初中数学教师基本功大赛试题202003
初中数学青年教师基本功大赛笔试试卷(含答案)
A B
5. (本小题 12 分) 从甲地到乙地有 A1、A2 两条路线,从乙地到丙地有 B1、B2、B3 三条路 线,从丙地到丁地有 C1、C2 两条路线.一个人任意先了一条从甲地到丁地的路线.求 他恰好选到 B2 路线的概率是多少?
22ຫໍສະໝຸດ 要 t 最小,即 CT+TQ 最小,而 CT+TQ 是点 C 到直线 C
′B 的折线长,只有当 CT+TQ 成为点 C 到直线 C′B 的
y C
OK
T
x
B
Q H
垂线段时才最小,故作 CH⊥BC′交 OB 于点 K,则点
C′
K 就是使运动时间最短的点。
∵△CBC′为正三角形,∴∠C′CH=30°∴OK=OC·tan30°=2
P138—139) 5. (本小题 12 分)
A1
甲
乙
A2
如图:从甲到丁有 2×3×2=12 种走
9
A
M
B1
C1
B2
丙
C2
丁
B3
N
D
C
B
E
法,而经过线路
B2
共有
2×1×2=4
种走法,故
P=
4 12
1 3
6. (本 小 题 12 分 ) 如 图 : 裁 剪 线 AB 与 CD 长 恰 好 为 三 棱 柱 底 面 周 长 30cm, 故
BM AB 2 AM 2 30 2 182 24
由△CEB∽△AMB 可知: CB BE ,故 CB 60
AB BM
30 24
2020初中教师基本功数学试卷
2020年初中教师教学基本功
数学试卷
本试卷共4 页,25 小题,满分为120 分,考试用时为90 分钟.
一、选择题(本大题10 小题,每小题3 分,共30 分)
1.下列说法中,正确的是
A.−3 是相反数B.+3 是相反数
C.−3 是+3 的相反数D.+3 是−(−3) 的相反数
3.下列命题中,真命题是
A.两个锐角的和是锐角B.带根号的数都是无理数
C.同旁内角互补D.邻补角是互补的角
4.调查某跳水队运动员的年龄,结果如下:13 岁8 人,14 岁16 人,15 岁24 人,16 岁2 人。
这个跳水队运动员的平均年龄是
A.14.4 B.14.5 C.14.6 D.14.7
6.一个多边形的各个内角都等于135°,这个多边形的内角和是
A.360°B.720°C.1080°D.1440°
二、填空题(本大题7 小题,每小题4 分,共28 分)
12.《义务教育数学课程标准(2011 年版)》从四个方面具体阐述总目标,这四个方面是_________.
三、解答题㈠(本大题3 小题,每小题6 分,共18 分)
四、解答题㈡(本大题3 小题,每小题8 分,共24 分。
其中卷面书写3 分)21.超市计划购进甲、乙两品种水果共700 kg,甲水果6 元/kg,乙水果10 元/kg。
(1)若购买这两品种水果共用去6000 元,则甲种水果购买了多少kg?
(2)经验表明,甲、乙两品种水果在售卖过程中的折损比率分别为15%、10%,若要使这两种水果在售卖过程中按成本总价计算的折损比率不超过13%,求购买甲种水果数量的范围。
中学数学教师基本功大赛演讲题目
竭诚为您提供优质文档/双击可除中学数学教师基本功大赛演讲题目篇一:初中数学青年教师教学基本功比赛试题初中数学青年教师教学基本功比赛试题基础知识测试题(南京下关)一、填空题(共6小题,每空0.5分,计10分)1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步发展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近发展区理论”认为学生的发展有两种水平:一种是学生的___________发展水平;另一种是学生_________________发展水平,两者之间的差异就是最近发展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论发展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著《怎样解题》中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表”有两个特点,即普遍性和_____________性.二、简答题(共3小题,每小题5分,计15分)7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.《义务教育数学课程标准》(20XX年版)从知识与技能等四个方面对总目标进行了阐述.(1)请写出其他三个方面目标的名称;(2)请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等”这一结论在苏教版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.基础知识、基本技能、基本思想、基本活动经验.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,(试验结果的)有限性,(每个结果的)等可能性.6.弄清问题、拟定计划、实施计划、回顾反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等.8.(1)数学思考、问题解决、情感态度;(2)四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上《1.4线段、角的轴对称性》中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上《1.2直角三角形全等的判定》是通过严格的推理论证,采用自己画图、写已知、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进行严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知发展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括基础知识测试和解题能力测试两部分.基础知识测试内容包括数学文化(数学史)常识和数学教育基础知识(教材、课程标准、教育学、心理学、教学论、教学法等).解题能力测试内容包括基础题(教材中的基本定理、公式的证明,教材例题、习题、复习题)与综合题(与中考中档题难度相当).2.第1、2、8题考查对《课标》学习和理解情况(称为课标板块);第4、5、7题结合苏教版初中数学教科书的教学内容对数学史进行简单的考查(称为数学史板块);第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考查(称为综合板块).20XX年雨花台区小学数学青年教师教学基本功比赛教育教学知识常识比赛试卷(满分100分,时间60分钟)姓名成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。
哈尔滨市初中数学教师基本技能大赛试题答案
哈尔滨市初中数学教师基本技能大赛试题答案一、单项选择题:1、A ;2、B ;3、C ;4、A ;5、D ;6、B ;7、B ;8、C ;9、B ;10、C ;11、C ;12、B 。
二、填空题:13、3.84×105;14、x>5;15、2n(m -2n)(m+2n);16、17;17、5;18、21元;19、150π;20、略; 21、3n+1;22、23π;23、a>-1;24、6。
三、解答题: 25、(1)△AOP ∽△AMB ··················2分∴AP ·AM=AB ·AO=2R 2···················1分 ∴AP ·AM 为定值·························1分 (2)(略)·····························4分26、解:从箱子中抽取一张卡片,每张卡片的机会均等,有10种结果,放回后再抽,也有10种结果,先后抽取两张卡片,一共有100种不同的结果。
数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案
初级中学数学教师教学基本功比赛测试卷(一)一.新课程标准,填空。
(每空2分,共20分)1数学是人们对客观世界定性把握和________________ 、逐渐____________ .形成方法和理论,并进行广泛应用的过程。
2教师的主要任务是激发学生的________________________ ,向学生提供充分从事数学活动的机会,帮助学生成为学习的__________________ 33、初中阶段的数学内容分为数与代数、 _______________ .统计与概率和 ______________ 四个领域。
4、动手操作、________________ 、_______________ 是学生学习数学的重要方式。
5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的_________________ :人的发展不可能整齐划一,必须____________________ ,尊重差异。
二、专业知识(共70分)(-)填空题(每小题2分,共8分)1、如图,己知C)O的半径为5,弦AB=8, P是弦AB上的任意一点,则OP的取值范围是 _________ o■2、已知关于X的不等式组Fi的整数解共有6个,则“的取值3— 2x>0范围是_______________3、若ΔABC 的三边"、b、C 满足条件:a2 + b2 + c2 + 338 = 1 Oa + 24Z? + 26c,则这个三角形最长边上的髙为_________ 。
4、抛物线y = 2(x-2)2-6的顶点为(7,已知),= -也+ 3的图象经过点C ,则这个一次函数图象与两坐标轴所囤成的三角形面积为____________ o(二)选择题(每小题3分,共12分)5、如图,由几个小正方体组成的立体图形的左视图是⅛⅛⅛⅛6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是()图2(三)解答题(共50分)9. (本题满分6分)计算:4 l +2tan30υ- 10. (本题满分6分)因式分解:a :x : — 4+a c y 3—2a :xy: 11・(本题满分6分)某学校为了学生的身体健康,每天开展体冇活动一小时,开设排球、篮球、羽毛球、体操课•学生可根拯自己的爱好任选其中一项,老师根据学生报划情况进 行了统讣,并绘制了下边尚未完成的扇形统汁图和频数分布直方图,请你结合图中的信 息,解答下列问题:A. 15C. ~3 B.- 5 D. 1 27.正方形网格中, B.琴1C.-2 D. 2&已知甲、乙两组数据的平均数都是◎存则以下说法正确的是( A. 甲组数据比乙组数据的波动大 B. 乙组数据比甲组数据的波动大C. 甲组数据与乙组数据的波动一样大D •甲、乙两组数据的波动大小不能比较 2√3-IZAOB 如图放置,)(1) 该校学生报名总人数有多少人?(2) 选羽毛球的学生有多少人?选排球和篮球的人数分别占报轲总人数的百分之几?(3) 将两个统计图补充完整12.(本题满分10分)如图,点A ∙ B, G D 是直径为AB 的(Do 上四个点,C 是劣弧BD 的中点,AC 交BD 于点 E, AE=2, EC = 1.(1) 求证:ADEC AADC :(2)连结DO,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求岀它的而积: 若不是,请说明理由.(3)延长AB 到乩 使BH =OB,求证:CH 是OO 的切线・13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形, 而积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元. 中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1) 如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100 元)(2) 如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否 完A 0 B成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多岀部分只展不超过100元就有效). D14,(本题满分12分)已知抛物线C1:y= -χ2+2πιx+n (In t"为常数,且m≠0,∕ι>0)的顶点为A,与y轴交于点C,抛物线C?与抛物线Cl关于y轴对称,英顶点为B,连结AU BC、AB.(1)写出抛物线C?的解析式:(2)当〃?=1时,判⅛∆ABC的形状,并说明理由:(3)抛物线G是否存在点P,使得四边形ABCP为菱形?如果存在,请求岀〃?的值;如果不存在,请说明理由.答案一. 新课标(20分)K 定量刻画.抽象概括2学习积极性.主人3空间与图形、课题学习4自主探 究、合作交流5发展需要、承认差异二、 专业知识(共70分)(-)填空题(共8分)1、3≤(9P≤52、-5≤67<-4 3. — 4. 113(-)选择题(共12分))5、 A6、 B7、 D 8. B(三)解答题(共70分)9. 原式出+ 2x 逅—严学一2 •…. 3 3 (√3-l )(√3+l) = √3-(√3 + l)-2 = √3-√3-l-2二-310. a :x c — 4+aV - 2a :xy =(a :x :—2a 2∑3r ÷a 2y 2) —4 ......... 2 分=a' (X2xy+j r ) —4=a' (χ-y ) 2~22 =(a X -ay+2) ( a x - ay-2) 11・解:(1)设该校报需总人数为X 人,则由两个统讣图可得 40%x = 160.(2)设选羽毛球的人数为y,则由两个统计图可蒔y= 400×25% = 100 (人)・ ...................IOO因为选排球的人数是K )。
初中数学教师教学基本功比赛试卷
方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为
面.积.法..
学有所用: 在等腰三角形 ABC中, AB=AC,其一腰上的高为 h , M 是底边 BC 上的任意一点, M 到
密
校 学
腰 AB、AC的距离分别为 h1 、 h2 . ( 1)请你结合图形 1 来证明: h1 + h2 = h .
D A
P
A
D
H
G
B 图一
C
M
N
图二
三、解答题(共 50 分)
21、(本题 8 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件;如果每
件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的
售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元.
+ b= ___________.
12. 已知 a、 b 实数且满足( a2+b 2) 2- (a2+b2)- 6=0,则 a2+b2 的值为
.
13. 如图, 将半径为 1、圆心角为 60°的扇形纸片 AOB,在直线 l 上向右作无滑动的滚动至扇形 A′
O′B′处,则顶点 O经过的路线总长为
.
14. 在直角坐标系中, 0 为坐标原点, A(1 , 1) ,在坐标轴上确定一点 P,使△ AOP为等腰三
B
.3 C .4 D .5
6.如图, A, B 的坐标为( 2 , 0),( 0, 1)若将线段 AB 平移至 A1B1 ,则 a b 的值为(
)
A.2
B .3
C .4
D .5
y
B1 ( a,2)
(典型)初中数学学科青年教师基本功大赛试题(附答案详解)
(典型)初中数学学科青年教师基本功大赛试题(附答案详解)一、选择题(10×2=20分,单选或多选) 1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋( )(A )人本化 (B )生活化 (C )科学化 (D )社会化 2. 导入新课应遵循( )(A )导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B )要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念 (C )导入时间应掌握得当,安排紧凑 (D )要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是 ( ) (A )把学生看作教育的主体,学习内容和学习方法由学生作主 (B )促进学生的自主学习,激发学生的学习动机 (C )教学方法的选用改为完全由教学目标来决定(D )尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律 4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是( )(A )7000名学生是总体 (B ) 每个学生是个体(C )500名学生是所抽取的一个样本 (D ) 样本容量是500 5. 一个几何体的三视图如图2所示,则这个几何体是( )6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。
若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( )(A)21 (B) 31 (C) 61(D) 91主视图左视图俯视图图2 (A ) (B ) (C ) (D )8.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。
初中数学青年教师教学基本功比赛试题
初中数学青年教师教学根本功比赛试题根底知识测试题〔下关〕一、填空题〔共6小题,每空0.5分,计10分〕1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步开展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近开展区理论〞认为学生的开展有两种水平:一种是学生的___________开展水平;另一种是学生_________________开展水平,两者之间的差异就是最近开展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论开展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著?怎样解题?中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表〞有两个特点,即普遍性和_____________性.二、简答题〔共3小题,每题5分,计15分〕7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.?义务教育数学课程标准?〔2011年版〕从知识与技能等四个方面对总目标进展了阐述.〔1〕请写出其他三个方面目标的名称;〔2〕请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等〞这一结论在教版义务教育数学教材八上的?1.4线段、角的轴对称性?以及九上的?1.2直角三角形全等的判定?中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.根底知识、根本技能、根本思想、根本活动经历.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,〔试验结果的〕有限性,〔每个结果的〕等可能性.6.弄清问题、拟定方案、实施方案、回忆反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和圆的面积相等.8.〔1〕数学思考、问题解决、情感态度;〔2〕四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的开展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上?1.4线段、角的轴对称性?中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上?1.2直角三角形全等的判定?是通过严格的推理论证,采用自己画图、写、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进展严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知开展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括根底知识测试和解题能力测试两局部.根底知识测试容包括数学文化〔数学史〕常识和数学教育根底知识〔教材、课程标准、教育学、心理学、教学论、教学法等〕.解题能力测试容包括根底题〔教材中的根本定理、公式的证明,教材例题、习题、复习题〕与综合题〔与中考中档题难度相当〕.2.第1、2、8题考察对?课标?学习和理解情况〔称为课标板块〕;第4、5、7题结合教版初中数学教科书的教学容对数学史进展简单的考察〔称为数学史板块〕;第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考察〔称为综合板块〕.2012年雨花台区小学数学青年教师教学根本功比赛教育教学知识常识比赛试卷〔总分值100分,时间60分钟〕成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。
初中数学教师基本能力竞赛(含答案)
第5题图第6题初中数学教师基本能力竞赛全卷共四大题28小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,满分30分)1、雄风商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为( )A 、2×10-5B 、5×10-6C 、5×10-5D 、2×10-62、图(1)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10厘米。
如图(2),若此钟面显示3点45分时,A 点距桌面的高度为16厘米,则钟面显示3点50分时,A 点距桌面的高度为( )?A 、(22-3 3)厘米B 、(16+π)厘米C 、18厘米D 、19厘米3、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中正确的说法是( )A 、 ①②B 、①③C 、②④D 、③④4.如图,ABC ∆的角,,A B C 所对边分别为,,a b c ,点是O ABC ∆的外心,,于,于E AC OE D BC OD ⊥⊥,于F AB OF ⊥ 则OD OE OF =∶∶( ) .A 、a b c ∶∶B 、cb a 1:1:1 C 、C B A cos :cos :cos D 、C B A sin :sin :sin5、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正AB CEFO第8题图AB QOxy 第10题多边形的边数为x 、y 、z ,则zy x 111++的值为( ) A 、1 B 、32 C 、21 D 、31 6、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) A 、12 B 、16 C 、43 D 、827、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( )A 、0B 、1C 、2D 、38、二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为( ). A 、13- B 、12-C 、-1D 、-2 9、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于y x ,的方程组223=+=+y x by ax 只有正数解的概率为( )A 、121 B 、92 C 、185 D 、3613 10、如图,在平面直角坐标系xoy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1)。
数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案
初级中学数学教师教学基本功比赛测试卷(一)一、新课程标准,填空。
(每空2分,共20分)1数学是人们对客观世界定性把握和 、逐渐 、形成方法和理论,并进行广泛应用的过程。
2 教师的主要任务是激发学生的 ,向学生提供充分从事数学活动的机会,帮助学生成为学习的 。
3、初中阶段的数学内容分为数与代数、 、统计与概率和 四个领域。
4、动手操作、 、 是学生学习数学的重要方式。
5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的 ;人的发展不可能整齐划一,必须 ,尊重差异。
二、专业知识(共70分)(一)填空题(每小题2分,共8分)1、如图,己知⊙O 的半径为5,弦AB=8,P 是弦AB 上的任意一点,则OP 的取值范围是 。
2、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。
3、若ABC ∆的三边a 、b 、c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为 。
4、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。
(二)选择题(每小题3分,共12分)5.如图,由几个小正方体组成的立体图形的左视图是6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是( )OPBA羽毛球 25% 体操40%A .15 B .25C .23D .127.正方形网格中,AOB ∠如图放置,则tan ∠AOB 的值为( )A.55B.55C.12D.28. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则以下说法正确的是( ) A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较(三)解答题(共50分) 9.(本题满分6分)01112tan 30()3231---;10.(本题满分6分)因式分解:a 2x 2-4+a 2y 2-2a 2xy ;11.(本题满分6分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:ABO(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整 12.(本题满分10分) 如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是⊙O 的切线.13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形,面积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元.中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1)如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100元)(2)如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否完成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多出部分只要不超过100元就有效).14,(本题满分12分)已知抛物线C 1:y =-x 2+2mx +n (m ,n 为常数,且m ≠0,n >0)的顶点为A ,与y 轴交于点C ,抛物线C 2与抛物线C 1关于y 轴对称,其顶点为B ,连结AC 、BC 、AB .(1)写出抛物线C 2的解析式;(2)当m =1时,判定△ABC 的形状,并说明理由;(3)抛物线C 1是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.A D 隔 隔 墙 墙BC 图22答案一、新课标(20分)1、定量刻画、抽象概括2学习积极性、主人3空间与图形、课题学习4自主探究、合作交流5发展需要、承认差异二、专业知识(共70分)(一)填空题(共8分)1、3≤OP≤52、-5≤a<-43、60134、1(二)选择题(共12分))5、 A6、 B7、 D8、B (三)解答题(共70分)9.原式=332(32233(31)(31)+⨯--+……..……….2分331)2-………………4分3312-=-3 ………………6分10.a2x2-4+a2y2-2a2xy=(a2x2-2a2xy+a2y2)-4 …………………2分= a2(x2-2xy+y2)-4= a2(x-y)2-22 ………………4分=( a x-ay+2)( a x–ay-2)………………6分11.解:(1)设该校报名总人数为x人,则由两个统计图可得40%160x=.∴x=16016040040%0.4==(人). ·······················································1分(2)设选羽毛球的人数为y,则由两个统计图可得y=40025%100⨯=(人). ·····························2分因为选排球的人数是100人,所以10025%400=, ·································3分因为选篮球的人数是40人,所以4010%400=, ·························································································4分即选排球.篮球的人数占报名的总人数分别是25%和10%.(3)如图···························································································6分12.(共10分)(1)证明:∵C 是劣弧BD 的中点,∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ·························· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴3DC = .(2分)由 已知3BC DC ==AB 是⊙O 的直径,∴90ACB ∠=︒. ∴ 222223312AB AC CB =+=+=. ∴23AB =∴ 3OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ········································································· 5分 过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC ===. ∴ 60OBC ∠=︒. ∴ sin 60CFBC︒=,33sin 60322CF BC =︒==, ∴ 33332BCD S OB CF =⨯==菱形O . ··················································· 7分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线. ·································································· 10分13,(共10分)(1)设AB=x,则AD=3x,依题意3x2=200,x≈8.165.设总造价W元.W=8x×400+2x×300+200×80=3800x+16000=47000(元).(2)设AB=x,则AD=200 x.所以(2x+200x×2)×400+2x×300+80×200=45600.整理,得7x2-148x+800=0.此时求根公式中的被开方式=-496<0,所以此方程无实数解,即预算45600元不能完成此项工程.(3)估算:造价45800元. (2x+400x)×400+600x+16000=45800.整理,得7x2-149x+800=0.此时求根公式中的被开方式=-199<0,仍不够.造价46000元,同法可得7x2-150x+800=0.此时求根公式中的被开方式=100>0,够了.造价45900元,可得求根公式中的被开方式=-49.75<0,不够.最低造价为46000元.14(共12分),(1)y=-x2-2mx+n.(2)当m=1时,△ABC为等腰直角三角形.理由如下:因为点A与点B关于y轴对称,点C又在y轴上,AC=BC,过点A作抛物线C的对称轴交x轴于D.过点C作CE⊥AD于E.当m=1时,顶点A的坐标为A(1,1+n),CE =1,又点C的坐标为(0,n),AE=1+n-n=1,所以AE=CE,∠ECA=45°,∠ACy=45°,由对称性知∠BCy=45°,∠ACB=90°,所以△ABC为等腰直角三角形.(3)假设抛物线C,上存在点P,使得四边形ABCP为菱形,则PC=AB=BC,由(2)知,AC=BC,AB=BC=AC,从而△ABC为等边三角形,所以∠ACy=∠BCy=30°.又四边形ABCP为菱形,且点P在C1上,点P与点C关于AD对称,PC与AD的交点也为E,∠ACE =90°-30°=60°,点A、C的坐标分别为A(m,m2+n),C(0,n),AE2=m2+n-n=m2,CE=│m│,在Rt•△ACE中,tan60°=2||AE mCE m=3,│m│=3.所以m=±3.故抛物线C上存在点P,使得四边形ABCP为菱形.此时m=±3.。
中学教师基本功比赛
中学教师基本功比赛一 选择题(共5小题,每小题6分,共30分)1.如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ). (A )2c -a (B )2a -2b (C )-a (D )a2.如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb (b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)3.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ).(A )1 (B )214a - (C )12 (D )14 4.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(度比宽多6cm )的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C 2,图③中阴影部分的周长为C 3,则A 、C 2 = C 3B 、C 2 比C 3 大12 cm C 、C 2 比C 3 小6 cmD 、C 2 比C 3 大3 cm① ② ③5.小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4二、填空题(共5小题,每小题6分,共30分)1. 已知连续2008个正整数的和是一个完全平方数,则其中最大的数的最小值是 .2.三位同学分别用m 根长度相同的火柴棒,摆出了如图1、图2、图3的图案,各自恰好用完了这m 根火柴棒,这些图案中的小正方形边长均为一根火柴棒的长度.图 3图 1....................................图 2则m 的最小值为 .3 .如果关于x 的方程x 2+kx +43k 2-3k +92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .4.小聪沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。
初中数学教师基本能力竞赛(含问题详解)
第5题图第6题初中数学教师基本能力竞赛全卷共四大题28小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,满分30分)1、雄风商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为( )A 、2×10-5B 、5×10-6C 、5×10-5D 、2×10-62、图(1)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10厘米。
如图(2),若此钟面显示3点45分时,A 点距桌面的高度为16厘米,则钟面显示3点50分时,A 点距桌面的高度为( )?A 、(22-3 3)厘米B 、(16+π)厘米C 、18厘米D 、19厘米3、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中正确的说法是( )A 、 ①②B 、①③C 、②④D 、③④4.如图,ABC ∆的角,,A B C 所对边分别为,,a b c ,点是O ABC ∆的外心,,于,于E AC OE D BC OD ⊥⊥,于F AB OF ⊥ 则OD OE OF =∶∶( ) .A 、a b c ∶∶B 、cb a 1:1:1 C 、C B A cos :cos :cos D 、C B A sin :sin :sin5、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正AB CEFO第8题图多边形的边数为x 、y 、z ,则zy x 111++的值为( ) A 、1 B 、32 C 、21 D 、31 6、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) A 、12 B 、16 C、 D、7、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( )A 、0B 、1C 、2D 、38、二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为( ). A 、13- B 、12-C 、-1D 、-2 9、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于y x ,的方程组223=+=+y x by ax 只有正数解的概率为( )A 、121 B 、92 C 、185 D 、3613 10、如图,在平面直角坐标系xoy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1)。
哈尔滨市九年级数学教师基本技能大赛试题(无答案)
(A(B )(C (D哈尔滨市初中数学教师基本技能大赛试题一、单项选择题(每小题3分,共36分) 1.下列各式运算结果为8x 的是( )A x 4·x 4B (x 4)4C x 16÷x 2D x 4+x 42.下列平面图形中,既是轴对称图形又是中心对称图形的是( )3.不等式组⎩⎨⎧≥+->+053032x x 的整数解的个数是( )A 1B 2C 3D 44.已知二次函数y=x 2-6x+m 的最小值是1,那么m 的值等于( )A 10B 4C 5D 65.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60,如果⊙O 的半径为2,则下列结论错误的是( )A AD=DB B AE=EBC OD=1 D6.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )C7.若点(x 1,y 1), (x 2,y2),(x 3,y 3)都在反比例函数1y x =-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A y 1<y 2<y 3 B y 2<y 3<y 1 C y 3<y 2<y 1 D y 1<y 3<y 2 8.只用下列一种正多边形不能镶嵌成平面图案的是( )A 正三角形B 正方形C 正五边形D 正六边形9.如图是关于x 的函数y=kx+b (k ≠0)的图象,则不等式kx+b ≤0的解集在数轴上可表示为A B D (第6题图)10.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于点E ,则下列结论不一定成立的是( )A AD =BC 'B ∠EBD =∠EDBC △ABE ∽△CBD D EDAEABE =∠sin 11.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20km .他们行进的路程s (km )与甲出发后的时间t (h )之间的函数图像如图所示.根据图像信息,下列说法正确的是( )A 甲的速度是4 km/ hB 乙的速度是10 km/ hC 乙比甲晚出发1 hD 甲比乙晚到B 地3 h12.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中四边形ACED 的面积为( )A 24cm 2B 36cm 2C 48cm 2D 无法确定二、填空题(每小题3分,共36分) 13.地球距离月球表面约为384000千米,将这个距离用科学记数法(保留三个有效数字)表示应为__________________千米. 14.在函数52-=x x y 中,自变量x 的取值范围是___ __________.15.分解因式:2m 2n -8n 3=___________________________. 16.当x=-3时,代数式2x 2+3x的值是_____________. 17.如图,在△ABC 中,∠A=30°,tanB=23,AC=32,则AB=________________. 18.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为_________元.19.一个圆锥形的圣诞帽底面半径为10cm ,母线长为15cm ,则圣诞帽的侧面积为_______cm 2(结 果保留π).20.已知点P (x ,y )位于第二象限,并且y ≤x+4,x 、y 为整数,写出一个符合上述条件的点P 的坐标:_______________.21.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,根据下图所反映的规律, 猜想第n 个图形中火柴棒的根数是___________________(n 是正整数且n ≥1).22.如图,⊙O 的半径为3,OA=6,AB 切⊙O 于B ,弦BC ∥OA ,连结AC ,图中阴影部分的面积为 ________ .23.如果a 、b 、c 为互不相等的实数,且满足关系式b 2+c 2=2a 2+16a+14与bc=a 2-4a-5,那么a 的取值范围是_______________. 24.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC于点 …n=1n=2n=3n=4N ,连接MN ,则△AMN 的周长为 .三、解答题(其中第25~27题各8分,第28~29题各10分,第30题16分,第31题18分,共78分)25.(本题8分)如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,C 是AB 的中点,动点M 在BC 上运动(不与B 、C 重合),AM 交OC 于点P ,OM 与PB 交于点N . (1)求证:AP ·AM 是定值; (2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM ⊥PB .并加以证明. 26.(本题8分)在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y ,试求x+y 是10的倍数的概率.27.(本题8分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要求画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x >0).依题意,割补前后图形的面积相等,有x 2=5,解得x=5.由此可知新正方形得边长等于两个小正方形组成的矩形对角线的长.于是,画出如图②所示的分割线,拼出如图③所示的新正方形. 请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形, 排列形式如图④,请把它们分割后拼接成一个新的正方形.要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程. 28.(本题满分10分)一服装经销商计划购进某品牌的A 型、B 型、C 型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A 型服装x 套,B 型服装y 套,三款服装的进价和预售价如下表:(1)如果所购进的A 型服装与B 型服装的费用不超过39000元,购进B 型服装与C 型服装的费用不超过34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (套)的函数关系式;(注:预估利润P=预售总额 - 购服装款 - 各种费用)②求出预估利润的最大值,并写出此时购进三款服装各多少套. 29.(本题满分10分)已知:在锐角△ABC 中,AB=AC .D 为底边BC 上一点,E 为线段AD 上一点,且∠BED=∠BAC=2∠DEC ,连接CE . (1)求证:∠ABE=∠DAC ;(2)若∠BAC=60°,试判断BD 与CD 有怎样的数量关系,并证明你的结论;(3)若∠BAC=α那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由.30.(本题满分16分)问题:在平面直角坐标系中,直线y =12x +5交x 轴于点A ,交y 轴于点B ,交直线y =x -1于点C .过点A 作y 轴的平行线交直线y =x -1于点D .点E 为线段AD 上一点,且tan ∠DCE =12.点P 从原点O 出发沿OA 边向点A 匀速移动,同时,点Q 从B 点出发沿BO 边向原点O 匀速移动,点P 与点Q 同时到达A 点和O 点,设BQ=m .(1)求点E 的坐标;(2)在整个移动过程中,是否存在这样的实数m ,使得△PQD 为直角三角形.若存在这样的实数m ,求m 得值,若不存在,请说明理由;(3)函数y =k x 经过点C ,R 为y =kx上一点,在整个移动过程中,若以P 、Q 、E 、R 为顶点的四边形是平行四边形,求R 点的坐标.要求:①解答上面问题;②根据你对上面问题的解答,任意选择其中一问,说出你的主要解题思路.31.(本题满分18分)习题改编.原题:梯形ABCD ,AD ∥BC ,∠B=900,∠DCB=600,BC=4,AD=2,ΔPMN ,PM=MN=NP=a ,BC 与MN在一直线上,NC=6,将梯形ABCD 向左翻折1800.⑴向左翻折二次,a ≥2时,求两图形重叠部分的面积;⑵向左翻折三次,重叠部分的面积等于梯形ABCD 的面积,a 的值至少应为多少?⑶向左翻折三次,重叠部分的面积恰好等于梯形ABCD 的面积的一半,求a 的值.。
教师解题基本功竞赛(初中数学)及答案
B(第11题图) 21OEF D BA 6.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是7.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留π). 物线232--=x ax y 与x 轴正半轴交于点A (3,0).以8.如图,抛OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF. 则点F 的坐标9.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为 cm.10.如图,由1个正方形和1个等腰直角三角形拼在一起所组成的图形,把它分成4个全等的图形(在图上分)。
第10题11.如图,四边形OABD 为菱形,点B 、D 在以点O 为圆心的弧EF 上, 若OA = 3, ∠1 =∠2,则扇形OEF 的面积为_________.12.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确的结论是 (填序号).二、解答题:(本大题共90分.解答时应写出必要的计算过程、推演步骤或文字说明.) 13.(本题10分)如图,在平面直角坐标系中,直线334y x =-与x 轴、y 轴分别交于A B ,两点.现有半径为1的动圆位于原点处,以每秒1个单位的速度向右作平移运动,则经过多少秒,动圆与直线AB 相切.(第7题)第9题图AAAA14.(本题12分)甲、乙二人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度1v 与2v (12v v ),甲一半的路程..使用速度1v 、另一半的路程..使用速度2v ;乙一半的时间..使用速度1v 、另一半的时间..使用速度2v . (1)甲、乙二人从A 地到达B 地的平均速度各是多少(用1v 和2v 表示)?(2)甲、乙二人谁先到达B 地?为什么?(3) 如图是甲从A 地到达B 地的路程s 与时间t 的函数图像,请你在图中画出相应的乙从A 地到达B 地的路程s 与时间t 的函数图像.15. (本题12分)如图12,Rt △ABC 中,∠C =90°,按题目所给条件及要求将相应的直角三角形,分割成若干个全等的并且分别与原三角形相似的三角形.........................画出图形并简要说明理由.第(1)图AC=BC 将ΔABC 分割成2个三角形;第(2)图AB=2AC 将ΔABC 分割成3个三角形;第(3)图将ΔABC 分割成4个三角形;第(4)图BC=2AC将ΔABC 分割成5个三角形;x16.(本题10分)某公司准备投资开发A 、B 两种新产品,通过市场调研发现:如果单独投资A 种产品,则所获利润(万元)与投资金额x (万元)之间满足正比 例函数关系:A y kx =;如果单独投资B 种产品,则所获利润(万元)与投资金额x (万元)之间满足二次函数关系:2B y ax bx =+.根据公司信息部的报告,A y ,B y (万元)与投资金额x (万元)的部分对应 值如右表所示:⑴填空:A y = ;B y = ;⑵如果公司准备投资20万元同时开发A 、B 两种新产品,设公司所获得的总利润为w (万元),试写出w 与某种产品的投资金额x 之间的函数关系式.⑶请你设计一个在⑵中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元? 17.(本题10分)如图,某工厂D 与A ,B 两地有公路、铁路相连,且A C DB E D →→→→与路程相等,2BE CD =,CDE →→的路程为120千米,A C D C D E →→→→比的路程远10千米。
初中数学教师教学基本功比赛试卷
)b第6题x初中数学教师教学基本功比赛试卷一、选择题(每小题3分,共30分)1.方程1116x y+=的正整数解的个数是()A.7个 B.8个 C.9 个 D.10个2. 已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是()A.相交或相切B.相切或相离C.相交或内含D.相切或内含3. 如图是某几何体的三视图,则该几何体的全面积是()A.36π B.60π C.96π D.120π4.如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135º,AB=CD=EF=GH=1,BC=DE=FG=HA=2,则这个八边形的面积等于()A.7 B.72 C.8 D.1425. 如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共( )个.A.2 B.3 C.4 D.56.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11A B,则a b+的值为()A.2 B.3 C.4 D.5第7题7.在直线l上依次摆放着7个正方形,已知斜放置的3个的面积分别是a、b、c,正放置的4个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4的值为() A.cba++ B.ca+ C.cba++2 D.cba+-8.A是半径为5的⊙O内的一点,且OA=3,过点A且长小于8的弦有()A.0条 B.1条 C.2条 D.无数条9.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有()组.A.3 B.4 C.5 D.610.若关于x的不等式⎩⎨⎧≤-<-127xmx的整数解共有4个,则m的取值范围是()学校姓名密封线A .76<<mB .76<≤mC .76≤≤mD .76≤<m 二、填空题(每小题2分,共20分)11. 在地面上某一点周围有a 个正三角形、b 个正六边形(a 、b 均不为0),恰能铺满地面,则a +b =___________.12.已知a 、b 实数且满足(a 2+b 2)2-(a 2+b 2)-6=0,则a 2+b 2的值为 .13.如图,将半径为1、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A ′O ′B ′处,则顶点O 经过的路线总长为 . 14.在直角坐标系中,0为坐标原点,A(1,1),在坐标轴上确定一点P ,使△AOP 为等腰三 角形,则符合条件的点P 共有__________个.15.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .16.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为___ ___.17.已知正方形ABCD 的面积35平方厘米, E 、F 分别为边AB 、BC 上的点, AF 和CE 相交于点G ,并且ABF ∆的面积为5平方厘米,BCE ∆的面积为14平方厘米,那么四边形BEGF 的面积是___________平方厘米.18.已知点A (0,2)、B (4,0),点C 、D 分别在直线1=x 与2=x 上,且CD x //轴,则AC+CD+DB 的最小值为 .19.如图正方形ABCD,E 、F 分别为AB 、BC 上的点,连AF 、CE 相交于一点G ,若72==∆∆AB C AB F S S BC BF ,54=BA BE ,⊿ABF 的面积等于5,⊿BCE 的面积等于14,求四边形EBFG 的面积20.把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二)已知∠MPN=090,PM=3,PN=4,那么矩形纸片ABCD 的面积为 。
哈尔滨市初中数学教师基本技能大赛试题
(A )(B )(C )(D )哈尔滨市初中数学教师基本技能大赛试题一、单项选择题(每小题3分,共36分)1.下列各式运算结果为8x 的是( )A x 4·x 4B (x 4)4C x 16÷x 2D x 4+x 42.下列平面图形中,既是轴对称图形又是中心对称图形的是( )3.不等式组⎩⎨⎧≥+->+053032x x 的整数解的个数是( )A 1B 2C 3D 44.已知二次函数y=x 2-6x+m 的最小值是1,那么m 的值等于( ) A 10 B 4 C 5 D 65.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D ,交⊙O 于点E ,∠C=60,如果⊙O 的半径为2,则下列结论错误的是( )A AD=DB B AE=EBC OD=1 D6.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( ) C 7.若点(x 1,y 1), (x 2,y 2), (x 3,y 3)都在反比例函数1y x=-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A y 1<y 2<y 3B y 2<y 3<y 1C y 3<y 2<y 1D y 1<y 3<y 2A B D(第6题图)8.只用下列一种正多边形不能镶嵌成平面图案的是( ) A 正三角形 B 正方形 C 正五边形 D 正六边形 9.如图是关于x 的函数y=kx+b (k ≠0)的图象,则不等式kx+b ≤0的解集在数轴上可表示为( )10.如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于点E ,则下列结论不一定成立的是( )A AD =BC 'B ∠EBD =∠EDBC △ABE ∽△CBD D EDAEABE =∠sin 11.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20km .他们行进的路程s (km )与甲出发后的时间t (h )之间的函数图像如图所示.根据图像信息,下列说法正确的是( )A 甲的速度是4 km/ hB 乙的速度是10 km/ hC 乙比甲晚出发1 hD 甲比乙晚到B 地3 h12.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中四边形ACED 的面积为( )A 24cm 2B 36cm 2C 48cm 2D 无法确定二、填空题(每小题3分,共36分)13.地球距离月球表面约为384000千米,将这个距离用科学记数法(保留三个有效数字)表示应为__________________千米.14.在函数52-=x x y 中,自变量x 的取值范围是___ __________.15.分解因式:2m 2n -8n 3=___________________________. 16.当x=-3时,代数式2x 2+3x的值是_____________. 17.如图,在△ABC 中,∠A=30°,tanB=23,AC=32,则AB=________________. 18.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为_________元.19.一个圆锥形的圣诞帽底面半径为10cm ,母线长为15cm ,则圣诞帽的侧面积为_______cm 2(结 果保留π).20.已知点P (x ,y )位于第二象限,并且y ≤x+4,x 、y 为整数,写出一个符合上述条件的点P 的坐标:_______________.21.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,根据下图所反映的规律,猜想第n 个图形中火柴棒的根数是___________________(n 是正整数且n ≥1).22.如图,⊙O 的半径为3,OA=6,AB 切⊙O 于B ,弦BC ∥OA ,连结AC ,图中阴影部分的面积为 ________ .23.如果a 、b 、c 为互不相等的实数,且满足关系式b 2+c 2=2a 2+16a+14与bc=a 2-4a-5,那么a 的取值范围是_______________.24.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .三、解答题(其中第25~27题各8分,第28~29题各10分,第30题16分,第31题18分,共78分)25.(本题8分)如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,C 是 AB 的中点,动点M 在 BC上运动(不与B 、C 重合),AM 交OC 于点P ,OM 与PB 交于点N .(1)求证:AP ·AM 是定值;(2)请添加一个条件(要求添加的条件是图中两条线段或多条线段之间的数量关系),使OM ⊥PB .并加以证明.…n=1n=2n=3n=426.(本题8分)在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y ,试求x+y 是10的倍数的概率.27.(本题8分)请阅读下列材料: 问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要 求画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x >0).依题意,割补前后图形的面积相等,有x 2=5,解得x=5.由此可知新正方形得边长等于两个小正方形组成的矩形对角线的长.于是,画出如图②所示的分割线,拼出如图③所示的新正方形. 请你参考小东同学的做法,解决如下问题: 现有10个边长为1的正方形, 排列形式如图④,请把它们分割后拼接成一个新的正方形.要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.28.(本题满分10分)一服装经销商计划购进某品牌的A 型、B 型、C 型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A 型服装x 套,B 型服装y 套,三款服装的进价和预售价如下表:(1)如果所购进的A 型服装与B 型服装的费用不超过39000元,购进B 型服装与C 型服装的费用不超过34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (套)的函数关系式;(注:预估利润P=预售总额 - 购服装款 - 各种费用)②求出预估利润的最大值,并写出此时购进三款服装各多少套.已知:在锐角△ABC中,AB=AC.D为底边BC上一点,E为线段AD上一点,且∠BED=∠BAC=2∠DEC,连接CE.(1)求证:∠ABE=∠DAC;(2)若∠BAC=60°,试判断BD与CD有怎样的数量关系,并证明你的结论;(3)若∠BAC=α那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由.问题:在平面直角坐标系中,直线y=12x+5交x轴于点A,交y轴于点B,交直线y=x-1于点C.过点A作y轴的平行线交直线y=x-1于点D.点E为线段AD上一点,且tan∠DCE=12.点P从原点O出发沿OA边向点A匀速移动,同时,点Q从B点出发沿BO边向原点O匀速移动,点P 与点Q同时到达A点和O点,设BQ=m.(1)求点E的坐标;(2)在整个移动过程中,是否存在这样的实数m,使得△PQD为直角三角形.若存在这样的实数m,求m得值,若不存在,请说明理由;(3)函数y=kx经过点C,R为y=kx上一点,在整个移动过程中,若以P、Q、E、R为顶点的四边形是平行四边形,求R点的坐标.要求:①解答上面问题;②根据你对上面问题的解答,任意选择其中一问,说出你的主要解题思路.31.(本题满分18分)习题改编.原题:梯形ABCD ,AD ∥BC ,∠B=900,∠DCB=600,BC=4,AD=2,ΔPMN ,PM=MN=NP=a ,BC 与MN在一直线上,NC=6,将梯形ABCD 向左翻折1800.⑴向左翻折二次,a ≥2时,求两图形重叠部分的面积;⑵向左翻折三次,重叠部分的面积等于梯形ABCD 的面积,a 的值至少应为多少?⑶向左翻折三次,重叠部分的面积恰好等于梯形ABCD 的面积的一半,求a 的值.改编要求:①要有策略性改变(不能只改变字母、数字);②可改变原题图形的大小,但不能改变已有图形的形状(即只能以直角梯形、等腰梯形、等边三角形为基本图形);③要含三问,涉及到图形的运动、变换;④三问要梯度合理,由易到难,相当于中考最后压轴题的难度;⑤写出所改编的习题,画出图形,写出解题过程.吧。
初中数学教师教学基本功测试卷
初中教师基本功数学学科笔试试卷学校姓名成绩第一部分公共部分(10分)选择题(共10题,每题1分)1.《中华人民共和国教师法》规定:教师应当履行“关心、爱护全体学生,尊重学生人格的义务”。
在教育教学中,尊重学生的人格,要求教师()①因材施教②不得歧视学生③不得对学生实施体罚④不得侵犯学生合法权益A. ①②③B. ①③④C. ①②④D. ②③④2.《国家中长期教育改革和发展规划纲要(2010-2020年)》提出了“二十字”工作方针,其中()是教育改革发展的核心任务。
A. 育人为本B. 改革创新C. 促进公平D. 提高质量3.《周礼》中的“六艺”是西周贵族教育中的六个学科,“六艺”是指()①礼、乐②《诗》《书》③书、数④《易》《春秋》⑤射、御⑥《礼》《乐》A.①②③B.③⑤⑥C.①③⑤D.②③⑥4.文艺复兴时期,被誉为美术三杰的是()①莎士比亚②拉伯雷③达〃芬奇④薄伽丘⑤拉斐尔⑥米开朗琪罗A.①②③B.④⑤⑥C.③⑤⑥D.②③⑥5.同样写离别,所散发出来的情调有明显区别的两首诗词是()A.崔颢的《黄鹤楼》和辛弃疾的《永遇乐》(千古江山)B.杜甫的《登高》和李清照的《声声慢》(寻寻觅觅)C.李白的《将进酒》和苏轼的《念奴娇》(大江东去)D.王勃的《送杜少府之任蜀州》和柳永的《雨霖铃》6.“光电效应”的提出者是()A. 牛顿B. 爱因斯坦C. 爱迪生D. 王选7.在光合作用过程中,绿色植物需要的原料是()A.二氧化碳和水B.一氧化碳和水C.一氧化碳和二氧化碳D.氧气和水8.下列说法中不正确的是()A.水体易遭污染,是由于水是很多物质的良好溶剂B.水中只能溶解少量的酒精C.用汽油清理衣物上的油渍比用水更有效D.水是人体内运送营养物质的重要载体9.朗朗是享誉世界的青年()A.指挥家B.钢琴演奏家C.作曲家D.音乐评论家10. 被授予“中国人民艺术家”的称号的()是我国20实际著名的画家和书法篆刻家A.张大千B.徐悲鸿C.齐白石D.范增第二部分课程知识(15分)一、选择题(2分)1.推理一般包括合情推理和演绎推理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二届初中数学教师基本功大赛试题
一、选择题(2×10=20分)
1.某次考试,班长算出了全班40人数学成绩的平均分M,如果把M当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N,那么M:N为().
A.40:41 B.41:40 C.2 D.1
2.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为().
B. C. 4,2
D. 2,4
3%,引进先进的技术设备之后,后两年产品的成本每年递减20%,那么该企业产品的成本现在的与原来的比较()
A.不增不减B.约增加8%C.约减少
8%
D.约减少5%4.函数y=x|x|的图象大致是(
)
5.已知m>2,点(m-1,y
1
),(m,y
2
),(m+1,y
3
)都在二次函数y=x2-2x的图像上,则().
A. y
1
<y
2
<y
3
B. y
3
<y
2
<y
1
C. y
1
<y
3
<y
2
D. y
2
<y
1
<y
3 6.数学课程的总目标中有:培养学生具有适应未来社会生活和继续学习所必需的数学基本知识和技能以及基本的()
A.应用能力B.生活能力C.学习方法D.数学思想方法7.台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为().
A.0.5小时B.1小时C.1.5小时D.2小时8.一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率().
A.
2
5
B.
3
5
C.
8
25
9
25
9.如图,垂直于x轴的直线EF经坐标原点O向右移动. 若E是EF与x 轴的交点,设OE =x(0x a
≤≤),EF在移动过程中扫过平行四边形OABC的面积为y(图中阴影部分),则函数()
y f x
=的图象大致是().
主视图
俯视图
第9题图
C
10.水平地面上有一个球,现用如下方法测量球的大小,用锐角45°的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得P A =5cm ,则球的半径等于( ) A .5cm B
. C
.1)cm D .6cm 二、填空题(2×10=20分)
11.一幅美丽的图象,在某顶点处有四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边
形、正六边形,那么另外一个为____________.
12.若函数y =x 2+bx +c 的图象的顶点在第四象限,则
函数y=2x+b 的图象不经过第_______象限.
13.A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为 x -y +1=0,则直线PB 的方程为 .
14.如图,水平地面上有一面积为30π ㎝2的灰色扇形OAB ,其中OA 的长度为6㎝,且与
地面垂直.若在没有滑动的情况下,将图(1)的扇形向右滚动至示,则O 点移动了 ㎝.
15.若不等式组11
2x x a
-≤≤⎧⎨<⎩有解,那么a 必须满足 .
16.把直线l :y=3x+2平移后得直线l 1:y=3x-5.有下列说法:①是把l 向下平移7个单位;②是把l 向右平移3
7
个单位;③是把l 向上平移5个单位;④是
把l 向左平移5个单位.其中正确序号有____________.(把你认为正确的全写上)
17.规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 .
18.用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽之比应为 .
19.将一张坐标纸折叠一次,使得点M (0,4)与点N (1,3)重合,则与点P (2004,2010)重合的点的坐标是 .
20.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数
2转换成十进制形式是___________.
三、解答题(60分)
21.已知方程
0632=--x x 的根分别为a,b(a>b),方程0232=--x x 的根分别为
c,d(c>d ),求(a-c)(b-d)(b-c)(a-d)的值.
22.△ABC 中,BC=a ,AC=b .(1)以AB 为边向△ABC 外作等边△ABD ,当∠ACB 为多少度时,C 、D 两点之间的距离最大,最大值是多少?(2)以AB 为边向△ABC 外作正方形ABDE ,当∠ACB 为多少度时,点C 到正方形ABDE 的中心O 的距离最大,最大值是多少?
23.小华与小红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,小华得1分,当两张硬纸片上的图形可拼出房子或小山时,小红得1分(如图2),问题:(1)游戏规则对双方公平吗?请说明理由;(2)若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
24.如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B .
(1)点P 在运动时,线段AB 的长度也在发生变化,请写出线段AB 长度的最小值,并说明理由;
(2)在⊙O 上是否存在一点Q ,使得以Q 、O 、A 、P 为顶点的四边形是平行四边形?若存在,请求出Q 点的坐标;若不存在,请说明理由.
25.案例分析
案例1: 教师讲完一元一次方程解题方法后,讲解方程x+1/3=(1/3)x+1时,学生甲:老师我已看出x=1,教师加以表扬,问能否解出来,学生甲上台演算完.学生乙:老师,
我可以只移项不合并,x-1+1/3-(1/3)x=0,(x-1)+1/3(1-x)=0,老师又加以表扬.
案例2:课堂上当老师一宣布小组讨论、交流,前排的学生唰地回头,满教室都是嗡嗡的声音,四人小组里,每个人都在张嘴,谁也听不清谁在说什么,一分钟后,老师一喊“停”,学生立即安静下来.
26.问题现象
(1).来自中考信息的反馈
2007年中考,我们从试卷中随机抽取了100份进行分析:最低分3分,最高分119分,
平均分79.01分,合格率为74%,优秀率为26.3%.学生的得分率与人数分布表如下:
由上表可知,学生的高分者居多,低分者不少,中间层面的学生数少,平均成绩不高,可见学生两极分化严重.
(2).来自教师的信息反馈
在实施新课程中,教师们普遍反映,学生在新的学习方式的学习中,两极分化越来越大,好学生越来越好,后进的学生越来越后进.一份练习,优秀生5分钟可以完成,而后进生15分钟都难以完成.两极分化越来越严重.
请你结合自己的教学实际和上面的问题现象,谈一谈造成两极分化的原因是什么?拟采取什么措施缩小两极分化?。