变化对经济影响很大,货币政策总是 备受关注。 货币政策的影响效应存在着时间上的滞后。在货币政策的传 导过程中,货币扩张首先促使利率降低,或者一般价格水平 的上升,这需要一段时间。 这些因素对以GDP为代表的经济增长的影响,更是需要一 段时间才能显示出来。只有经过一段时间以后,支出对利率 的反应增强,投资、进出口和消费才会不断上升,货币政 策才最终促使GDP增加。通常,货币扩张对GDP影响的最 高点可能是在政策实施以后的一到两年间达到。

计量经济学分布滞后模型

计量经济学分布滞后模型

Yt 0 1Yt 1 2Yt 2 qYt q 0 X t 1 X t 1 s X t s t
q,s:滞后时间间隔
自 回 归 分 布 滞 后 模 型 ( autoregressive distributed lag model, ADL):既含有Y对自身滞 后变量的回归,还包括着X分布在不同时期的滞 后变量。
例5.2.1 对一个分布滞后模型:
Y t 0 0 X t 1 X t 1 2 X t 2 3 X t 3 t
给定递减权数:1/2, 1/4, 1/6, 1/8 令
W 1t 1 1 1 1 X t X t 1 X t 2 X t 3 2 4 6 8
有限自回归分布滞后模型:滞后期长度有限 无限自回归分布滞后模型:滞后期无限
(1)分布滞后模型(distributed-lag model)
分布滞后模型:模型中没有滞后被解释变量, 仅有解释变量X的当期值及其若干期的滞后值:
Yt i 短 期 (short-run) 或 即 期 乘 数 (impact multiplier) ,表示本期 X 变化一单位对 Y 平均值 的影响程度。 i (i=1,2…,s):动态乘数或延迟系数,表 示各滞后期X的变动对Y平均值影响的大小。
1. 滞后效应与与产生滞后效应的原因 因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
(1)经验加权法
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:

计量经济学名词解释和简答题

计量经济学名词解释和简答题

计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。

2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。

3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

6、残差项:是一随机变量,是针对样本回归函数而言的。

7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。

8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。

9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

12、估计量的标准差:度量一个变量变化大小的测量值。

13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。

14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。

15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。

17、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答三、名词解释经济计量学:是经济学、统计学和数学合流⽽构成的⼀门交叉学科。

理论经济计量学:是寻找适当的⽅法,去测度由经济计量模型设定的经济关系式。

应⽤经济化量学:以经济理论和事实为出发点,应⽤计量⽅法,解决经济系统运⾏过程中的理论问题或实践问题。

内⽣变量:具有⼀定概率分布的随机变量,由模型⾃⾝决定,其数值是求解模型的结果。

外⽣变量:是⾮随机变量,在模型体系之外决定,即在模型求解之前已经得到了数值。

随机⽅程:根据经济⾏为构造的函数关系式。

⾮随机⽅程:根据经济学理论或政策、法规⽽构造的经济变量恒等式。

时序数据:指某⼀经济变量在各个时期的数值按时间先后顺序排列所形成的数列。

截⾯数据:指在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据。

回归分析:就是研究被解释变量对解释变量的依赖关系,其⽬的就是通过解释变量的已知或设定值,去估计或预测被解释变量的总体均值。

相关分析:测度两个变量之间的线性关联度的分析⽅法。

总体回归函数:E (Y /X i )是X i 的⼀个线性函数,就是总体回归函数,简称总体回归。

它表明在给定X i 下Y 的分布的总体均值与X i 有函数关系,就是说它给出了Y 的均值是怎样随X 值的变化⽽变化的。

随机误差项:为随机或⾮系统性成份,代表所有可能影响Y ,但⼜未能包括到回归模型中来的被忽略变量的代理变量。

有效估计量:在所有线性⽆偏估计量中具有最⼩⽅差的⽆偏估计量叫做有效估计量。

判定系数:TSS ESS Y Y Y Y R i i=--=∑∑222)()?(,是对回归线拟合优度的度量。

R 2测度了在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。

异⽅差:在回归模型中,随机误差项1u ,2u ,…,n u 不具有相同的⽅差,即 ()()≠i j Var u Var u ,当j i ≠时,则称随机误差的⽅差为异⽅差。

异⽅差的补救⽅法:已知时,⽤加权最⼩⼆乘法;未知时,⽤普通最⼩⼆乘法。

《计量经济学》课程教学大纲

《计量经济学》课程教学大纲

《计量经济学》课程教学大纲英文名称:Econometric课程代码:221102004课程类别:专业核心课课程性质:必修开课学期:第四学期总学时:54(讲课:36,实验0,实践18,网络0)总学分:3考核方式:作业先修课程:高等数学、微观经济学、宏观经济学、统计学适用专业:经济学一、课程简介《计量经济学》是经济学专业的一门专业核心课程。

本课程以高等数学、宏微观经济学、统计学为先修课程,系统讲授计量经济学的基础理论、一元和多元线性回归模型、非线性回归模型的线性化、异方差、自相关、多重共线性、模型中特殊的解释变量以及Eviews基础操作等内容,为全国大学生市场调查与分析大赛以及毕业论文作理论与实践兼具的准备。

该课程分别从理论授课、软件学习以及团队实训等三个维度全面提高学生的思想水平、政治觉悟、道德品质及文化素养,重点培养学生经济学专业知识与技能,使其具有较为扎实的专业知识储备、数据分析的能力、实践与创新能力。

二、课程目标及其对毕业要求的支撑总体目标:全面提高学生的政治素养和道德品质,重点培养学生经济统计专业知识与技三、课程内容及要求第一章绪论教学内容:第一节计量经济学的定义与类型1.计量经济学的定义2.计量经济学的类型第二节计量经济学的特征1.经典计量经济学在理论方法方面特征2.经典计量经济学在应用方法方面特征第三节计量经济学的目的及研究问题的步骤1.计量经济学的目的2.计量经济学研究问题的步骤3.Eviews软件介绍学生学习预期成果:1.理解计量经济学的含义2.理解计量经济学的类型与特征3.了解计量经济学的目的及研究问题的步骤4.了解Eviews软件并下载安装成功教学重点:计量经济学的含义;计量经济学研究问题的步骤;Eviews软件介绍。

教学难点:计量经济学的含义;计量经济学研究问题的步骤。

第二章一元线性回归模型教学内容:第一节模型的建立及其假定条件1.回归分析的概念2.一元线性回归模型的介绍3.随机误差项的假定条件第二节一元线性回归模型的参数估计1.普通最小二乘法的概念2.参数估计第三节最小二乘估计量的统计性质1.线性性2.无偏性3.最小方差性第四节用样本可决系数检验回归方程的拟合优度1.总离差平方和的分解2.样本可决系数及相关系数第五节回归系数估计值的显著性检验与置信区间1.随机变量u的方差2.t检验3.置信区间第六节一元线性回归方程的预测1.点预测2.区间预测第七节案例分析1.用Eviews软件研究分析我国城镇居民年人均可支配收入与年人均消费性支出之间的关系学生学习预期成果:1.掌握回归分析的概念2.掌握随机误差项的假定条件3.掌握一元线性回归模型的参数估计4.熟悉最小二乘估计量的统计性质5.掌握用样本可决系数检验回归方程的拟合优度6.掌握回归系数估计值的显著性检验7.掌握Eviews软件的基础操作教学重点:回归分析的概念;随机误差项的假定条件;一元线性回归模型的参数估计;Eviews软件的基础操作。

第九章 滞后变量模型

第九章 滞后变量模型

Yt * = b0 + b1 X t + ut
( 9.19 )
Yt*不可观测。由于生产条件的波动,生产管理 方面的原因,库存储备Yt的实际变化量只是预期变 化的一部分。
郑州大学商学院
储备按预定水平逐步进行调整,故有如下局部 储备按预定水平逐步进行调整,故有如下局部 调整假设: 调整假设 * Yt − Yt −1 = δ (Yt − Yt −1 ) ( 9.20 )
郑州大学商学院
( 9.25)
(9.25)减去(9.26)得
Yt = γ b0 + γ b1 X t + (1 − γ ) Yt −1 + ut − (1 − γ ) ut −1
( 9.27 )
郑州大学商学院
郑州大学商学院
Yt = a0 + b0 X t + b1 X t −1 + b2 X t − 2 + ⋅⋅⋅ + bs X t − s + ut
( 9.1)
Yt = a0 + b0Yt + b1Yt −1 + b2Yt − 2 + ⋅⋅⋅ + bρ Yt − ρ + ut
( 9.2 )
(9.1)仅含有解释变量的滞后变量,称为外 生滞后变量模型或分布滞后模型; (9.2)仅含有被解释变量的滞后变量,称为 外生滞后变量模型或自回归模型。
Yt = δ Yt * + (1 − δ ) Yt −1
其中,δ为调整系数 调整系数,0≤ δ ≤1 调整系数 将( 9.19)式代入(9.21)
( 9.21)
Yt = δ b0 + δ b1 X t + (1 − δ ) Yt −1 + δ ut

计量经济学简答题及答案

计量经济学简答题及答案

计量经济学简答题及答案1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同;答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小∑=n i i e12min ;只有在满足了线性回归模型的古典假设时候,采用OLS 才能保证参数估计结果的可靠性; 在不满足基本假设时,如出现异方差,就不能采用OLS;加权最小二乘法是对原模型加权,对较小残差平方和2i e 赋予较大的权重,对较大2i e 赋予较小的权重,消除异方差,然后在采用OLS 估计其参数;在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘法; 最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义最小二乘法的特列;6、虚拟变量有哪几种基本的引入方式 它们各适用于什么情况答: 在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况;除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况;7、联立方程计量经济学模型中结构式方程的结构参数为什么不能直接应用OLS 估计 答:主要的原因有三:第一,结构方程解释变量中的内生解释变量是随机解释变量,不能直接用OLS 来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失;2、计量经济模型有哪些应用;答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度;②经济预测,即是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算;③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程;④检验和发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律;6、简述建立与应用计量经济模型的主要步骤;答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集;③估计参数;④模型的检验;⑤计量经济模型的应用;7、对计量经济模型的检验应从几个方面入手;答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检验;1、在计量经济模型中,为什么会存在随机误差项答:①模型中被忽略掉的影响因素造成的误差;②模型关系认定不准确造成的误差;③变量的测量误差;④随机因素;这些因素都被归并在随机误差项中考虑;因此,随机误差项是计量经济模型中不可缺少的一部分;2、古典线性回归模型的基本假定是什么答:①零均值假定;即在给定x t 的条件下,随机误差项的数学期望均值为0,即t E(u )=0;②同方差假定;误差项t u 的方差与t 无关,为一个常数;③无自相关假定;即不同的误差项相互独立;④解释变量与随机误差项不相关假定;⑤正态性假定,即假定误差项t u 服从均值为0,方差为2σ的正态分布;3、总体回归模型与样本回归模型的区别与联系;答:主要区别:①描述的对象不同;总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所观测的样本中变量y 与x 的相互关系;②建立模型的不同;总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的;③模型性质不同;总体回归模型不是随机模型,样本回归模型是随机模型,它随着样本的改变而改变;主要联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型;4、试述回归分析与相关分析的联系和区别;答:两者的联系:①相关分析是回归分析的前提和基础;②回归分析是相关分析的深入和继续;③相关分析与回归分析的有关指标之间存在计算上的内在联系;两者的区别:①回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量是对等的;②对两个变量x 与y 而言,相关分析中:xy yx r r =;但在回归分析中,01ˆˆˆt t y b b x =++和01ˆˆˆt tx a a y =++却是两个完全不同的回归方程;③回归分析对资料的要求是:被解释变量y 是随机变量,解释变量x 是非随机变量;相关分析对资料的要求是两个变量都随机变量;5、在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质答:①线性,是指参数估计量0ˆb 和1ˆb 分别为观测值t y 和随机误差项t u 的线性函数或线性组合;②无偏性,指参数估计量0ˆb 和1ˆb 的均值期望值分别等于总体参数0b 和1b ;③有效性最小方差性或最优性,指在所有的线性无偏估计量中,最小二乘估计量0ˆb 和1ˆb 的方差最小;6、简述BLUE 的含义;答:在古典假定条件下,OLS 估计量0ˆb 和1ˆb 是参数0b 和1b 的最佳线性无偏估计量,即BLUE,这一结论就是着名的高斯-马尔可夫定理;7、对于多元线性回归模型,为什么在进行了总体显着性F 检验之后,还要对每个回归系数进行是否为0的t 检验答:多元线性回归模型的总体显着性F 检验是检验模型中全部解释变量对被解释变量的共同影响是否显着;通过了此F 检验,就可以说模型中的全部解释变量对被解释变量的共同影响是显着的,但却不能就此判定模型中的每一个解释变量对被解释变量的影响都是显着的;因此还需要就每个解释变量对被解释变量的影响是否显着进行检验,即进行t 检验;2.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度解答:因为人们发现随着模型中解释变量的增多,多重决定系数2R 的值往往会变大,从而增加了模型的解释功能;这样就使得人们认为要使模型拟合得好,就必须增加解释变量;但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等;为此用修正的决定系数来估计模型对样本观测值的拟合优度;3.修正的决定系数2R 及其作用; 解答:222/11()/1t t e n k R y y n --=---∑∑,其作用有:1用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;2对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较;4.常见的非线性回归模型有几种情况解答:常见的非线性回归模型主要有:(1)对数模型01ln ln t t t y b b x u =++(2)半对数模型01ln t t t y b b x u =++或01ln t t t y b b x u =++(3)倒数模型0101111y b b u b b u x y x=++=++或 (4)多项式模型2012...k k y b b x b x b x u =+++++2.产生异方差性的原因及异方差性对模型的OLS 估计有何影响;1模型中遗漏了某些解释变量;2模型函数形式的设定误差;3样本数据的测量误差;4随机因素的影响;产生的影响:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:1不影响模型参数最小二乘估计值的无偏性;2参数的最小二乘估计量不是一个有效的估计量;3对模型参数估计值的显着性检验失效;4模型估计式的代表性降低,预测精度精度降低;3.检验异方差性的方法有哪些1图示检验法;2戈德菲尔德—匡特检验;3怀特检验;4戈里瑟检验和帕克检验残差回归检验法;5ARCH 检验自回归条件异方差检验4.异方差性的解决方法有哪些1模型变换法;2加权最小二乘法;3模型的对数变换等5.什么是加权最小二乘法它的基本思想是什么最小二乘法的基本原理是使残差平方和∑2t e 为最小,在异方差情况下,总体回归直线对于不同的t t e x ,的波动幅度相差很大;随机误差项方差2t σ越小,样本点t y 对总体回归直线的偏离程度越低,残差t e 的可信度越高或者说样本点的代表性越强;而2t σ较大的样本点可能会偏离总体回归直线很远,t e 的可信度较低或者说样本点的代表性较弱;因此,在考虑异方差模型的拟合总误差时,对于不同的2t e 应该区别对待;具体做法:对较小的2t e 给于充分的重视,即给于较大的权数;对较大的2t e 给于充分的重视,即给于较小的权数;更好的使∑2t e 反映)var(i u 对残差平方和的影响程度,从而改善参数估计的统计性质;6.样本分段法即戈德菲尔特——匡特检验检验异方差性的基本原理及其使用条件;将样本分为容量相等的两部分,然后分别对样本1和样本2进行回归,并计算两个子样本的残差平方和,如果随机误差项是同方差的,则这两个子样本的残差平方和应该大致相等;如果是异方差的,则两者差别较大,以此来判断是否存在异方差;使用条件:1样本容量要尽可能大,一般而言应该在参数个数两倍以上;2t u服从正态分布,且除了异方差条件外,其它假定均满足;1.简述DW检验的局限性;答:从判断准则中看到,DW检验存在两个主要的局限性:首先,存在一个不能确定的DW检验只能检验一阶自相DW值区域,这是这种检验方法的一大缺陷;其次:....关;但在实际计量经济学问题中,一阶自相关是出现最多的一类序列相关,而且经验表明,如果不存在一阶自相关,一般也不存在高阶序列相关;所以在实际应用中,对于序列相关问题—般只进行..DW检验;二、简答题1、模型中引入虚拟变量的作用是什么答案:1可以描述和测量定性因素的影响;2能够正确反映经济变量之间的关系,提高模型的精度;3便于处理异常数据;2、虚拟变量引入的原则是什么答案:1如果一个定性因素有m方面的特征,则在模型中引入m-1个虚拟变量;2如果模型中有m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量;3虚拟变量取值应从分析问题的目的出发予以界定;4虚拟变量在单一方程中可以作为解释变量也可以作为被解释变量;3、虚拟变量引入的方式及每种方式的作用是什么答案:1加法方式:其作用是改变了模型的截距水平;2乘法方式:其作用在于两个模型间的比较、因素间的交互影响分析和提高模型的描述精度;3一般方式:即影响模型的截距有影响模型的斜率;4、判断计量经济模型优劣的基本原则是什么答案:1模型应力求简单;2模型具有可识别性;3模型具有较高的拟合优度;4模型应与理论相一致;5模型具有较好的超样本功能;5、模型设定误差的类型有那些答案:1模型中添加了无关的解释变量;2模型中遗漏了重要的解释变量;3模型使用了不恰当的形式;6、工具变量选择必须满足的条件是什么答案:选择工具变量必须满足以下两个条件:1工具变量与模型中的随机解释变量高度相关;2工具变量与模型的随机误差项不相关;7、滞后变量模型包括哪几种类型写出各自的模型形式;答案:滞后变量模型包括两种类型:自回归模型和分布滞后模型;自回归模型是模型的解释变量中包含滞后被解释变量,基本形式为:;分布滞后模型是指模型中不仅包含解释变量的当期值,还包括解释变量的滞后值基本形式为: ;8、设定误差产生的主要原因是什么答案:原因有四:1模型的制定者不熟悉相应的理论知识;2对经济问题本身认识不够或不熟悉前人的相关工作;3模型制定者缺乏相关变量的数据;4解释变量无法测量或数据本身存在测量误差;9、在建立计量经济学模型时,什么时候,为什么要引入虚拟变量答案:在现实生活中,影响经济问题的因素除具有数量特征的变量外,还有一类变量,这类变量所反映的并不是数量而是现象的某些属性或特征,即它们反映的是现象的质的特征;这些因素还很可能是重要的影响因素,这时就需要在模型中引入这类变量;引入的方式就是以虚拟变量的形式引入;1、 直接用最小二乘法估计有限分布滞后模型的有:(1) 损失自由度2分(2) 产生多重共线性2分(3) 滞后长度难确定的问题1分2、 因变量受其自身或其他经济变量前期水平的影响,称为滞后现象;其原因包括:1经济变量自身的原因;2分2决策者心理上的原因1分;3技术上的原因1分;4制度的原因1分;3、 koyck 模型的特点包括:1模型中的λ称为分布滞后衰退率,λ越小,衰退速度越快2分;2模型的长期影响乘数为b 0·11λ-1分;3模型仅包括两个解释变量,避免了多重共线性1分;4模型仅有三个参数,解释了无限分布滞后模型因包含无限个参数无法估计的问题1分二、 1.联立方程模型中方程有:行为方程式1分;技术方程式1分;制度方程式1分;平衡方程或均衡条件1分;定义方程或恒等式1分;三、 2.联立方程的变量主要包括内生变量2分、外生变量2分和前定变量1分;四、 3.模型的识别有恰好识别2分、过渡识别2分和不可识别1分三种;五、 4.识别的条件条件包括阶条件和秩条件;阶条件是指,如果一个方程能被识别,那么这个方程不包含的变量总数应大于或等于模型系统中方程个数减13分;秩条件是指,在一个具有K 个方程的模型系统中,任何一个方程被识别的充分必要条件是:所有不包含在这个方程中变量的参数的秩为K -12分;六、 1.简述回归分析和相关分析的关系;七、 答案:回归分析是一个变量被解释变量对于一个或多个其他变量解释变量的依存关系,目的在于根据解释变量的数值估计预测被解释变量的总体均值;相关分析研究变量相关程度,用相关系数表示;相关分析不关注变量的因果关系,变量都是随机变量;回归分析关注变量因果关系;被解释变量是随机变量,解释变量是非随机变量;八、 2.简要说明DW 检验应用的限制条件和局限性;九、 答案DW 检验适用于一阶自回归:不适用解释变量与随机项相关的模型;DW 检验存在两个不能确定的区域十、 3.回归模型中随机误差项产生的原因是什么十一、 答案:模型中省略的变量;随机行为;模型形式不完善;变量合并误差;测量误差十二、 4.简述C-D 生产函数的份额估计法及其缺点;十三、 答案:C-D 生产函数是柯布-道格拉斯生产函数,即,Y A L K αβ=,α是产出的劳动弹性β是产出的资本弹性,缺点是劳动与资本存在不变的等于1 的替代弹性; 十四、 5.假设分布滞后模型为:i 3121110t ...r X X Y u X r r t t t +++++=---λλα将该模型变换成自回归模型形式;为计算模型参数的工具变量估计值,应该用哪些工具变量十五、 答案:0,,r λα1、二元回归模型011i 22i i i Y X X u βββ=+++中,三个参数含义答案:0β表示当X2、X3不变时,Y 的平均变化1β表示当X2不变时,X1变化一个单位Y 的平均变化2β表示当X1不变时,X2变化一个单位Y 的平均变化 2、调整后的判定系数与原来判定系数关系式 答案:2211(1)1n n k R R ---=---- 3、F 检验含义答案:从总体上检验被解释变量与解释变量线性关系的显着性,原假设//(1)RSS k ESS n k --:12...0k βββ====,如果成立,被解释变量与解释变量不存在显着的线性关系;1H :至少有一个i β不等于0,对于显着性水平α,查F 分布表中的(,1)k k n F α--,统计量F=//(1)RSS k ESS n k --,比较二者大小;如果统计量F 大于(,1)k k n F α--,否定原假设,总体回归方程存在显着的线性关系;否则,总体回归方程不存在显着的线性关系;、简述加权最小二乘法的思想;答案:对于存在异方差的模型,用某一权数对样本观测值或残差加权,再使用普通最小二乘法估计模型参数2、多重共线性的后果有哪些对多重共线性的处理方法有哪些答案:多重共线性的后果是:各个解释变量对被解释变量的影响很难精确鉴别;系数估计量的方差很大,显着性检验无效;参数估计量对于增减少量观测值或删除一个不显着的解释变量可能比较敏感;3、常见的非线性回归模型有几种情况答案:双对数模型,半对数模型,倒数变换模型,多项式模型,双曲函数模型,幂函数模型; ⒈什么是随机误差项影响随机误差项的主要因素有哪些它和残差之间的区别是什么 影响Y 的较小因素的集合;被忽略的因素、测量误差、随机误差等;通过残差对误差项的方差进行估计;⒉决定系数2R 说明了什么它与相关系数的区别和联系是什么⒊最小二乘估计具有什么性质P37线性、无偏性和有效性或最小方差性⒋在回归模型的基本假定中,()0t E ε=的意义是什么该假设的含义是:如果两变量之间确实是线性趋势占主导地位,随机误差只是次要因素时,那么虽然随机扰动会使个别观测值偏离线性函数,但给定解释变量时多次重复观测被解释变量,概率均值会消除随机扰动的影响,符合线性函数趋势;。

09滞后变量模型的基本概念

09滞后变量模型的基本概念

(表示过去各个时期X每变动一个单位对Y平均变动的影响 )
(或 ) 长期乘数
i 1 i i 1 i
s

(表示X变动一个单位对Y的总影响 )
2、自回归模型:回归模型不仅含解释变量的即期值,
还含被解释变量的若干期滞后值。
Y X Y Y u
t 0 t 1 t 1 q t q
同乘以,得:
Yt 1 0 X t i ut 1
i i 1

(4)
(3)-(4)
二、自适应预期模型
在经济活动中,预期起着决定性作用。人们常根据他们对 某些经济变量未来走势的预期变动来改变自己的行为决策。 例如:生产取决于预期的销售; 投资取决于预期的利润; 长期利率取决于预期的短期利率于预期的通货膨胀 率之和 X 即影响被解释变量的因素不是Xt,而是预期值 t
u ut (1 )ut 1
* t
自适应预期模型特点:
1、以一个滞后因变量代替了预期值。 2、干扰项是一阶自相关,作为解释变量的滞后因 变量与随机干扰项不独立。
三、局部调整模型
局部调整模型是构造滞后变量模型的另一种方法。这种方法 早先是用来研究 物资贮备问题。例如,企业为了保证生产或 供应,必须保持一定的原材料贮备。 * Y 对于一定的产量或销售量Xt ,存在着预期的最佳库存 t
最后得长期货币流通需求量 模型的估计式为
ln Y 0.4669 0.333ln X 1.0781ln X
* t 1t
2t
货币流通量对长期利率的弹性,本期为-0.2401, 长期为-0.333。对工业企业存款的弹性本期为 0.7773,长期为1.0781。说明在经济体制下,工 业企业存款每增长1%,在本期的影响是货币流通 量增长0.773%,长期影响增长1.0781%。

西南大学计量经济学期末考试题库

西南大学计量经济学期末考试题库

西南大学计量经济学期末考试题库(总148页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--计量经济学练习册计量经济学教研室二〇〇九年九月第一章 导 论一、名词解释1、截面数据2、时间序列数据3、虚变量数据4、内生变量与外生变量二、单项选择题1、同一统计指标按时间顺序记录的数据序列称为 ( )A 、横截面数据 B 、虚变量数据 C 、时间序列数据 D 、平行数据2、样本数据的质量问题,可以概括为完整性、准确性、可比性和 ( )A 、时效性B 、一致性C 、广泛性D 、系统性3、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来煤炭行业的产出量,这是违反了数据的哪一条原则。

( ) A 、一致性 B 、准确性 C 、可比性 D 、完整性4、判断模型参数估计量的符号、大小、相互之间关系的合理性属于什么检验 ( )A 、经济意义检验B 、统计检验C 、计量经济学检验D 、模型的预测检验 5、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值 ( )A 、i C (消费)5000.8i I =+(收入)B 、di Q (商品需求)100.8i I =+(收入)0.9i P +(价格)C 、si Q (商品供给)200.75i P =+(价格)D 、i Y (产出量)0.60.65i K =(资本)0.4i L (劳动)6、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为012M Y r βββμ=+++, 1ˆβ和2ˆβ分别为1β、2β的估计值,根据经济理论有 ( ) A 、1ˆβ应为正值,2ˆβ应为负值 B 、1ˆβ应为正值,2ˆβ应为正值C 、1ˆβ应为负值,2ˆβ应为负值D 、1ˆβ应为负值,2ˆβ应为正值 三、填空题1、在经济变量之间的关系中, 、 最重要,是计量经济分析的重点。

2、从观察单位和时点的角度看,经济数据可分为 、 、 。

空间自回归模型和空间滞后模型

空间自回归模型和空间滞后模型

空间自回归模型和空间滞后模型空间自回归模型和空间滞后模型,这两个名字听起来就像是从数学教室里跑出来的怪兽,但其实它们在分析数据的时候可是大有用处哦。

想象一下,你在一个小镇上,大家的房子都挨得很近,街坊邻里关系那是密不可分。

你的朋友小张如果今天心情好,邻居小李也可能会受到影响。

空间自回归模型就是要把这种“情绪传染”的现象给捉住。

它就像是在说,哎呀,咱们小镇上,如果小张心情好,没准大家的幸福指数也跟着蹭蹭上涨呢。

再说说空间滞后模型。

这家伙有点像是你等了很久的公交车,虽然你在这儿等着,但那辆车的到来还得看其他路上的情况。

空间滞后模型就告诉我们,某个地方的现象,不光是看自己这片区域,还得考虑周围的影响。

比如说,经济发展,某个城市的增长往往跟邻近城市的经济状况息息相关。

一个地方经济繁荣,附近的地方也会跟着水涨船高。

这就好比是,你的小区里开了一家超级火爆的餐厅,周围的店铺也跟着吸引了不少顾客,大家都是捞一把。

再想象一下,如果你在聚会上,大家都在聊最近的电影,你一来就提到那部让你失望的烂片。

可别小看了这个发言,可能会影响其他人的观感哦。

空间自回归模型和空间滞后模型就是在做这种事情,分析区域之间的互动,研究他们是如何影响彼此的,真的是个非常巧妙的想法。

就像是我们日常生活中,朋友圈子里的影响,谁都逃不掉。

听起来可能有点复杂,但其实它们的运用在我们生活中随处可见。

比如说,城市规划、环境监测,甚至是疫情的传播。

这些模型就像是研究人员的秘密武器,帮助他们了解各种现象背后的奥秘。

说到疫情,谁能忘记那段特殊的日子呢?在那时,研究人员就用这些模型来分析病毒的传播路径,看看哪个地方可能会成为“重灾区”,这对公共卫生决策真是至关重要。

哎,空间模型可不是只有学术界的专属。

咱们日常生活中,有时候也得用用这些思维,想想自己的行为会对周围的人造成怎样的影响。

就像你买了新衣服,如果你开心地穿出去,朋友们看到后也可能会去买,时尚就是这样流行开来的。

空间滞后模型和空间自回归模型

空间滞后模型和空间自回归模型

空间滞后模型和空间自回归模型空间滞后模型(Spatial Lag Model)和空间自回归模型(Spatial Autoregressive Model)是空间计量经济学中常用的两种模型,用于分析空间数据中的空间依赖性。

空间滞后模型是一种描述因变量与其邻近地区的自变量之间的依赖关系的模型。

它假设一个地区的因变量取决于该地区的自身特征以及其邻近地区的特征。

换句话说,该模型认为一个地区的因变量受到其邻近地区因变量的影响。

空间滞后模型可以用以下公式表示:Y = ρWy + Xβ + ε。

其中,Y是因变量,Wy是空间权重矩阵,ρ是空间滞后参数,X是自变量矩阵,β是自变量系数,ε是误差项。

空间滞后模型考虑了空间上的依赖性,可以用来解释因变量的空间聚集现象。

空间自回归模型是一种描述因变量与其邻近地区的因变量之间的依赖关系的模型。

它假设一个地区的因变量取决于该地区的自身特征以及其邻近地区的因变量。

换句话说,该模型认为一个地区的因变量受到其邻近地区因变量的影响。

空间自回归模型可以用以下公式表示:Y = ρWY + Xβ +ε。

其中,Y是因变量,W是空间权重矩阵,ρ是空间自回归参数,X是自变量矩阵,β是自变量系数,ε是误差项。

空间自回归模型考虑了空间上的依赖性,可以用来解释因变量的空间自相关现象。

这两种模型都考虑了空间上的依赖性,但是它们的依赖关系不同。

空间滞后模型是因变量与邻近地区的自变量之间的依赖关系,而空间自回归模型是因变量与邻近地区的因变量之间的依赖关系。

在实际应用中,选择使用哪种模型取决于具体问题和数据的特征。

总结起来,空间滞后模型和空间自回归模型是两种常用的空间计量经济学模型,用于分析空间数据中的空间依赖性。

它们都考虑了因变量与邻近地区之间的依赖关系,但是依赖关系的对象不同,一个是自变量,一个是因变量。

计量经济学第九章分布滞后和自回归模型

计量经济学第九章分布滞后和自回归模型
转变为纯粹的自回归模型或完全的分布滞后模型,因此 不做专门讨论。
自回归模型的理论导出
适应性预期(Adaptive expectation)模型
在某些实际问题中,因变量 Yt 并不取决于解释变量的当
前实际值
X
t
,而取决于X
t
的“预期水平”或“长期均衡水X
* t
平” 。
例如,家庭本期消费水平,取决于本期收入的预期值;
❖ 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
市场上某种商品供求量,决定于本期该商品价格的均衡值。
因此,适应性预期模型最初表现形式是
Yt
0
1
X
* t
t
由于预期变量是不可实际观测的,往往作如下 适应性预期假定:
X
* t
X* t 1
(Xt
X
* t 1
)
其中:r为预期系数(coefficient of expectation), 0r 1。
该式的经济含义为:“经济行为者将根据过去的 经验修改他们的预期”,即本期预期值的形成是一 个逐步调整过程,本期预期值的增量是本期实际值 与前一期预期值之差的一部分,其比例为r 。
这个假定还可写成:
X
* t
X t
(1
)
X
* t 1

X
* t
X t
(1
)
X
* t 1
代入

自回归与分布滞后模型

自回归与分布滞后模型

Yt C 0.4xt 0.3xt 1 0.2xt 2 ut
其中Y是消费量,X是收入
(17.1.1)
更一般的,我们可以写成:
Yt 0 xt 1xt 1 2 xt 2
β
k xt k ut
(17.1.2)
0 表示随着X一个单位的变化, Y均值的同期变化,
• 其中 Y = 对货币(实际现金余额)的需求 * X • =均衡、最优、预期的长期或正常利率 u t =误差项 •
• 方程(17.5.1) 设想,货币需求是预期(预测意义的)利 率的函数.
• 由于预期变量 X 不可直接观测,我们对预期的形成做如 下的设想: (17.5.2) • 其中 为 0 1 ,称期望系数(coefficient of expectation)。假设(17.5.2) 称适应性预期(adaptive expectation)或累进式期望(progressive expectation) 或错误中学习假设(error learning hypothesis). • (17.5.2) 表明:人们每期都按变量的现期值 X t与前期期 望值 X t 1* 之间的差距的一个分数 去修改期望值。 .
• 表达式证明
t 1 )/(1- ) 1 长期反应 ( 0 t期反应 0 / (1 ) 2
1 ln 2 2 t ln ln ln
平均滞后 • 假设所有的β
k
都是正的,则平均滞后有相关滞后的加权平均。扼要地 说,它是滞后加权平均时间。(类似于投资学中的久期) 考伊克模型:平均滞后=
*
• 将 (17.5.3) 代入 (17.5.1), 我们得到:
Yt 0 1 X t 1 X t 1 ut

eviews分布滞后模型和自回归模型-PPT课件

eviews分布滞后模型和自回归模型-PPT课件
t t 1
因此,使用OLS估计将导致估计量不仅是有
偏的而且非一致的。可以采用工具变量法来 估计,有学者建议用x t 1 作为 y t 1 的工具变量。
例1

table8-1.wf1工作文件中,给出的是1978-2019年北 京市城镇家庭平均每人全年消费性支出(PPCE, 单位元)和城镇家庭平均每人可支配收入(PPDI, 单位元)。由于人们消费习惯等原因,使得收入对 消费支出的影响存在时间滞后,因此建立消费函数 的分布滞后模型。 PPCE 1 PPDI PPC v 本实验打算建立如下模型: 这里以 PPDI 做为滞后解释变量 PPCE 的工具变量。 t 1
点及经验判断,对滞后变量赋予一定的权数, 利用这些权数构成各滞后变量的线性组合, 以形成新的变量,再应用最小二乘法进行估 计。
由于随机误差项与解释变量不相关,从而也与滞后 解释变量的线性组合变量不相关,因此可直接应用 最小二乘法对该模型进行估计。 经验加权法具有简单易行、不损失自由度、避免多 重共线性干扰及参数估计具有一致性等优点。缺陷 是设置权数的主观随意性较大,要求分析者对实际 问题的特征有比较透彻的了解。 通常的做法是,多选几组权数,分别估计多个模型, 然后根据样本决定系数、F检验值、t检验值、估计 标准误差以及DW值,从中选出最佳估计方程。
分别估计如下经验加权模型:
Y Z t k t t
k 1 , 2 , 3
YT = -66.52294932 + 1.071395456*Z1 (-3.662182) (50.96149) R-squared=0.994257 DW=1.439440 F= 2597.074 YT = -133.1722303 + 1.366668187*Z2 (-5.029746) (37.37033) R-squared=0.989373 DW=1.042713 F= 1396.542 YT = -121.7394467 + 2.237930494*Z3 (-4.813143) (38.68578) R-squared=0.990077 DW=1.158530 F= 1496.590

计量经济学教材答案(八、九章)

计量经济学教材答案(八、九章)

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi其他定性因素可用如下虚拟变量表示:有奖学金无奖学金来自发达地区男性来自欠发达地区女性则引入各虚拟变量后的回归模型如下:Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D3i=1,D2i=D4i=0)=(β0+α1+α3)+β1X i(4) 来自发达地区的城市男生,未得到奖学金时的月消费支出:E(Y i|= X i,D2i=D3i=D4i=1, D1i=0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

自回归分布滞后模型

自回归分布滞后模型

自回归分布滞后模型自回归分布滞后模型(ARIMA)是一种可用于自回归过程的统计建模技术。

它的主要优点是它能够使用时间序列数据预测未来或者检测和调整自回归过程中可能存在的性质变化。

ARIMA是一种重要的时间序列分析技术,它可以用来预测变量的自回归过程(AR),如动量(MA)和季节性过程(I)。

一、什么是自回归分布滞后模型(ARIMA)自回归分布滞后模型(ARIMA)是一种用于分析和预测时间序列数据的统计学方法。

ARIMA模型可以帮助研究者分析并预测事件的发生情况,以及由事件的发生情况产生的结果。

ARIMA模型的结构可以被定义为简单的一般线性二阶拟合模型。

二、ARIMA模型的有效性ARIMA模型通常证明是有效预测时间序列数据的一种有效方法。

无论是实现和应用于单变量和多变量时间序列上,ARIMA模型都可以为研究者提供可靠的预测结果。

在单变量的时间序列数据分析中,ARIMA 模型可以帮助研究者发现一些未知的趋势,从而判断该变量在未来的运动趋势。

三、ARIMA模型的应用ARIMA模型的应用,可以分为零度模型和非零度模型应用。

它们可以应用于单变量时间序列(零度模型)和多变量时间序列(非零度模型)上。

零度模型可以用来描述和预测单变量时间序列,而非零度模型可以用来描述和预测多变量时间序列中变量之间的关系。

此外,ARIMA模型还可以应用于时间序列平滑、广义线性模型、转换型自回归等领域。

四、ARIMA模型的优缺点ARIMA模型的优点是它能够有效地描述时间序列的差异性,可以使用时间序列数据预测未来或者检测已经发生的变化,进而找出时间序列中可能存在的自回归过程的特征,从而可以有效的预测和预测时间序列的发展趋势。

缺点是在使用自回归过程时,数据分析人员必须对变量进行较小的调整,以保持变量在ARIMA模型中是稳定的,而如果调整失败,将无法得到良好的分析结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Yt (a0 a1i a 2 i 2 ) X t i t
i
k
a0 X t i a1 i X t i a 2 i X t i t
产生滞后效应的原因 1 、心理因素 :人们的心理定势,行为 方式滞后于经济形势的变化,如中彩票的 人不可能很快改变其生活方式。 2 、技术原因 :如当年的产出在某种程 度上依赖于过去若干期内投资形成的固定 资产。 3、交易周期:如定期存款到期才能提 取、工资每月底才发放等造成了它对社会 购买力的影响具有滞后性。
现式估计法
优点:易于掌握 缺点: 首先,滞后长度的确定没有明确的标准、根据; 其次,引进较多期滞后会降低自由度,回归分 析的有效性会降低; 第三,滞后变量之间的相关性可能引发共线性 问题;

先验约束估计


分布滞后模型参数估计的另一类方法是,利 用某种先验信息和经验设定分布滞后模型的滞后 模式,从而简化滞后模型的函数形式,以方便参 数估计。这种方法称为“参数约束法”。 阿尔蒙多项式法: 阿尔蒙多项式法适用于已知滞后长度,且滞后长 度较长的有限分布滞后模型。 这类模型的主要困难是参数数量较多,导致 估计困难。 阿尔蒙多项式法的基本思想是:以滞后期i的 一个适当次数的多项式来模拟分布滞后模型的系 数,可分别模拟单调下降、先升后降,以及循环 变化等不同的滞后效应类型。
Ct c0 c1 I t c2 I t 1 c3 I t 2 t
有限分布滞后模型 :
Yt 0 X t 1 X t 1 2 X t 2 k X t k t
分步滞后模型形式上是含有解释变量滞后 项的多元回归模型,但分布滞后模型主要用来 研究经济变量作用的时间滞后效应、长期影响, 以及经济变量之间的动态影响关系,可用于评 价经济政策的中长期效果,属于动态计量分析 的范畴。研究分步滞后模型,对于进一步讨论 自回归、滑动平均模型和因果关系分析等,都 有一定的帮助。
分布滞后模型的形式
已知存在滞后效应和滞后效应作用的时间长 度和结构时,对滞后作用的分析预测是比较 简单的。 但现实生活中,我们常常只知道可能存在滞 后效应,而滞后效应是否确实存在,滞后效 应的持续长度及其结构模式都是未知的。

例如,消费滞后效应问题可能是
Ct c0 c1 I t c2 I t 1 c3 I t 2 t
二、分布滞后模型参数估计

现式估计法 先验约束估计 (一)阿尔蒙多项式法 (二)考伊克方法
现式估计法


现式估计法适用于滞后长度不确定的分布滞后模型。 由于分布滞后模型的解释变量仍然假定为非随机或 至少与误差项无关,因此原则上普通最小二乘法适 用于此模型的参数估计,但困难的是滞后长度不确 定。 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
通常认为,本期的消费除了受本期的收入影响 之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t
Yt-1,Yt-2为滞后变量。 再如:新增投资对生产效率和产出的作业不会立即 体现出来,生产效率和产出除了受到当期投资的影 响,还受到上一期甚至前很多期的投资积累的影响。 价格变化对供给和需求的影响也同样都有类似的滞 后效应。如蛛网效应中农产品的供给受到前一期的 价格的影响。
滞后效应与产生滞后效应的原因
由于心理因素、交易周期或制度因素等 多方面的原因,经济行为、政策的作用以 及经济变量之间相互影响的效果,常常不 是立即体现出来,而是有时间延滞性或持 续作用,会在以后一个时期或一段时间内 逐步体现出来,这种现象就是滞后效应。 滞后效应在经济问题中是很普遍的。
如:消费函数

Ct c0 c1 I t c2 I t 1 c3 种模型正是分析判断滞后效应的存在性及其模式,并研 究经济行为、经济关系中滞后作用的基本模型,称为“分 布滞后模型”(Distribute Lagged Model, DL模型)。 无限分布滞后模型 :
第九章 分布滞后和自回 归模型
(动态计量分析)
分布滞后和自回归模型
分布滞后模型 自回归模型 因果关系检验

一、分布滞后模型
在经济运行过程中,广泛存在时间滞后效应。 某些经济变量不仅受到同期各种因素的影响,而且 也受到过去某些时期的各种因素甚至自身的过去值 的影响。 通常把这种过去时期的,具有滞后作用的变量 叫做滞后变量(Lagged Variable),含有滞后变量 的模型称为分布滞后模型。 分布滞后模型考虑了时间因素的作用,使静态 分析的问题有可能成为动态分析。含有滞后解释变 量的模型,又称动态模型(Dynamical Model)。
阿尔蒙多项式法
设一个有限滞后模型为
Yt 0 X t 1 X t 1 2 X t 2 k X t k t
或者
用关于i的多项式模拟 i 的变化
i
Yt i X t i t
k
i a0 a1i a2i 2 ami m 当m=1时,即 a a i i 0 1
当m=2时,即
i a0 a1i a2i
2
阿尔蒙多项式法

常见的滞后参数变化模式的m在1到4之间。 确定了滞后参数多项式以后,将这些多项式代入分 布滞后模型进行变换。 2 a a i a i 以m=2的情况为例,把 i 0 1 2 代入前述分布滞后模型,可得
相关文档
最新文档