《教学分析》-40第四节四格表的卡方检验
四格表卡方检验ppt课件
2018年10月30日
2 ( 2 ( 2 ( 271 253 . 24 ) 5 22 . 76 ) 74 91 . 76 ) 2 253 .24 22 .76 91 .76 2 (26 8 .24 ) 56 .77 8 .24 df(2 1 )( 2 1 )1
2
-------四格表专用公式 2018年10月30日
例8-1 用专用公式 计算 2 值:
( 271 26 5 74 ) 376 2 56 .77 , df 1 276 100 345 31 查 2界值表, 02.05 ,1 3 .84 下结论:
表8-1 疗法 胃金丹 西药 合 计 两药治疗胃脘痛的疗效四格表 有效 271(253.24) 74(91.76) 345 无效 5(22.76) 26(8.24) 31 合计 276 100 376 有效率 98.19% 74.00% 91.76%
2018年10月30日
列联表资料分析
把全部数据按两个分类变量(原因变量、结 果变量)进行完全分类列成的频数表格称为列联 表,R行C列的列联表简称R×C表,2×2列联表 也称为四格表,利用列联表进行分类资料的检验 称为列联表分析。
15
18
2018年10月30日
2 检验的基本公式
2 ( A T ) 2 T
df ( R 1 )( C 1 )
上述基本公式由Pearson提出,因此软件上 常称这种检验为Peareson卡方检验,下面将要 介绍的其他卡方检验公式都是在此基础上发展起 来的。它不仅适用于四格表资料,也适用于其它 的“行×列表”资料。
2018年10月30日
Karl Pearson (1857~1936)
四格表卡方检验
本章结构
第一节 四格表 2检验
第二节 四格表确切概率法
第三节 R×C 表资料的 2检验
第四节 配对四格表资料的 McNemar检验
第五节 多个样本率的两两比较
2023年3月29日
第一节 四格表 2检验
卡方检验的基本思想 四格表专用公式 四格表卡方检验的应用条件 校正卡方检验
2023年3月29日
表8-4 两组疗效比较
05水准不拒绝H0,不能认为两法疗效不同。
第五节 多个样本率的两两比较
2023年3月29日
衡量理论数与实际数的差别
检验统计量 2 值:
2R,C(ArcTrc)2
( AT) 2
T r,c1
rc
T
2023年3月29日
2(27125.324)2(522.76)2(7491.76)2
Statistics→Crosstable(交叉表) 指定 Row(s):组别 Columns(s):疗效 击Statistics按钮选择Chi-square。
2023年3月29日
输出结果
理论数小于5的格子数为2(占50%),最小理论数为4.18 卡方检验:有效观测数 n=71>40,有两个格子理论数T<5,故用
2 检验
2 检验(Chi-square test)是现代统计学的
创始人之一,英国人K . Pearson(1857-1936 )于1900年提出的一种具有广泛用途的统计方 法,可用于两个或多个率间的比较,计数资料 的关联度分析,拟合优度检验等等。
本章仅限于介绍两个和多个率或构成比比较
的 2检验。
2023年3月29日
相反
2023年3月29日
1.建立数据文件
四格表卡方检验 46页PPT文档
称相对指标(Relation number)
常用相对数
率 构成比 相对比
2019年8月1日
常用相对数
1. 率 (Rate) * 频率指标,表示某现象发生的频率和强度
* 计算公式: 发生某现象的个体数
率= ———————————— × K 可能发生某现象的个体数
( K为比例基数,可为100%或1000‰……等) 如:发病率、死亡率、发生率、阳性率、患病率 、有效率等
成(%) =③/② =④/② =⑤/② =⑤/③
0~ 90319 501 145 11 45.05 5.55 1.61 0.12 2.60
30~ 63223 254 122 12 31.54 4.02 1.93 0.19 5.51
55~ 36584 214 125 15 18.25 5.85 3.42 0.41 7.94
的 2检验。
2019年8月1日
Karl Pearson (1857~1936) 英国统计学家 1901年10月与 Weldon,Galton 一起创办 Biometvika
2019年8月1日
例8-1 某医院收治376例胃脘痛患者,随机分 为两组,分别用新研制的中药胃金丹和西药治疗。 结果如表8-1,探讨两药疗效有无差别。
表8-1 两药治疗胃脘痛的疗效四格表
10
8
6
5.55
4
2
0 0~岁
患病率(0/00)
9.18
4.02
5.85
患病率
30~岁
55~岁
65~岁
2019年8月1日
三、应用相对数应注意的问题
1.分析时不能以构成比代替率
40第四节-四格表的卡方检验
第四节 四格表旳卡方检验
• 一、独立样本四格表旳卡方检验 • 独立样本四格表旳χ2检验,就是最简朴旳双向表 即22表旳χ2检验。它既能够用缩减公式来计算χ2值, 又能够用χ2检验旳基本公式来计算χ2值。
例1: 教科书第240页。
例如: 教科书第242页。
例如: 教科书第244页。
关键词:普小教师 有特殊教育需要旳学生 随班就读态度
2.校正χ2值旳计算
• 在有关样本四格表中,假如(b+c)<30或 (b+c)<50(即要求比较严格),则要对χ2值进 行亚茨连续性校正。其校正公式为:
2 ( b c 1)2
bc
例1: 教科书第246页。
北京、香港两地普小教师对有特殊教育需要学生
随班就读态度旳比较研究
韦小满、袁文得、刘全礼
摘要:从北京、香港两个地域旳一般小学中随机抽取了 225名教师进行问卷调查。成果表白,在对有特殊教育需要学 生在一般班级随班就读旳基本态度上,香港地域持赞同态度旳 教师百分比高于北京地域。但对各类有特殊教育需要学生旳随 班就读,两地教师旳态度既有相同旳方面,也有不同旳方面。 两地教师对随班就读旳接受程度明显受学生旳残疾类型和残疾 程度旳影响。
简述四格表资料卡方检验的应用条件
简述四格表资料卡方检验的应用条件一、卡方检验的应用条件为使各类数据资料分析结果与理论预测结果保持良好的相关,必须了解卡方检验应用的几个条件。
二、卡方检验的结果表示1、卡方检验的基本公式2、卡方检验的应用范围3、卡方检验的计算公式为:4、卡方检验的注意事项1)注意运用多种分析方法进行综合分析以取得更加可靠的资料2)注意进行独立性检验,在检验时,无论是计算卡方还是求t值,当观察到两组数据呈直线相关或曲线相关的时候,应再做一次相关分析,以证实是否有系统误差3)如果要证明资料之间是协方差关系,则先要作协方差分析,协方差分析即资料本身包含着平方和,如果只有协方差没有平方和,则说明原始资料包含有错误,若同时出现卡方值的协方差和平方和,则说明是随机误差所致,反映了这种资料具有良好的数据处理性质。
3、卡方检验的计算公式为:4、卡方检验的注意事项1)注意运用多种分析方法进行综合分析以取得更加可靠的资料2)注意进行独立性检验,在检验时,无论是计算卡方还是求t值,当观察到两组数据呈直线相关或曲线相关的时候,应再做一次相关分析,以证实是否有系统误差3)如果要证明资料之间是协方差关系,则先要作协方差分析,协方差分析即资料本身包含着平方和,如果只有协方差没有平方和,则说明原始资料包含有错误,若同时出现卡方值的协方差和平方和,则说明是随机误差所致,反映了这种资料具有良好的数据处理性质。
5、卡方检验不能确定因果关系。
4、卡方检验的注意事项1)注意运用多种分析方法进行综合分析以取得更加可靠的资料2)注意进行独立性检验,在检验时,无论是计算卡方还是求t值,当观察到两组数据呈直线相关或曲线相关的时候,应再做一次相关分析,以证实是否有系统误差3)如果要证明资料之间是协方差关系,则先要作协方差分析,协方差分析即资料本身包含着平方和,如果只有协方差没有平方和,则说明原始资料包含有错误,若同时出现卡方值的协方差和平方和,则说明是随机误差所致,反映了这种资料具有良好的数据处理性质。
四格表卡方检验的适用条件
四格表卡方检验的适用条件1. 引言四格表卡方检验(Chi-square test for a 2x2 contingency table)是一种常用的统计方法,用于比较两个分类变量之间是否存在相关性。
它适用于分析两个分类变量之间的关系,并判断这种关系是否统计显著。
本文将详细介绍四格表卡方检验的适用条件。
2. 基本原理在进行四格表卡方检验之前,我们首先需要了解一些基本概念和原理。
2.1 卡方检验卡方检验是一种非参数检验方法,用于比较观察值与期望值之间的差异是否显著。
它通过计算观察值与期望值之间的差异程度来判断两个变量是否相关。
2.2 四格表四格表是一种二维列联表,其中包含了两个分类变量的频数统计结果。
通常情况下,我们将一个分类变量作为行变量,另一个分类变量作为列变量,从而形成一个4个单元格的矩阵。
2.3 卡方统计量卡方统计量是衡量观察值与期望值之间差异程度的指标。
它的计算公式为:χ2=∑(O ij−E ij)2E ij其中,O ij表示观察值,E ij表示期望值。
3. 适用条件四格表卡方检验适用于以下情况:3.1 变量类型四格表卡方检验适用于两个分类变量之间的相关性分析。
分类变量可以是二分类(如性别、是否患病)、多分类(如教育程度、职业类别)或有序分类(如收入等级)。
3.2 独立性假设四格表卡方检验的基本假设是两个分类变量之间是独立的。
也就是说,两个变量之间没有相关性。
如果我们想要判断两个变量是否存在相关性,可以使用四格表卡方检验。
3.3 样本数量对于四格表卡方检验,样本数量应该足够大,以保证观察值和期望值都大于5。
这是由于卡方统计量在小样本情况下不稳定,并且其近似分布要求样本数量足够大。
4. 实际应用四格表卡方检验在实际应用中非常广泛,下面以一个具体的案例来介绍其应用。
4.1 案例背景假设我们想要研究某种新药对患者康复的影响。
我们将患者分为两组:接受新药治疗的组和接受传统治疗的组。
我们还记录了每个组中患者的康复情况(康复与否)。
四格表卡方检验
2019年3月28日
三、应用相对数应注意的问题
1.分析时不能以构成比代替率
①年龄 ②人口 ③患 ④新发 ⑤死亡 ⑥患者 患病率 发病率 数 者数 病例数 数 年龄构 (%) (%) (岁) 成(%) =③/② =④/② 0~ 90319 501 145 11 45.05 5.55 1.61 30~ 55~ 65~ 63223 36584 10343 254 214 95 122 125 87 479 12 15 23 61 31.54 18.25 5.16 4.02 5.85 9.18 1.93 3.42 8.41 2.39 死亡率 病死率 (%) (%) =⑤/② =⑤/③ 0.12 2.60 0.19 0.41 2.22 0.30 5.51 7.94 24.21 6.30
P=(x1+ x2+ x3)/ n1+ n2+ n3) (正确)
P=(P1+ P2+ P3)/3
(错误)
5. 对样本率(或构成比)的比较应作假设检验
2019年3月28日
第二节
四格表 2检验
卡方检验的基本思想 四格表专用公式 四格表卡方检验的应用条件 校正卡方检验
2019年3月28日
2 检验
2 检验(Chi-square test)是现代统计学的
2019年3月28日
2. spss操作过程
(1)在spss中调出数据文件Li8-1.sav (2)频数变量加权。 从菜单选择 Data→Weight Cases 弹出Weight Cases对话框,选择 Weight Cases by框,框内选入“频数 ”,即指定该变量为频数变量
2019年3月28日
英国统计学家
四格表分析
2 P
k i 1
( Ai
Ti )2 Ti
服从自由度为k-1旳卡方分布。
即:
2 P
2,v,拒绝H0。
上述卡方检验由此派生了不同应用背景旳多种问 题旳检验,尤其最常用旳是两个样本率旳检验等。
措施原理
牙膏类型 含氟牙膏 一般牙膏 合计
表 6.2 使用含氟牙膏与一般牙膏儿童的龋患率
患龋齿人数 70(76.67) 45(38.33) 115
此时,能够考虑边际卡方检验,见P130
注意事项
配对四格表卡方与成组设计卡方
因为配对设计旳资料同一对观察成果间一般是非独 立旳,而成组设计旳资料一般能够以为是独立旳, 所以配对四格表资料不能用成组设计旳2或 Fisher检验旳,而要用配对设计旳2或配对设计 旳直接计算概率法进行检验。
Poisson分布资料推断
累计概率 0.0106 0.0895 0.3138 0.6306 0.8726 0.9745 0.9974 0.9999 1.0000
*本例现有样本情况 d=6。
❖ 然后将其中不大于等于既有样本概率旳概率值相加,即为
P值:
▪ 本例中P值=P(0)+ P(6)+P(7)+P(8)=0.0361<0.05
措施原理
❖ 理论频数
▪ 基于H0成立,两样本所在总体无差别旳前提下
计算出各单元格旳理论频数来
TRC
nR nC n
牙膏类型 含氟牙膏 一般牙膏 合计
患龋齿人数 70(76.67) 45(38.33) 115
未患龋齿人数 130(123.33) 55(61.67) 185
调查人数 200 100 300
❖ 使用不同旳牙膏并不会影响龋齿旳发生(两个分 类变量间无关联) ▪ 两变量旳有关分析
四格表卡方检验
通常为分类数减去1
理论次数的计算
根据某种经验或理论
二、配合度检验的应用
1、检验无差假说 理论次数=总数*1/分类项数 例题p.332
2、检验假设分布的概率 理论次数的计算按照理论分布求得 例题p.333
三、连续变量分布的吻合性检验
对于连续随机变量的计量数据,有时在 实际研究中预先不知道其总体分布,而 是要根据对样本的次数分布来判断是否 服从某种指定的具有明确表达式的理论 次数分布。 关于分布的假设检验方法有很多,运用 卡方值所做的配合度检验是最常用的一 种。
举例:正态分布吻合性检验
例题:p.336
四、比率或百分数的配合度检验
如果计数资料用百分数表示,最后计算 出来的卡方值要乘以100/N后,再与查表 所得的临界值进行比较。 例题:p.337
五、二项分类的配合度检验与比 率显著性检验的一致性
二者实质相同,只是表示方式不同。 相比较而言,配合度检验计算方法更为 简单。
在独立性检验和同质性检验中,如果两 个变量或两个样本无关联时,期望值为 列联表中各单元格的理论次数,即各个 单元格对应的两个边缘次数的积除以总 次数。
五、小期望次数的连续性校正
如果个别单元格的理论次数小于5,处理 方法有以下四种:
1、单元格合并法 2、增加样本数 3、去除样本法 4、使用校正公式
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
为什么叫作卡方检验
计数数据一般应用属性统计方法,因为 这类数据是按照事物属性进行多项分类 的。 而且,对这些计数数据的统计分析是根 据卡方分布进行的。
卡方检验的功能
处理一个因素两项或多项分类的实际观 察频数与理论频数分布是否相一致的问 题,或者说有无显著差异的问题。
简单四格表卡方检验公式
简单四格表卡方检验公式
简单四格表卡方检验公式是用于检验两个分类变量之间是否独立的一种统计方法。
具体公式如下:
$X^2 = \frac{(O_{11} - E_{11})^2}{E_{11}} + \frac{(O_{12} -
E_{12})^2}{E_{12}} + \frac{(O_{21} - E_{21})^2}{E_{21}} + \frac{(O_{22} - E_{22})^2}{E_{22}}$
其中,$O_{ij}$ 表示观察值,$E_{ij}$ 表示期望值。
具体操作方法如下:
1. 计算期望频数:根据四格表中的理论概率计算期望频数。
2. 计算实际频数:根据实际观察数据计算实际频数。
3. 计算卡方值:将期望频数和实际频数的差值平方后除以期望频数,再将四个格子的卡方值相加得到总卡方值。
4. 计算自由度:简单四格表卡方检验的自由度为1。
5. 查表求临界值:根据自由度和给定的显著性水平(通常为或),查阅卡方分布表得到临界值。
6. 判断是否拒绝零假设:如果总卡方值大于临界值,则拒绝零假设,认为两个分类变量之间不独立;否则,无法拒绝零假设,认为两个分类变量之间可能独立。
卡方检验具体操作讲课文档
假设检验:又称显著性检验,是指由样本间存在的差别对样本所代
表的总体间是否存在着差别做出判断。
现在四页,总共三十七页。
定性资料的假设检验:行×列表卡方检验
基本思想:检验实际频数和理论频数的差别是否由抽样误差 引起,也就是由样本率或样本构成比来推断总体率或总体构 成比。
行×列表的简单形式是:四格表;当行和或列大于2时,统称行 ×列表,或R×C表。
实例:某研究者调查了一批高血压患者的 血压控制情况和肥胖度,结果如下表,请 问两者有无关系。
良好
血压控制情况
尚可
不良
合计
不肥胖
15
24
12
51
肥 轻度肥胖
4
2
7
13
胖
程
度 中/重度肥胖
20
13
11
44
合计
39
39
30
现在十五页,总共三十七页。
108
二、确切概率法:数据输入
现在十六页,总共三十七页。
卡方检验具体操作
现在一页,总共三十七页。
卡方检验具体操作
现在二页,总共三十七页。
定性资料的统计分析
主要内容
一、四格表卡方检验
二、确切概率的计算 三、配对卡方检验 四、分层卡方检验
现在三页,总共三十七页。
定性资料的统计分析
统计推断:用样本信息推论总体特征的过程。
包括: 参数估计: 运用统计学原理,用从样本计算出来的统计指标量,对总
15
0
47
1
54
12
67
0
7
45
52
33
76
57
166
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.校正χ2值的计算
• 在相关样本四格表中,如果(b+c)<30或 (b+c)<50(即要求比较严格),则要对χ2值进 行亚茨连续性校正。其校正公式为:
2
(bc1)2
bc
例1: 教科书第246页。
北京、香港两地普小教师对有特殊教育需要学生
随班就读态度的比较研究
韦小满、袁文得、刘全礼
摘要:从北京、香港两个地区的普通小学中随机抽取了 225名教师进行问卷调查。结果表明,在对有特殊教育需要学 生在普通班级随班就读的基本态度上,香港地区学生的随班 就读,两地教师的态度既有相同的方面,也有不同的方面。两 地教师对随班就读的接受程度明显受学生的残疾类型和残疾程 度的影响。
关键词:普小教师 有特殊教育需要的学生 随班就读态度
例2: 教科书第238页。
第四节 四格表的卡方检验
• 一、独立样本四格表的卡方检验 • 独立样本四格表的χ2检验,就是最简单的双向表 即22表的χ2检验。它既可以用缩减公式来计算χ2值, 又可以用χ2检验的基本公式来计算χ2值。
例1: 教科书第240页。
例如: 教科书第242页。
例如: 教科书第244页。