随机变量与数字特征讲解

合集下载

4.1随机变量的数字特征剖析.

4.1随机变量的数字特征剖析.


f
(x, y)
fX (x) fY ( y)

1
2
x2 y2
e2

E(max{X ,Y}) max{x, y} f (x, y)dxdy
max{x, y} f (x, y)dxdy
D1
max{x, y} f (x, y)dxdy
D2
D1 D2

描述两个 r.v.之间的某种关系的 数 —— 协方差与相关系数
§4.1随机变量的数学期望
引例 学生甲乙参加数学竞赛, 观察其胜负
初 复决 赛 赛赛
总 成 绩
算术 加 权 平 均 平均 3:3:4 2:3:5 2:2:6
甲 90 85 53 228 76 73.7 70.0 66.8 乙 88 80 57 225 75 73.2 70.1 67.8
胜者 甲 甲 乙 甲 甲 甲 乙 乙

3
xi pi 90 0.2 85 0.3 53 0.5
i1
70.0
为这 3 个数字的加权平均
数学期望的概念源于此
数学期望的定义
设 X 为离散 r.v. 其分布为
P( X xk ) pk , k 1,2,

若无穷级数 xk pk 绝对收敛, 则称
解 (1) 设整机寿命为 N ,
N

k
min {
1, 2 ,, 5
X
k
}
5
FN (x) 1 (1 Fk (x)),
k 1
1 e5x , x 0,

0,
其它,
5e5x , x 0,
fN (x)
0,

随机变量的分布与数字特征

随机变量的分布与数字特征
决策树分析
在决策树中,期望值可以用于评估每个分支的预 期收益或损失,以选择最优路径。
概率分布的确定
通过计算期望值,可以确定概率分布的中心趋势 和平均水平。
03
方差与其他数字特征
方差的定义与性质
方差是衡量随机变量离散程度的量,其计算公 式为:$sigma^2 = E[(X-mu)^2]$,其中$X$ 是随机变量,$mu$是期望值,$E$表示期望。
离散概率分布的性质
离散随机变量的概率分布具有非负性、归一性和可加性。
连续随机变量的分布
连续随机变量
连续随机变量是在一定范围内可以连续取值的随机变量,例如人 的身高。
连续概率分布
连续随机变量的概率分布可以表示为一个概率密度函数,该函数描 述了随机变量在各个取值范围内的概率。
连续概率分布的性质
连续随机变量的概率分布具有非负性、归一性和可积性。
随机变量的分布与数 字特征
目 录
• 随机变量的分布 • 随机变量的期望值 • 方差与其他数字特征 • 协方差与相关系数 • 随机变量的其他数字特征
01
随机变量的分布
离是在一定范围内可以一一列举出来的随机变量,例 如投掷一枚骰子出现的点数。
离散概率分布
离散随机变量的概率分布可以表示为一系列概率值的集合,每个 概率值对应一个可能的结果。
分位数
分位数
描述数据分布的位置。例如,中位数是位于数据中间 的数,表示数据的中心位置;上四分位数和下四分位 数分别表示位于数据分布的25%和75%位置的数。
计算方法
对于任意给定的概率p,分位数qp = inf{x | F(x) ≥ p}
THANKS FOR WATCHING
感谢您的观看
利用数学软件计算

随机变量及数字特征PPT课件

随机变量及数字特征PPT课件

三、连续型随机变量
1、连续型随机变量及其分布密度 若随机变量 X ,存在非负函数 f (x) ,有
b
P (a X b ) P { X [a ,b ]} af(x )d x
则称 X 为连续型随机变量,称函数 f (x) 为 X 的概率密度函数 ,简称概率密度或密度函数。
密度函数 f (x) 的性质:
概率 P(aXb) 就是面积值
例1 设随机变量 X 有概率密度
f(x) 0 A
axb(ab) 其它
则称 X 服从区间[a,b ]上的均匀分布(常用分布),
试求常数A。
解 由密度函数的性质可得: f(x)dx1


f (x)dx
b
A dx A x
b
A(ba)1
解:设 1 元本金所带来的赢利为 X 元,
费站的汽车数不超过3辆的概率。
解: 由于 X~P(10), 所求概率为
P{X 3} P { X 0 } P { X 1 } P { X 2 } P { X 3 }
14 100e 1010e 10102e 10103e 10 0! 1 ! 2! 3! 0.0103
X0 1 2 3 4 5
p p0 p1 p2 p3 p4 p5
(2)恰有 3 人反应为阳性的概率。
P ( X 3 ) P 3 C 5 3 0 .4 5 3 0 .5 5 5 3 0.275653
例4 (3)求至少有 2 人反应为阳性的概率。 X B(5 , 0.45)
用 X 表示在 n 次试验中事件A发生的次数,则
P { X k } C n kp k( 1 p )n k
(1)、二项分布 若一个随机变量 X 的概率分布律是:

论随机变量与随机变量的数字特征

论随机变量与随机变量的数字特征

论随机变量与随机变量的数字特征
随机变量是随机试验的结果,它可以取不同的取值,并且
每个取值都有相应的概率与之对应。

随机变量的数字特征
是对其分布进行度量和描述的统计量。

常见的随机变量的数字特征包括:
1. 期望值(均值):用于表示随机变量平均取值的数字特征。

对于离散型随机变量X,其期望值为E(X),定义为每
个取值乘以其概率的加权平均值。

对于连续型随机变量X,其期望值为E(X),定义为函数f(x)乘以其概率密度函数的加权积分。

期望值可以理解为随机变量对应分布的中心位置。

2. 方差:用于表示随机变量取值的离散程度。

方差越大,
随机变量的取值波动越大。

方差的计算公式为Var(X) =
E((X - E(X))²),其中E表示期望值。

3. 标准差:标准差是方差的平方根,用于衡量随机变量取
值的波动程度。

标准差越大,随机变量的取值波动越大。

4. 偏度:偏度衡量随机变量的离散程度和分布的对称性。

正偏表示分布右尾比左尾重,负偏表示分布左尾比右尾重,偏度为0表示分布左右对称。

5. 峰度:峰度衡量随机变量分布的尖峰程度。

正态分布的峰度为3,大于3表示比正态分布尖峰,小于3表示比正态分布平坦。

这些数字特征可以帮助我们更好地理解和描述随机变量的分布特点,从而进行数据分析和统计推断。

随机变量的数字特征

随机变量的数字特征

例 若随机变量X的概率密度为
f(x)(1 1x2), x
则称X服从柯西(Cauchy)分布。

|x|
f(x)d x (1| x|x2)dx 发散
所以柯西分布的数学期望不存在。
《医药数理统计方法》
§3.1
三、数学期望的性质
1、E(C)=C 2、E(CX)=C×E(X) 3、E(X±Y)=E(X)±E(Y)
n
n
3)设X1,X2,…,Xn相互独立,则 V(Xi)V(Xi)
i1
i1
V (1 n i n 1X i) n 1 2i n 1 V (X i) 1 n [1 n i n 1 V (X i)]
解:红细胞的变异系数为 C V(X1)4 0..1 27 98 16.965%
血红蛋白的变异系数为
10.2 C V(X2)117.68.673%
所以,血红蛋白的变异较大。
《医药数理统计方法》
§3.2
二、方差的性质
1、V(C)=0 证明:V(C)=E{[CE(C)]2} =E[(CC)2]=0
2、V(CX)=C2V(X) 证明:V(CX)=E{[CXE(CX)]2}
而 E (X 2 ) E (X X ) E (X )E (X ) 1 1 1
339
计算是错误的!!
《医药数理统计方法》
§3.2
§3.2 方差、协方差和相关系数
一、方差 二、方差的性质 三、其他数字特征
《医药数理统计方法》
§3.2
一、方差
例3.15 为了比较甲、乙两个专业射击运动 员的技术水平,令每人各射击5次,分别以 X1,X2表示他们射击的环数,结果如下:

E(X) xf(x)dx

第四章随机变量的数字特征解读

第四章随机变量的数字特征解读

f
(x)
1 π(x2 1)
,
x
求E(X )
解:E(X ) 1
π
x (x2 1) dx
因为广义积分
| x | (x2 1)
dx
不收敛
所以E( X )不存在
二、二维随机变量的数学期望
定义二维随机变量 (X ,Y )数学期望为 E(X ,Y ) (EX , EY )
设二维随机变量 (X ,Y )的联合分布律为
X
x1
pk f (x1)x1
x2

xk …
f (x2)x2 … f (xk) xk …
它的数学期望是
lim
0 k
xk
f
(xk
)x k
x f
( x)dx
x f (x)dx
的积分和式
这启发我们引出如下连续型随机变量的数学期望定义:
2、连续型随机变量的数学期望
定义2 设连续型随机变量 X的概率密度为 f (x), 若积分
第四章 随机变量的数字特征
第一节 第二节 第三节 第四节 第五节
数学期望 方差 协方差与相关系数 矩 协方差矩阵 二维正态分布
引言
前面的课程中,我们讨论了随机变量及其分布,如果知道 了随机变量X 的概率分布,那么X 的全部概率特征也就知道了.
p(x)
f (x)
o
x
o
x
但在实际问题中,概率分布一般是较难确定的. 而且在 一些实际应用中,人们并不需要知道随机变量的一切概率 性质,只要知道它的某些数字特征就够了.
例如,评定一批灯泡的质量, 主要应看这批灯泡的平均 寿命和灯泡寿命相对于平均寿命的偏差.平均寿命越长,灯泡 的质量就越好,灯泡寿命相对于平均寿命的偏差越小,灯泡的 质量就越稳定.

概率论与数理统计课件:随机变量的数字特征

概率论与数理统计课件:随机变量的数字特征
随机变量的数字特征
首页 返回 退出
例7 (正态分布的数学期望)设 X ~ N( μ, σ 2 ), 求E(X).
解:
E(X) =
+
-
xf ( x )dx =
+
-
1
x
e
2πσ
( x - μ )2
2σ 2
dx
x-μ
, 则
令 t=
σ
E(X) =
+
-
t2
2
t2
+ 2
-
1
μ
( μ + t σ)
+
若级数 | g( xk ) | pk < + , 则 Y = g( X ) 的数学期望为
k =1
+
E(Y ) = E(g( X )) = g( xk ) pk
k =1
随机变量的数字特征
首页 返回 退出
定理4.2 (连续型随机变量函数的数学期望) 设连续型随
机变量X的概率密度函数为f(x),若
随机变量的数字特征
第一节 随机变量的数学期望
第二节 方差
第三节 协方差和相关系数
第四节 R实验
随机变量的数字特征
首页 返回 退出
第一节 随机变量的数学期望
一、离散型随机变量数学期望
二、连续型随机变量数学期望
二、随机变量函数的数学期望
三、数学期望的性质
随机变量的数字特征
首页 返回 退出2
§4.1随机变量的数学期望
P{X = xi } = pi , i = 1,2,
如果
+
| x
i
.
| pi < +

专题06 离散型随机变量及其分布列、数字特征(解析版)

专题06 离散型随机变量及其分布列、数字特征(解析版)

06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。

随机变量的数字特征

随机变量的数字特征

随机变量的数字特征随机变量是概率论中的重要概念,描述了在一定概率分布下可能取得的不同取值。

在实际问题中,我们常常需要对随机变量的数字特征进行分析,以揭示其分布规律和潜在规律。

本文将介绍随机变量的数字特征及其应用。

1. 期望值期望值是描述随机变量平均取值的一个重要数字特征。

对于离散型随机变量,期望值的计算公式为:$$ E[X] = \\sum_{i} x_i \\cdot P(X = x_i) $$其中,X表示随机变量,x i为X可能取得的值,P(X=x i)为X取值为x i的概率。

对于连续型随机变量,期望值的计算公式为:$$ E[X] = \\int_{-\\infty}^{\\infty} x \\cdot f(x) dx $$其中,f(x)为X的概率密度函数。

2. 方差方差是描述随机变量取值分散程度的数字特征。

对于离散型随机变量,方差的计算公式为:Var[X]=E[(X−E[X])2]对应连续型随机变量的方差计算公式为:$$ Var[X] = \\int_{-\\infty}^{\\infty} (x - E[X])^2 \\cdot f(x) dx $$3. 协方差协方差描述了两个随机变量之间的线性相关性。

对于两个随机变量X和Y,其协方差的计算公式为:Cov[X,Y]=E[(X−E[X])(Y−E[Y])]协方差的正负值表示了两个随机变量的相关性程度,当协方差为正时,表示两个随机变量正相关,为负时表示负相关。

4. 相关系数相关系数是协方差标准化后的结果,用以衡量两个随机变量之间的线性相关性强弱。

相关系数的计算公式为:$$ \\rho_{X,Y} = \\frac{Cov[X,Y]}{\\sigma_X \\cdot \\sigma_Y} $$其中,$\\sigma_X$和$\\sigma_Y$分别为X和Y的标准差。

相关系数的取值范围在-1到1之间,绝对值越接近1表示相关性越强。

5. 大数定律大数定律是概率论中的一个重要定理,指出在独立重复试验中,随着试验次数的增多,样本平均值将趋近于总体期望值。

第4章随机变量的数字特征讲述介绍

第4章随机变量的数字特征讲述介绍

应用概率统计
第21页
返回目录
例 设二维随机变量 ( X , Y ) 的分布律为
X
0
Y
0
1
1 8
1 2
1 4
2 求 E ( X ) 与 E ( XY ) .
1 8
解法1
1 1 1 1 5 E( X ) 0 0 2 2 8 4 2 8 4 1 1 1 1 1 E ( XY ) 0 0 0 1 2 0 2 1 8 4 2 8 4
应用概率统计
应用概率统计
第2页
返回目录
第4章 随机变量的数字特征
§ 1 § 2 随机变量的数学期望 随机变量的方差
§3
协方差与相关系数
第4章习题课
应用概率统计
第3页
返回目录
第4章 随机变量的数字特征
每个随机变量都有一个概率分布,概率分布是 对随机变量的统计特性的完整描述,由概率分布可 得出具体随机事件的概率或随机变量落入某个区间 的概率.但在许多实际问题中,人们并不需要知道 关于随机变量完整的分布情况, 而只需要知道随机 变量某一个侧面直观的统计特征.
定理 如果 X 是离散型随机变量, 概率分布为
PX xi pi , i 1,2,. Y g ( X ) 为随机变量 X
的连续函数.若级数 g ( xi ) pi 收敛,则 Y 的数学期
i
望是
E ( g ( X ))
i 1

g( xi )
pi
应用概率统计
第17页
密度为 p ( x, y ) , Z g ( X , Y ) 是随机变量 X , Y 的连续 函数.若 学期望为

第三章 随机变量的数字特征

第三章 随机变量的数字特征
概率论
第三章 随机变量(向量)的数字特征
§3.1 随机变量的数学期望 §3.2 随机变量的方差 §3.3 协方差与相关系数
为了完整的描述随机变量的统计特性,自然应该知道 其分布函数,因为随机变量的分布函数可以反映随机变量 取值的规律。但是在实际问题中,一方面随机变量的分布 或分布函数并不都是容易求得的,另一方面,往往也不需 要知道随机变量的详尽的概率分布,而仅需要知道其某些
四、随机变量函数的数学期望 1. 一元随机变量函数的情况 设Y g( X )是随机变量 X的函数, (1)离散型
如果随机变量X 的概率函数为 P{ X xk } pk k 1, 2, 则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1
(2)连续型
x2
1 n
Pk
n
… xi … 1 n
… xn … 1 n
E ( X ) x1 1 x2 1 ... xn 1 1 xi n n n n
i 1
2.两点分布 由数学期望的定义
E( X ) p
X pi
0
1
q
p
3. 二项分布 若随机变量 X ~ B(n, p) ,其概率函数为
xR
( x )2 2 2
1 E ( X ) xf ( x)dx xe 2 t2 (x ) 1 令t ( t )e 2 dt 2 t2 1 e 2 dt 2
dx
解:由上面的公式
1 1 2 E (W ) kv f (v)dv kv dv ka a 3 0
2 2 a
例3.6 设X与Y相互独立,它们的概率密度函数分别为

(完整)第四章随机变量的数字特征总结,推荐文档

(完整)第四章随机变量的数字特征总结,推荐文档

随机变量的数字特征——总结第四章 随机变量的数字特征㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置.1、数学期望的定义(1) 定义 离散型和连续型随机变量X 的数学期望定义为{}⎪⎩⎪⎨⎧==⎰∑∞∞- d )( )()( ,,连续型离散型x x xf x X x X kk k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在.①常见的离散型随机变量的数学期望1、离散型随机变量的数学期望 设离散型随机变量的概率分布为,若,则称级数为随机变量的数学期望(或称为均值),记为, 即2、两点分布的数学期望 设服从0—1分布,则有,根据定义,的数学期望为. 3、二项分布的数学期望 设服从以为参数的二项分布,,则。

4、泊松分布的数学期望 设随机变量服从参数为的泊松分布,即,从而有。

①常见的连续型随机变量的数学期望1)均匀分布设随机变量ξ服从均匀分布,ξ~U [a ,b ] (a <b ),它的概率密度函数为:随机变量的数字特征——总结= 则=∴ E(ξ)=(a+b)/2.即数学期望位于区间的中点.2)正态分布设随机变量ξ服从正态分布,ξ~N(μ,σ2),它的概率密度函数为:(σ>0,- <μ<+)则令得∴ E(ξ)=μ .3)指数分布设随机变量服从参数为的指数分布,的密度函数为 ,则.(2) 随机变量的函数的数学期望设为连续函数或分段连续函数,而X是任一随机变)(xgy=量,则随机变量的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出的概)(XgY=Y率分布再求其数学期望;对于二元函数,有类似的公式:),(YXgZ=(){}⎪⎩⎪⎨⎧===⎰∑∞∞.;(连续型)离散型-d)()()()(xxfxgxXxgXgY kkkPEE()(){}()()()()⎪⎩⎪⎨⎧====⎰⎰∑∑∞∞-∞∞-.;连续型离散型dd,,,,,yxyxfyxgyYxXyxgYXgZi jjijiPEE设(,)X Y为二维离散型随机变量,其联合概率函数(,),,1,2,,i j ijP X a Y b p i j====如果级数(,)i j ijj ig a b p∑∑绝对收敛,则(,)X Y的函数(,)g X Y的数学期望为随机变量的数字特征——总结[(,)](,)ijijjiE g X Y g a b p =∑∑; 特别地();()i ijj ijiij iE X a p E Y b p==∑∑∑∑.设X 为连续型随机变量,其概率密度为()f x ,如果广义积分 ()()g x f x dx+∞-∞⎰绝对收敛,则X 的函数()g X 的数学期望为[()]()()E g X g x f x dx+∞-∞=⎰.设(,)X Y 为二维连续型随机变量,其联合概率密度为(,)f x y ,如果广义积分(,)(,)g x y f x y dxdy+∞+∞-∞-∞⎰⎰绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)(,)E g x y g x y f x y dxdy+∞+∞-∞-∞=⎰⎰;特别地()(,)E x xf x y dxdy +∞+∞-∞-∞=⎰⎰,()(,)E Y yf x y dxdy+∞+∞-∞-∞=⎰⎰.注:求E(X,Y)是无意义的,比如说二维(身高,胖瘦)的数学期望是无意义的,但是二维随机变量函数Z= E(X,Y)是有意义的,他表示的是函数下的另一个一维意义。

《概率论与数理统计》课件 第七章 随机变量的数字特征

《概率论与数理统计》课件 第七章 随机变量的数字特征

i 1,2, , 如果 xi pi , 则称 i 1 E( X ) xi pi 为随机变量X的数学期望; i 1
或称为该分布的数学期望,简称期望或均值.
(2)设连续随机变量X的密度函数为p( x),
如果
+
x p( x)dx ,
则称
-
E( X ) xp( x)dx 为随机变量X的数学期望.
5
例2.求二项分布B(n, p)的数学期望.
P(X
k)
n!
k!n
k !
pk
(1
p)nk ,k
1, 2,
, n.
n
解:EX kP{ X k}
k0
n
k
k0
n!
k!n
k !
pk
(1
p)nk
n
np
k 1
k
n 1! 1!n
pk1
k!
(1
p)nk
np[ p (1 p)]n1 np.
特别地,若X服从0 1分布,则EX p.
6
例3. 求泊松分布P( )的数学期望.
注:P( X k) k e , k 1, 2, .
k!
解:EX k k e e
k1
e
k1
k0 k !
k1 k 1 !
k1 k 1 !
ee
e x 1 x 1 x2 1 xn [这里,x ]
当 a 450时,平均收益EY 最大.
28
第二节 方差与标准差
29
引例
比较随机变量X、Y 的期望
X3 4 5 Y1 4 7 P 0.1 0.8 0.1 P 0.4 0.2 0.4
01 2 3 4 5 67

大学课件概率论与数理统计第4章随机变量的数字特征

大学课件概率论与数理统计第4章随机变量的数字特征

(3) Ef (X) g(X) E[f (X)] E[g(X)]
特别地 E[X Y] E[X] E[Y]
E[aX bY c] aE[X] bE[Y] c
(4) 若X, Y相互独立,则E[XY] E[X] E[Y]
(5) 若a X b,则E[X]存在,且a E[X] b
注:这些性质可以推广到多个随机变量上。
E[X] (1) 125 75 2 15 3 1 17 216 216 216 216 216
由于平均赢利小于0,故这一游戏规则对下注 者是不利的。
离散型随机变量函数的数学期望
已知P( X xk ) pk,当 g( xk ) pk 时,
k
g(X)的数学期望为
E[g(X)] g(xk )P(X xk )
E[ X ] 1 0.910 11(1 - 0.910) 7.513 10
结论:分组化验法的次数少于逐一化验法的次数
二、连续型随机变量的数学期望
设X是连续型随机变量,其密度函数为f (x),在
数轴上取很密的分点x0 <x1<x2< …,则X落在小区
间[xi, xi+1)的概率是
阴影面积近似为
9 P(X 9) 10 P(X 10)
由于打出环数的概率不同,所以不 是1到10的算术平均.
1.离散型随机变量的数学期望
设随机变量X的分布律为 P( X xk ) pk ,
若当 xk pk 时,则称 xk pk 为随机
k
k
变量X的数学期望或均值,记作 E[ X ] ,即有
E[ X ] xk pk xk P(X xk )
均匀分布的期望
例7 设X服从均匀分布,其分布密度为
x
b

随机变量的数字特征

随机变量的数字特征

随机变量的数字特征
随机变量的数字特征包括均值、方差、标准差、偏度和峰度等。

其中,均值是衡量随机变量中心位置的指标,是所有取值的平均数;方差是随机变量离均值的距离平方的平均数;标准差是方差的算术平方根,也是随机变量离均值距离的度量,具有与随机变量相同的量纲;偏度是随机变量概率分布的偏斜程度,为其分布的非对称程度的度量;峰度则是随机变量概率分布的尖锐程度,衡量随机变量的概率分布在平均值附近的峰值高低。

可以通过计算公式来求解以上数字特征,例如均值的计算公式为所有取值的总和除以取值的数量;方差的计算公式为将每个取值与均值的差值平方后的总和除
以取值的数量;标准差的计算公式则是方差的算术平方根;偏度的计算公式为三阶中心矩与标准差的比值;峰度的计算公式为四阶中心矩与标准差的四次幂的比值。

了解随机变量的数字特征有助于描绘随机变量的特征与规律,进而分析和预测其行为。

同时,对于特定应用领域,也需要针对性地选择数字特征进行分析,以
更好地满足应用的需求。

论随机变量与随机变量的数字特征

论随机变量与随机变量的数字特征

论随机变量与随机变量的数字特征随机变量及其数字特征在概率论与数理统计分析中十分重要,对于各种实际问题的解决也具有重要意义。

本文将深入探讨随机变量、离散型变量与连续型变量的数字特征,包括期望、方差、标准差等。

一、随机变量概述随机变量是指随机试验结果的数量特征,它的取值可用实数表述。

不同随机变量的特点在于随机试验中所涉及的数字特征,在数理统计中也常被称为分布。

随机变量不仅包括离散型变量,也包括连续型变量。

离散型随机变量:随机变量的取值为有限个、可数个或以可数集合为极限的无限个,如正面朝上的硬币抛掷次数、某件产品的次品数量等。

连续型随机变量:随机变量的取值为一个区间内的任意实数值,如某温度范围内某随机位置的温度、某个时间范围内某地区的降雨量等。

二、随机变量数字特征1.期望期望是随机变量的中心度量,用于描述随机变量的平均水平。

设X为某一离散型或连续型随机变量,则其期望记为E(X),其计算公式如下:离散型随机变量:E(X)=Σ(x_i*p_i)连续型随机变量:E(X)=∫x f(x) dx其中,x_i为随机变量X的取值,p_i为相应取值出现的概率,f(x)为连续型随机变量X的概率密度函数。

例如,有一枚公正的硬币,抛掷每面朝上的概率都是1/2,抛掷n次后正面朝上的平均次数为E(X)=np,其中p=1/2。

再例如,有一篮子数十个苹果,其中红苹果占1/5,蓝苹果占2/5,绿苹果占2/5,随机抽取一个苹果,苹果颜色为随机变量X,其期望为E(X)=1/5*1+2/5*2+2/5*3=2.2。

2.方差方差是随机变量X的离散程度的度量,它描述了随机变量与其期望的偏离程度。

设X为某一离散型或连续型随机变量,则其方差记为Var(X),其计算公式如下:离散型随机变量:Var(X)=Σ(x_i-E(X))^2*p_i连续型随机变量:Var(X)=∫(x-E(X))^2*f(x) dx其中,x_i为随机变量X的取值,p_i为相应取值出现的概率,f(x)为连续型随机变量X的概率密度函数。

第四章-随机变量的数字特征PPT课件

第四章-随机变量的数字特征PPT课件

k 1
k 1
变量X的数学期望,记为E(X),即
EX xk pk k1
§4.1 数学期望
关于定义的几点说明 (1) E(X)是一个实数,而非变量,它是一种加权平均,与
一般的算术平均值不同 , 它从本质上体现了随机变量 X 取可能值的真正的平均值, 也称均值.
(2) 级数的绝对收敛性保证了级数的和不随级数各 项次序的改变而改变 , 之所以这样要求是因为数学期望 是反映随机变量X 取可能值的平均值,它不应随可能值的 排列次序而改变.
❖ 例3:设 X(),求 E (X)。
解 : X 的 分 布 律 为 : P ( X k ) k e k 0 , 1 , 0 k ! X的 数 学 期 望 为 :
E(X) k ke
k0 k!
e
k1
k1
(k 1)!
ee
即E(X)
§4.1 数学期望
三、连续型随机变量的数学期望
设连续型随机变量X 的概率密度为f ( x), 若积分
§4.2 方差
(2) 利用公式计算
D (X ) E (X 2 ) [E (X )2 .] 证明 D (X ) E {X [ E (X )2 } ]
E { X 2 2 X ( X ) E [ E ( X )2 } ] E ( X 2 ) 2 E ( X ) E ( X ) [ E ( X )2] E (X 2)[E (X )2] E (X2)E 2(X).
§4.1 数学期望
❖ 例2:某车站每天8:00—9:00,9:00—10:00都恰有一 辆客车到站,但到站的时刻是随机的,且两者到站的时间 相互独立。其规律为
8:10 8:30 8:50
到站时刻
9:10 9:30 9:50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5. 设 X ~ N ( 1, 4 2 ) ,求 P X 1 8。
解:P X 1 8 P( 8 X 1 8) 8 X1 8 P 4 4 4 P( 2 Y 2)
Φ ( 2 ) Φ ( 2 ) Φ ( 2) [1 Φ ( 2)] 2 Φ ( 2) 1 0.9544
C C 1 P ( X 2) 2 10 C5
1 1 1 1
1 1 C2 C1 2 P ( X 3) 2 10 C5
1 1 C4 C1 4 P ( X 5) 2 10 C5
1 1 C3 C1 3 P ( X 4) 2 10 C5
概率分布列为
X
2
1 10
3
2 10
4
3 10
5
4 10
P
二、理解随机变量期望和方差的概念及性质, 熟练掌 握其计算方法。
E ( X ) ห้องสมุดไป่ตู้ x k pk
E ( X ) xf ( x )dx

X ~ pk
X ~ f ( x)
k
期望的性质:
E (aX b) aE ( X ) b
D( X ) ( x k E ( X )) pk
2
X ~ pk
X ~ f ( x)
D( X )
x E ( X )

k
2
f ( x )dx
方差的性质: 2 D(aX b) a D( X )
知道方差的计算公式:
D( X ) E[ X E ( X )]2 E ( X 2 ) [ E ( X )]2
例2. 设随机变量X的概率密度函数为 Cx , 0 x 1 f ( x) 其它 0, 求:(1)常数C; ( 2) P (0.3 X 0.7 ) ( 3) P ( 0.5 X 0.5); (4) E ( X ), D( X )
k
k
1
2. 连续型随机变量 变量的取值是某范围内的实数。
X ~ f ( x)
(1) f ( x) 0
( 2)



f ( x)dx 1
例1. 盒中装有分别标有 1,2,3,4,5 数字的相 同的球,从中任取 2个,用 X 表示所取球中最大 的数字,求 X 的概率分布。
解:“X=k” 表示“取球之中数字最大” 则 X 的取值为 2,3,4,5
第 8 章 随机变量与数字特征
本章重点: 两类随机变量以及期望与方差的概念及计算, 正态分布的概率计算。
一、了解离散型和连续型随机变量的定义及其概率 分布和概率密度的性质。 1. 离散型随机变量 变量的取值可以逐个列出。
X ~ P( X x k ) p k
(1) p k 0
( 2)
P
3 2 x , 1 x 1 例3. 设随机变量X 的概率密度为 f ( x) 2 0 , 其它 并设 Y 5X 4 ,求 D(Y) 。
3 2 解: E(X ) x x dx 0 1 2
1
D(X) E( X 2 ) [E(X) ]2 3 2 3 1 5 x x dx 0 x 1 2 2 5
方差。熟练掌握将正态 分布化标准正态分布的 方法。
P (a Y b) (b) (a )
P (a X b) ( b

) (
a

)
当 x 0 时,Φ( x ) 可通过公式: Φ( x ) 1 Φ( x ) 求得。
例4. 设 X ~ N (5, 3 2 ) ,求以下概率 (1) P(X 10) ( 2) P( 2 X 11)
0.5 0
0
0.5
2 0.5 0
0.25
( 4) E ( X )
2

1
0
1
2 31 2 x 2 xdx x 3 0 3
2 41 1 x 2 xdx x 4 0 2
2
2 2
E( X )
0
1 4 1 D( X ) E ( X ) [ E ( X )] 2 9 18
X 10 X 5 10 5 解: (1) P(X 10) P P 3 3 P( Y 1.67) Φ (1.67) 0.9525
2 - 5 X 5 11 5 ( 2) P( 2 X 11) P 3 3 3 P( 1 Y 2) Φ ( 2) Φ ( 1) Φ (2) [1 Φ (1)] 0.9772 (1 0.8413) 0.8185
解:(1)


1 21 1 f ( x )dx Cxdx C x C 1 0 2 0 2
1
C 2
(2) P (0.3 X 0.7) 2 xdx x
0.3 0.7 2 0.7 0.3
0.4
(3) P (0.5 X 0.5) 0dx 2 xdx x
1 2
2
1 1
3 5
3 因此 D(Y) D(5X 4) 5 D(X) 25 15 5
三、理解正态分布,标 准正态分布,记住其期 望与 熟练掌握正态分布的概 率计算问题。(查表)
X ~ N ( , ) Y ~ N (0,1)
2 Y X
相关文档
最新文档