高考不等式复习

高考不等式复习
高考不等式复习

不等式复习

一、利用基本不等式求函数最值

利用基本不等式求最值应遵循“一正二定三相等,和定积最大,积定和最小”这17字方针。

例题(1)下列命题中正确的是 A 、1

y x x

=+

的最小值是2 B 、2

y =

的最小值是2

C 、4

23(0)y x x x

=--

>的最大值是2-

D 、4

23(0)y x x x

=--

>的最小值是2-(答:C );

(2)若21x y +=,则24x y

+的最小值是______ (答:;

(3)正数,x y 满足21x y +=,则

y

x 1

1+的最小值为______ (答:3+)

; (4)如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

(5)(2013年宁波二模.文科.7)已知关于x 的不等式)0(022

≠>++a b x ax 的解集是

},1

|{R x a

x x ∈-≠,且b a >,则b a b a -+22的最小值是( )

A .22 .

B 2 .

C 2 .

D 1 (答:A )

(6)若直线)0,0(022>>=+-b a by ax 被圆01422

2

=+-++y x y x 截得的弦长

为4,则

b

a 3

1+的最小值为 . (7)若正数b a ,满足ab b a =++1,则b a 23+的最小值是 【答案】5+34

(8)设0>>b a ,则)

(1

12

b a a ab a -+

+

的最小值是 【答案】4 (9)设b a ,为正实数,且满足12=+b a ,求??? ??+??? ?

?+

b b a a 411的最小值.【答案】8

25 (10)2013年浙江乐清二中模拟)若实数0,0a b >>,且41

10a b a b

+++=,则a b +的最大值是 .

【解析】设a b t +=,则4110a b t a b t +??++?=

???,241()109a b t t a b ??++=-≥ ???

210019t t t t -+≤?≤≤.

二、三角代换求不等式最值

【例题】1、实数,x y 满足2

2

222x xy y -+=,则2

2

2x y +的最小值是 .

2、已知1

44

4x y ++=,则22x y +的最大值是 .

3、设,x y ≤a 的最小值为 .

4、实数,x y 满足22

44x y x +=,求证221

165

x y -

≤-≤. 5、设实数,a b 满足0,8a b ≤≤,且2

2

16b a =+,则b a -的最大值为 .

三、根据几何意义求最值

1

的最小值是

2、 已知正实数,x y 满足22x y +=

,则x +

.A

85 .B 4

5

.C 2 .D 1 【答案:A 】

3

、已知

(,)f a b =,其

中,a b R ∈,则(,)f a b 的最小值是

.【答案:

四、常用不等式有:

1

2211

a b a b

+≥≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222

a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);

(3)若0,0a b m >>>,则

b b m

a a m

+<+(糖水的浓度问题)。

五、含绝对值不等式的性质:

a b 、同号或有0?||||||a b a b +=+≥||||||||a b a b -=-; a b 、异号或有0?||||||a b a b -=+≥||||||||a b a b -=+.

如设2

()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+

六.不等式的恒成立,能成立,恰成立等问题:

不等式恒成立问题的常规处理方式(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)

1).恒成立问题

若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <

如(1)设实数,x y 满足22

(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______

(答:)

1,+∞);

(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____

(答:1a <);

(3)若不等式)1(122

->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____

(答:(

712-,31

2

+)); (4)若不等式n

a n n

1

)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是

_____

(答:3

[2,)2

-);

(5)若不等式2

2210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.

(答:12

m >-

); (6)函数232

8log 1

mx x n

y x ++=+的值域为[0,2],求,m n 的值(答:)5==n m . 2). 能成立问题

若在区间D 上存在实数

x

使不等式()A x f >成立,则等价于在区间D 上

()max f x A >;

若在区间D 上存在实数

x

使不等式()B x f <成立,则等价于在区间D 上的

()min f x B <.如

已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____

(答:1a >)

3). 恰成立问题

若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .

【附录】近几年浙江考题中的不等式 1.(2012年理科.9)设0,0>>b a ,

.A 若b a b a 3222+=+,则b a >; .B 若b a b a 3222+=+,则b a <; .C 若b a b a 3222-=-,则b a >; .D 若b a b a 3222-=-,则b a <.

【答案】A

2.(2012

年理科.17)设R a ∈,若0>x 时均有

0)1--](1-)1-[(2≥ax x x a ,则=a .

【答案】

2

3。 【解析】当1=a 时,显然不符合题意;1≠a 时,设

1-)1-()(x a x f =,1--(2ax x x g =)

,在同一坐标系内做出它们的图像,它们都过点)

,(10-,若0>x 时均有0)1--](1-)1-[(2

≥ax x x a ,则它们函数值的符号必须相同。又)(x f 的图像过点??

?

??0,1-1a ,方程01--2=ax x 有符号相异的两根,故01--2=ax x 有正根

1

-1

a , 解关于a 的方程01-1

--1-12

=???

??a a a , 得2

3

=a 0=a (舍去).

3.(2012年文科.9)若正数y x ,满足xy y x 53=+,则y x 43+的最小值是

.A

524 .B 5

28 .C 5 .D 6 【答案】C

4.(2011浙江理科16)设,x y 为实数,若22

41,x y xy ++=则2x y +的最大值

是 .。

【答案】

5

10

2

5.(2011浙江文科.16)若实数,x y 满足22

1x y xy ++=,则x y +的最大值是

___________________________。

答案:

3

3

2. 6.(2014年文科.16)已知c b a ,,满足0=++c b a ,12

2

2

=++c b a ,则实数a 的最大值是 .

【答案】

3

6. 【 考题变式】:+∈R y x ,,(1)3=++xy y x ,求xy 的最大值;(2)03=+-+xy y x 时,求xy 的最小值。

【不等式练习题】

1、(2016宁波一模)7.已知实数列{}n a 是等比数列,若2588a a a =-,则

151959

149

a a a a a a ++ ( ▲ )

A .有最大值12

B .有最小值12

C .有最大值52

D .有最小值52

【答案:D 】

2、(2016宁波一模).若正数,x y 满足22

421x y x y +++=,则xy 的最大值为__▲__.

3、(2016宁波二模文科.15)已知0,0>>b a ,且

121

22=+++b a a ,则b a +的最小值是___________,此时=a _____________.

【答案:1

2

4、(2016宁波二模理科)13.已知正数,x y 满足1xy ≤,则11

112M x y

=

+++的最小值

为_________ 【答案:2】

5、设实数,x y 满足2x y xy +-≥,则|2|x y -的最小值为 【答案:1】

6、 已知实数,0x y >,且2xy =,则3322848

x y x y +++的最小值为 .【答案:1】

7、(2017年宁波一模.16)已知正实数,a b 满足2

(2)16a b ab +=+,则21

ab

a b ++的最大

值是 .【答案:

16

8、已知5(1,2)a b a b +=>->- .【答案:4】

9、(2017年宁波二模)若226461x y xy ++=,,x y R ∈,则22

x y -的最大值为 .【答案:

1

5

高考数学不等式知识点总结及解题思路方法

高考数学不等式知识点总结及解题思路方法 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ §06. 不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. - = < ? a< ? b ? > > - = - b ; 0b ; a a a b b a b a (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a >(对称性) ? a< b b (2)c ? > >,(传递性) a> c a b b (3)c + ? > >(加法单调性) c a+ a b b (4)d + > >,(同向不等式相加) a+ > ? d b c a c b

(5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等 . ,3a b c a b c R +++∈≥(4)若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 2222(6)0||; ||a x a x a x a x a x a x a a x a >>?>?<->

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考不等式专题的三大考点

不等式专题的几个常考点 考点一 用均值不等式求最值的类型及方法 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:b a 112 +2a b +≤≤ 2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值:

高考中常见的七种含有绝对值的不等式的解法

常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ???<<-∈2 1x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ???+-≤--≥-?2 12212x x x x 1111≤≤-?? ??≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

高考数学压轴专题2020-2021备战高考《不等式》分类汇编

【高中数学】高考数学《不等式》解析(1) 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有

()0f x ≥,则 (1) '(0) f f 的最小值为( ) A .2 B . 52 C .3 D . 32 【答案】A 【解析】 ()2 2 00{,440 a f x ac b b a c >≥∴∴≥?=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++, ()( )11111120f a c f b b +∴=+≥+≥=+=' 当且仅当() () 120f a c f ='时,不等式取等号,故 的最小值为 3.在下列函数中,最小值是2的函数是( ) A .()1 f x x x =+ B .1cos 0cos 2y x x x π?? =+ << ??? C .( )2f x =D .()4 2x x f x e e =+ - 【答案】D 【解析】 【分析】 根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1 f x x x =+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π?? =+<< ??? ,故()cos 0,1x ∈,2y >,B 错误; C. ( )2f x = = ,故( )3 f x ≥ ,C 错误; D. ( )4222x x f x e e =+-≥=,当4x x e e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】 本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.

高考数学常考知识点之函数不等式

不等式 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

新高考数学《不等式》练习题 一、选择题 1.设x ,y 满足10 2024x x y x y -≥?? -≤??+≤? ,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m 的最小值为( ) A . 125 B .125 - C . 32 D .32 - 【答案】B 【解析】 【分析】 先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r , 由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值, 由242x y x y +=??=?,得85 4 5x y ?=????=?? ,∴84,55C ?? ???, ∴416122555 m y x =-=-=-, 故选:B. 【点睛】 本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解. 2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足 15150a S +=,则实数d 的取值范围是( )

A .[; B .(,-∞ C .) +∞ D .(,)-∞?+∞ 【答案】D 【解析】 【分析】 由等差数列的前n 项和公式转化条件得1 1322 a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】 Q 数列{}n a 为等差数列, ∴15154 55102 a d d S a ?=+ =+,∴()151********a S a a d +++==, 由10a ≠可得 1 1322 a d a =--, 当10a > 时,1111332222a a d a a ??=--=-+≤-= ??? 1a 时等号成立; 当10a < 时,1 1322a d a =--≥= 1a =立; ∴实数d 的取值范围为(,)-∞?+∞. 故选:D. 【点睛】 本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题. 3.已知关于x 的不等式()()2 22240m x m x -+-+>得解集为R ,则实数m 的取值范 围是( ) A .()2,6 B .()(),26,-∞+∞U C .(](),26,-∞?+∞ D .[)2,6 【答案】D 【解析】 【分析】 分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数 m 的取值范围. 【详解】

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

高考真题不等式选讲专题答案

不等式选讲专题答案 1.(2020?全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集. 2.(2020?全国2卷)已知函数2 ()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 3.(2020?全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0; (2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c } 4.(2020?江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤.

不等式选讲专题答案 1.(2020?全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像; (2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6? ?-∞- ??? . 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ??+≥??=--<

(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6??-∞- ?? ?. 【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题. 2.(2020?全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 【答案】(1)32x x ? ≤??或112x ?≥??;(2)(][),13,-∞-+∞. 【解析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()2 1f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时, ()43f x x x =-+-. 当3x ≤时,()43724f x x x x =-+-=-≥,解得:3 2x ≤; 当34x <<时, ()4314f x x x =-+-=≥,无解;

高考中常见的七种含有绝对值的不等式的解法(精选.)

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1.当0>a 时,a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2.当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3.当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解:因为 22<-x x ,所以222 <-<-x x .即?????<-->+-020222x x x x ,解得:???<<-∈2 1x R x ,所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<,)()()()(x g x f x g x f >?>或)()(x g x f -<

高考数学专题不等式选讲高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,33 2a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.

2019届高考数学专题-不等式选讲-高考真题

2019届高考数学专题-不等式选讲-高考真题 解答题 1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分) 已知()|1||1|f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集; (2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分) 设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.

3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分) 设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像; (2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值. 4.(2017新课标Ⅰ)已知函数2 ()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集; (2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.

5.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明: (1)55()()4a b a b ++≥; (2)2a b +≤. 6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集; (2)若不等式2 ()f x x x m -+≥的解集非空,求m 的取值范围.

浙江高考 不等式专题(一)

浙江高考不等式专题 【高考再现】 【2017浙江高考】已知a R ∈,函数4 ()||f x x a a x =+-+在区间[1,4]上的最大值是5,则a 的取值范围是____________。 【2016浙江高考】已知实数c b a ,, A .若122≤+++++c b a c b a ,则1002 22<++c b a B .若122≤-++++c b a c b a ,则1002 22<++c b a C .若122≤-++++c b a c b a ,则1002 22<++c b a D .若122≤-++++c b a c b a ,则1002 22<++c b a 【2015浙江高考】若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 . 【典型例题与方法】 例1. (15年重庆)设,0a b >,5a b +=____________。 (一)不等式法 均值不等式 柯西不等式(等同于构造向量法) (二)函数法 函数最值法:统一变量化为一个变量的函数 判别式法:化为一元二次方程有解 导数法:计算量较大。

(三)三角换元法:形如222 a b r +=,可令sin ,cos a r b r αα==化为三角函数求范围。 (四)几何法:转化为线性规划。直线型ax by +,斜率型y b x a --,圆型22()()x a y b -+- (五)对称变量法 例2. (14年浙江)已知实数,,a b c 满足2220,1a b c a b c ++=++=,则a 的最大值是________。 例3. 【2014辽宁理16】对于0c >,当非零实数a ,b 满足2 2 4240a ab b c -+-=,且使|2|a b +最大 时,345 a b c -+的最小值为 . 【强化训练】 1. 已知正数,x y 满足 81 1x y +=。则2x y +的最小值为_______________。 2. 设22,,26a b R a b ∈+=,则a b +的最小值为_________________。 3. 已知221x y +=,则32x y +的最大值为______________。 4. 设实数,x y 满足22 326x y +≤,则2Z x y =+的最大值为______________。 5. 已知实数,x y 满足22 430x y x +-+=,则2x y +的取值范围为____________。 6. 已知实数,x y 满足2 2 116 y x +=,则_____________。 7. 已知函数()sin )f x x x R =+∈,则函数()f x 的取值范围是________________。 8. 已知正数,x y 满足1x y +≤____________.

高考数学常考题型:不等式基本性质(含详解答案)

高考数学常考题型:不等式基本性质 1.已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是( ) A .[]4,10- B .[]3,6- C .[]2,14- D .[]2,10- 2.若2 2 π π αβ- ≤<≤ ,则 2 αβ +, 2 αβ -的取值范围分别是( ) A .[,)22ππ-,(,0)2π - B .[,]22ππ - ,[,0]2π - C .(,)22ππ - ,(,0)2 π- D .(,)22 ππ- ,[,0)2π - 3.已知11x y -≤+≤,13x y ≤-≤,则182y x ??? ??? 的取值范围是( ) A .8 2,2???? B .8 1,22 ????? ? C .7 2,2???? D .7 1,22 ????? ? 4.设,a b 是不相等的两个正数,且ln ln b a a b a b -=-,给出下列结论:① 1a b ab +->;②2a b +>;③11 2a b +>.其中所有正确结论的序号是( ) A .①② B .①③ C .②③ D .①②③ 5.设0.231 log 0.6,log 2 0.6m n == ,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+ D .m n m n mn +>-> 6.若关于x 的不等式2k x x >-恰好有4个整数解,则实数k 的范围为( ) A .20,5 ?? ?? ? B .23,55?? ??? C .32,53 ?? ??? D .2,13?? ??? 7.已知223a b ab ++=,0a >,0b >,则2a b +的取值范围_________. 8.等差数列{a n }的前n 项和S n ,且4≤S 2≤6,15≤S 4≤21,则a 2的取值范围为_________. 9.设x ,y 为实数,满足2 38xy ≤≤,2 49x y ≤≤,则3x y 的最小值是______. 10.已知12a b -<<<,则2b a -的范围是______________. 11.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 12.已知二次函数()2 f x ax bx c =++,()411f -≤-≤-,()215f ≤≤,

相关文档
最新文档