一元高次方程解法PPT课件

合集下载

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT教学课件(第1课时)

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT教学课件(第1课时)
实数
特别提醒:(1)二次函数的零点不是点,是二次函数图象与轴交点的横坐标. (2)一元二次方程的根是相应一元二次函数的零点.
A
3.二次函数、一元二次方程、一元二次不等式之间的对应关系
设 ,方程 的判别式
判别式
解不等式 或 的步骤
求方程 的根
.
典例精讲
SCQ NO.1 MIDDLE SCHOOL
题型2 应用“三个二次”之间关系求参数
.
典例精讲
SCQ NO.1 MIDDLE SCHOOL
题型2 应用“三个二次”之间关系求参数
方法指导
运用“三个二次”之间的关系求参数方法根据解集判断二次项系数的符号.一元二次不等式解集的两个端点值即对应一元二次方程的两个根.根据一元二次方程根与系数的关系列方程组求参数.
因为
方程=0的解为
则二次函数草图为
不等式的解集为
不等式的解集为
不等式的解集为R不等式的解集为不式的解集为不等式的解集为
不等式的解集为R
不等式的解集为
不等式的解集为
不等式的解集为
方法指导
SCQ NO.1 MIDDLE SCHOOL
解一元二次不等式的一般方法化标准:不等式右侧化为0,二次项系数化为正整数.判别式:确定对应一元二次方程有无实根.求实根:若有根,求根. 作草图:作出对应二次函数的草图.写解集:结合图像写一元二次不等式的解集.
_ _____________
____
_________________
____
____

续表
注意:对于二次项系数是负数(即a<0)的不等式,需先把二次项系数化为正数再求解.
.
典例精讲
SCQ NO.1 MIDDLE SCHOOL

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件
2
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;

一元高次方程解法

一元高次方程解法

一元高次方程解法
一元高次方程的解法有多种方法,最常用的方法是配方法、因式分解法、求根公式法和牛顿迭代法等。

配方法:将一元高次方程转化为一个多项式乘积等于零的形式,再分别解出每一个因式,即可得到方程的解。

因式分解法:将一元高次方程进行因式分解,再分别解出每个因式,即可得到方程的解。

求根公式法:对于二次以上的高次方程,可以使用求根公式求出方程的根。

例如,对于一元二次方程ax²+bx+c=0,可以使用求根公式x=[-b±√(b²-4ac)]/2a求出方程的根。

牛顿迭代法:通过对方程进行迭代计算,不断逼近方程的解,最终得到方程的解。

这种方法通常需要预先估计方程的解,在这个基础上进行迭代计算。

人教版九年级数学上册《一元二次方程》PPT优秀课件

人教版九年级数学上册《一元二次方程》PPT优秀课件


①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤

审题,弄 清已知量 与未知量 之间的关 系
设 设未知数

找出等量 关系

根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的

一元一次方程及其解法课件

一元一次方程及其解法课件
§3.1 一元一次方程
及其解法
(第1课时)
合肥市五十五中学 陈凤
Байду номын сангаас
问题1:
在2008年北京奥运会中,中国共获得了51枚 金牌,比澳大利亚的3倍还多9枚,问澳大利亚共 获得了多少枚金牌?
解:设澳大利亚共获得了x枚金牌,由题意得,
3x 9 51
问题2 : 王玲今年12岁,她爸爸今年36岁,问:再过几 年,他爸爸的年龄是她年龄的2倍?
1 1 1 x 2 3 6
,那么 1 1 1 x
2 6 3
四、课堂小结
1.今天这节课我们学到了哪些知识?
(1)一元一次方程的概念;
(2)方程的解及方程的检验;
(3)如何运用等式的基本性质解一元一次方程。
2.把你的收获与不足与同伴分享.
一展身手:
必做题:第92页第1,2两题 选做题:
3. (对称性)如果a=b,那么b=a.
4. (传递性)如果a=b,b=c,那么a=c.
下列变形是根据等式哪一条基本性质得到的:
1.如果5x+3=7, 那么5x=4
4 2.如果5x=4, 那么 x 5 1 3.如果-8x=4, 那么 x 2
4.如果3x=2x+1, 那么 x=1 5.如果-0.25=x, 那么 x=-0.25 6.如果
(我国古代数学问题)用绳子量井深,把绳
子3折来量,井外余绳子4尺;把绳子4折 来量,井外余绳子1尺。于是量井人说: “我知道这口井有多深了。”你知道吗? 试一试!
动动手:
同时加上4个小球
同时拿掉1个小球
(3)如果小明和小文身高一样,那么小文 和小明身高一样吗?你能得到等式还 具有什么性质吗?

《一元一次方程》PPT优秀课件

《一元一次方程》PPT优秀课件
列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.

一元高次不等式的解法

一元高次不等式的解法

(5)观察不等号
若不等号为>或≧,则不等式的解取数轴上方,穿根 线以内的范围. 若不等号为<或≦,则不等式的解取数轴下方,穿根 线以内的范围. (6)写出不等式的解集
例题:
求下列不等式的解集:
1、x 2 x 6 0
2、x 2 2 x 8 0
3、 (2 x 5) 9
2
根线不穿过x=a点。
2 n 1 ( x a ) (2)当不等式中出现 (奇次幂)项时, 穿根线穿过x=a点。
注:1、以上x=a叫做方程的2n或2n+1次重根。 2、奇穿过,偶弹回。
例题:
求下列不等式的解集:
1、x2 ( x2 9)(2x2 x - 3) 0
2、 (x -1)2 (-2x 4)(x2 4x 3) 0
一元高次(n≥2)不等式的解法
“数轴标根法”又称“数轴穿根法”或“穿针引线法” 步骤: (1)化简不等式——将不等式的一边化为零,另一边化为n 个一次因式的乘积的形式 如:将 x 3 2 x 2 x 3 1 化为 (x 2)(x 1)(x 1) 0 (2)将不等号换成等号解出方程的所有根
4、x 3x 2x 6 0
3 2
5、 - 3x 2 x 1 0
2
6、( x 3)(x2 x 2) 0
7、(2x2 x 1)(x2 x 2) 0
奇穿偶不穿(奇过偶不过)定律
2n ( x a ) (1)当不等式中出现 (偶次幂)项时,穿
f ( x) g ( x) 0 f ( x) 0 g ( x) g ( x) 0
(4)
将以上分式方程化为整式方程后再用数轴 穿根法求解。

高中数学第三章不等式第2节一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修54

高中数学第三章不等式第2节一元二次不等式及其解法第1课时一元二次不等式的解法课件新人教A版必修54
若(x-m)(x-n)<0,则可得 m<x<n. 有口诀如下:大于取两边,小于取中间. (2)含参数的一元二次型的不等式 在解含参数的一元二次型的不等式时,往往要 对参数进行分类讨论,为了做到分类“不重不漏”, 讨论需从以下三个方面进行考虑:
①关于不等式类型的讨论:二次项系 数 a>0,a<0,a=0.
(2)原不等式可化为(x-5)(x+1)≤0, 所以原不等式的解集为{x|-1≤x≤5}.
(3)原不等式可化为2x-922≤0,所以原不等式 的解集为xx=94.
(4)原不等式可化为 x2-6x+10<0,Δ=(-6)2
-40=-4<0,所以方程 x2-6x+10=0 无实根,又 二次函数 y=x2-6x+10 的图象开口向上,所以原 不等式的解集为∅.
(5)原不等式可化为 2x2-3x+2>0, 因为 Δ=9-4×2×2=-7<0,所以方程 2x2-3x+2=0 无实根,又二次函数 y= 2x2-3x+2 的图象开口向上,所以原不等 式的解集为 R.
解一元二次不等式的一般步骤 (1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式; (3)求出相应的一元二次方程的根,或根据判别式说明方 程没有实根; (4)根据函数图象与 x 轴的相关位置写出不等式的解集.
Δ=b2-4ac Δ>0 Δ=0
Δ<0
y=ax2+
bx+c
(a>0)
的图象
ax2+bx+c=0
(a>0)的根 ax2+bx+c>0 (a>0)的解集
或 x<x1} ax2+bx+c<0 (a>0)的解集
x<x2}
x1,x2

31一元一次方程及其解法第一课时(沪科版)PPT课件

31一元一次方程及其解法第一课时(沪科版)PPT课件

a


你能发现什么规律?
a


你能发现什么规律?
b

a

你能发现什么规律?
b

a

你能发现什么规律?
b
a


a=b
你能发现什么规律?
bc
a


a=b
你能发现什么规律?
a
bc


a=b
你能发现什么规律?
a
bc


a=b
你能发现什么规律?
ac bc


a=b
你能发现什么规律?
bc
ac

(4)如果12,23,那么13 等式性质4
下面,我们利用等式基本性质来解一般的一 元一次方程。
• 解方程: 2x119
解:两边都加上1,得
2x 1 1 1 9 1等式基本性质1

2x20
两边都除以2,得
x10 等式基本性质2
检验:
把 x10 分别代入原方程的两边,得
左边=2 10- 1=19,
右边=19
第一课时
复习导入
请大家观察左
1+2=3 5=7-2 3+b=2b2+1 4+x=7 0.7x=1400 2x-2=6
象这种边用的等这号些“式=子”来,表示 相等关看系看的它式们子有,什叫么等式。
共同的特征?
象这样含有未知数的等式 叫做方程。
判断方程的两个关键要素:
①有未知数 ②是等式
牛刀小试
判断下列各式是不是方程,是的打“√”,不是的打 “x”。

人教版高中数学必修一《2.3 第一课时 一元二次不等式及其解法》课件

人教版高中数学必修一《2.3 第一课时 一元二次不等式及其解法》课件
2.3 二次函数与一元二次方程、不等式
明确目标
发展素养
1.掌握一元二次不等式的解法. 2.能根据“三个二次”之间的
关系解决简单问题. 3.掌握一元二次不等式的实际
应用. 4.会解一元二次不等式中的恒
成立问题.
1.通过解一元二次不等式,培养数学运算 素养.
2.通过“三个二次”关系的应用,提高数 学运算和逻辑推理素养.
3.通过分式不等式的解法及不等式的恒成 立问题的学习,培养数学运算素养.
4.借助一元二次不等式的应用,培养数学 建模素养.
第一课时 一元二次不等式及其解法
(一)教材梳理填空 1.一元二次不等式:
只含有 一个 未知数,并且未知数的最高次数是__2_ 定义
的不等式,称为一元二次不等式 一般 ax2+bx+c>0或ax2+bx+c<0,其中a,b,c均为常 形式 数,a≠0
[典例3] 已知关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},求关于x的 不等式cx2+bx+a<0的解集.
[解] 法一:由不等式 ax2+bx+c>0 的解集为{x|2<x<3}可知 a<0,且 2 和 3 是方程 ax2+bx+c=0 的两根,由根与系数的关系可知ba=-5,ac=6.
故不等式的解集为x12≤x≤2 .
(2)x2-a+1ax+1≤0⇔x-1a(x-a)≤0,
①当 0<a<1 时,a<1a,不等式的解集为xa≤x≤1a

②当 a=1 时,a=1a=1,不等式的解集为{1}; ③当 a>1 时,a>1a,不等式的解集为x1a≤x≤a . 综上,当 0<a<1 时,不等式的解集为xa≤x≤1a ; 当 a=1 时,不等式的解集为{1}; 当 a>1 时,不等式的解集为x1a≤x≤a .

高次方程及解法

高次方程及解法

高次方程及解法一般地,我们把次数大于2的整式方程,叫做高次方程。

由两个或两个以上高次方程组成的方程组,叫做高次方程组。

对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。

对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。

一、1判根法在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。

求出方程的1的根后,将原高次方程用长除法或因式分解法分别除以(某-1)或者(某+1),降低方程次数后依次求根。

“1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。

例1解方程某4+2某3-9某2-2某+8=0解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(某-1),(某4+2某3-9某2-2某+8)(某-1)=某3+3某2-6某-8观察方程某3+3某2-6某-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式(某+1),(某3+3某2-6某-8)(某+1)=某2+2某-8,对一元二次方程某2+2某-8=0有(某+4)(某-2)=0,原高次方程某4+2某3-9某2-2某+8=0可分解因式为:(某-1)(某+1)(某-2)(某+4)=0,即:当(某-1)=0时,有某1=1;当(某+1)=0时,有某2=-1;当(某-2)=0时,有某3=2;当(某+4)=0时,有某4=-4点拨提醒:在运用“1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。

二、常数项约数求根法根据定理:“如果整系数多项式an某n+an-1某n-1++a1某+a0可分解出因式P某-Q,即方程an某n+an-1某n-1++a1某+a0=0有有理数根(P、Q是江苏省通州高级中学徐嘉伟互质整数),那么,P一定是首项系数an的约数,Q一定是常数项a0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT【精品课件】

《二次函数与一元二次方程、不等式》一元二次函数、方程和不等式PPT【精品课件】
(2)形式:
①ax2+bx+c>0(a≠0);
②ax2+bx+c≥0(a≠0);
③ax2+bx+c<0(a≠0);
④ax2+bx+c≤0(a≠0).
(3)解集:一般地,使某个一元二次不等式成立的x的值叫做这个不
等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次
不等式的解集.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
零点不是点,是一个实数.零点就是函数对应方程的根.
(2)二次函数y=x2-5x的图象如图所示.
当x为何值时,y=0?当x为何值时,y<0?当x为何值时,y>0.
上述各种情况下函数图象与x轴有什么关系?
提示:当x=0或x=5时,y=0.此时图象与x轴交于两个点(0,0)和(5,0);
当0<x<5时,y<0,函数图象位于x轴下方,此时x2-5x<0;
3.借助一元二次函
数的图象,了解一
元二次不等式与相
等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件
当x<0或x>5时,y>0.此时函数图象位于x轴上方,此时x2-5x>0.
《二次函数与一元二次方程、不等式 》一元 二次函 数、方 程和不 等式PP TPPT 课件完 美课件p pt优秀 课件ppt下载ppt课件课 件免费 下载pp t精品 课件

一元一次方程及其解法PPT课件(沪科版)

一元一次方程及其解法PPT课件(沪科版)

这节课你学到了什么?
1、移项 移项时要改变符号.
2、解一元一次方程的一般步骤 (1)去括号; (2)移项; (3)合并同类项; (4)把未知数x的系数化成1; (5)得到方程的解.
移项,得 3x – 5x = - 7 – 5
合并同类项 ,得 -12x=-12. 系数化1,得 x=2.
注意:移项要变号哟!
例3 解方程:2(x-2)-3(4x-1)=9(1-x);
解:⑴去括号得 2x-4-12x+3=9-9x. 移项,得2x-12x+9x=9+4-3.
合并同类项,得-x=10. 两边除以-4,得x=-10 .
请你判断
例 下列方程变形是否正确?
⑴6-x=8,移项得x-6=8.
错 -x=8-6.
⑵6+x=8,移项得x=8+6.
错 x=8-6.
⑶3x=8-2x,移项得3x+2x=-8.
错 3x+2x=8.
(4)5x-2=3x+7,移项得5x+3x=7+2.
错 5x-3x=7+2.
例1 解下列方程:
1 x 2 x 1.
回顾与思考
1、解方程的基本思想是经过对方程一系列的变形, 最终把方程转化为“x=m”的情势.
即:①等号左、右分别都只有一项,且左边是未知数项, 右边是常数项; ②未知数项的系数为1.
2、目前为止,我们用到的对方程的变形有:
等号两边同加减(同一代数式)、 等号两边同乘除(同一非零数) 等号两边同加减的目的是: 使项的个数减少; 等号两边同乘除的目的是: 使未知项的系数化为1.
沪科版七年级上册
问题1
在参加2008年北京奥运会的中国代表 队中,羽毛球运动员有19人,比跳水 运动员的2倍少1人。参加奥运会的跳 水运动员有多少人?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元三次求根法
• 先把方程 ax3 bx2 cx d 0 化为 x3 px q 0
y1

3
ห้องสมุดไป่ตู้
q 2

(q)2 ( p)3 3 q
23
2
(q)2 ( p)3 23
y2
3

q 2

(q)2 ( p)3 2 3 q
23
2
(q)2 ( p)3 23
原方程转化为 y 14 y 14 16 y 12 2 y 12 2 16,
• (y4+4y²+1+4y³+2y²+4y)+(y4+4y²+1-
4y³+2y²-4y)=16 y4+6y²=0 , y2 7y2 1 0,
y²=-7 或y²=1,y²=-7无解;y2=1, y=1 x-7=1 x1=8 x2=6
三、倒数方程求根法
• 1、定义:系数成首尾等距离的对称形式的方程,叫做倒数方程。如a x4+bx3+cx2+dx+e=0,其中, 或者a= -e,b= -d
• 2、性质:倒数方程有三条重要性质:
• (1)倒数方程没有零根;
• (2)如果a是方程的根,则 1 也是方程的根;
a
• (3)奇数次倒数方程必有一个根是-1或者1,分解出因式(x+1) 或(x-1) 后降低一个次数后的方程仍 是倒数方程。
• 分析 求解的思想方法是“降次”,通过换元把它转化为一元二次方程. 2.例题分析
例:解下列方程:
(1) x 4 9x 2 14 0

• ①△>0,y1y2>0,y1+y2>0 ∴原方程有四个实数根.
• ②△>0,y1y2>0,y1+y2<0 ∴原方程没有实数根.
• ③△>0,y1y2<0,
• 观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x³的 系数与x的系数相同,像这样的方程我们称为倒数方程由



SUCCESS
THANK YOU
2019/7/20
• 解方程(x-2)(x+1)(x+4)(x+7)=19.

解 把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得
一元高次方程的解法
•特殊的一元高次方程的解法 •一般的高次方程及解法 数本1202 张银星
1.概念辨析
• 二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另 一边是零,那么这样的方程就叫做二项方程
一般形式: • 关于x的一元n次二项方程的一般形式为
• axn b 0(a 0, b 0, n是正整数)
• (x2+5x-14)(x2+5x+4)=19.
•设
• •则
(y-9)(y+9)=19,
•即
y²-81=19.

一般的高次方程及解法
• 一、 1判根法
• 例 解方程x4+2x³-9x²-2x+8=0 • 二、常数项约数求根法 • 例1 解方程x4+2x³-4x²-5x-6=0 • (高代第一章的方法)
• 当n为偶数时,如果ab<0,那么方程有两个实数 根,且这那么方程没有实数根.两个根互为相反数; 如果ab>0,那么方程没有实数根.
2.概念辨析
• (1) 双二次方程:只含有偶数次项的一元四次方程. • 注 当常数项不是0时,规定它的次数为0. • (2)一般形式:
ax 4 bx 2 c 0(a 0)
• 3、倒数方程求解方法:

• 如果a x4+bx³+cx²+dx+e=0是倒数方程,由于倒数方程没有零根,即x 0,所以,方程两边同除以x²
得:a(x²+ 1 )+b(x+1)+e=0,令x+1 =y, x²+ 1=y²-2,即原方程变为:
x2
x
x
x2
• ay²+by+(e-2a)=0, 解得y值,再由x+ 1 =y,解得x的值。
x
• 例1 解方程2 x4+3x3-16x²+3x+2=0
四、双二次方程及推广形式求根法
• 例 (x-6)4+(x-8)4=16 • 解:本题属于双二次标准方程ax4+bx²+c=0
推广形式的第四种类型(x-a)4+(x-b)4=c的 形式 x 6 x 8 x 7 • (x-6)4+(x-8)4=2(x-7+1)4+(x-7-1)4,设y=x-7则
∴原方程有两个实数根.
• ④△<0
∴原方程没有实数根.
• (2) (x²+x)²-5x²-5x=6.
• (3)(2x²-3x+1)²+4x²-1=6x ;
因式分解法
• 例题. x³-2x²-4x+8=0.

解 原方程可变形为
• x²(x-2)-4(x-2)=0, (x-2)(x²-4)=0, (x-2)²(x+2)=0.
• 所以 x1=x2=2,x3=-2.
归纳:
• 当ad=bc≠0时,形如ax³+bx²+cx+d=0的方程可这样解决:
• 令,则a=bk,c=dk,于是方程ax³+bx²+cx+d=0可化为 bkx³+bx²+dkx+d 即 (kx+1)(bx²+d)=0.
倒数方程
• 例.12x4-56x³+89x²-56x+12=0.
• 注 ①=0(a≠0)是非常特殊的n次方程,它的根是0. • ②这里所涉及的二项方程的次数不超过6次.
• 例(1)
1 x 5 16 0 2
• (2) x 4 16
• 结论:对于二项方程
axn b 0(a 0,b 0, n是正整数)
• 当n为奇数时,方程有且只有一个实数根.
y3
2
3

q 2

(q)2 ( p)3 3 q
23
2
(q)2 ( p)3 23
一元四次求根法
•将
移项
• 俩边同时加上



• 变形
左边配方 俩边同时加上
成三次方程
SUCCESS
THANK YOU
2019/7/20
相关文档
最新文档