1复数与复变函数

合集下载

复数与复变函数

复数与复变函数

非零复数z的整数n次根式 为:
n
z
=n
iϕ +2kπ
ρe n
=n
ρ (cos ϕ + 2kπ
+ i sin ϕ + 2kπ )
n
n
(k = 0,1,2....n −1)
2. 无穷远点
复平面上一点与球面上的点 一一对应 ,复平面上∝ 点与 球面上N相对应,点的幅角无 意义。复平面+ ∝为闭平面。
(全平面扩充平面)。
ii) 复数“零”的幅角无定义,其模为零.
iii) 当ρ=1时, z = cosϕ + isinϕ = eiϕ称为单位复数.
利用复数的指数形式作乘除法比较简单,如:
z1 z2
=
ρ1 ρ 2 [cos(ϕ1
+ ϕ2 ) + i sin(ϕ1
+ ϕ2 )] =
ρ ρ ei(ϕ1 +ϕ2 ) 12
z1 z2
上却有很大的区别,这是因为实变函数Δx 只沿实轴逼近零
,而复变函数Δz却可以沿复平面上的任一曲线逼近零,因此
复变函数可导的要求比实变函数可导的要求要严格得多.
z x
例: f (z) = z = x − iy 在复平面上处处不可导
∵ z + ∆z − z = ∆z
∆z
∆z
当 Δz→0 沿实轴
∆z = ∆x, ∆z = ∆x → 1 ∆x ∆x
立。
4. 复变函数
例 : 初等单值函数
幂函数: w=zn n=1,2, - - - - -
多项式: a0+a1z1+a2z2+- - - - +anzn n 为整数

复变函数第一章

复变函数第一章

z1 z1 z2 z2
Arg(
z1 z2
)
Arg
z1
Arg
z2
1、 幂函数
非零复数 z 的 n 次幂
zn rnein rn (cos n i sin n )
其中
zn z n , Arg zn nArg z.
令 r = 1,则得棣莫弗公式
(cos i sin )n cos n i sin n
21
•连续曲线 若实函数 x(t) 和 y(t) 在闭区间[, ]
上连续,则方程组
x x(t),
y
y(t),
( t )
或复数方程 z z(t) x(t) iy(t) ( t )
代表一条平面曲线,称为 z 平面上的连续曲线.
进一步地,若在 t 上,x '(t) 及 y '(t) 存在、
E(C)
线 C 把 z 平面唯一地分成
C、I(C) 及 E(C) 三个点集,
I(C)
它们具有如下性质:
(1)彼此不交;
O
C
x
(2)I(C) 是一个有界区域(称为 C 的内部);
(3)E(C) 是一个无界区域(称为 C 的外部).
25
•单连通区域 设 z 平面上的区域 D, 若在 D 内 无论怎样画简单闭曲线,其内部仍全含于 D, 则称 D 为单连通区域. 非单连通的区域称为多 连通区域.
y
z
v
w
2 O 2 x
4 O 4 u
31
•反函数 假设函数 w=f(z) 的定义域是 z 平面上的 集合 G,值域是 w 平面上的集合 G*. 对 G* 中 的每一个点 w,在 G 中有一个(或至少两个) 点与之相对应,则在 G* 上确定了一个单值(或

第1章 复数与复变函数数学物理方程

第1章 复数与复变函数数学物理方程

z平面
ω 平面
复变函数w =f(z)可以写成w =u(x,y)+iv(x,y), 其中z=x+iy
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数

几类基本初等函数 幂函数
n为正整数
z n n (cos i sin ) n n (cosn i sin n ) n e in
z1
z2 p
区域D连同它的边界一起构成闭区域,记为 D
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
定义5:单连通域与多连通域
若在区域D内作任意闭合曲线,曲线所包围的所有点都属于D, 那么D称为单连通区域,否则,D称为复连通区域。 规定:若观察者沿边界线走时,区域总保持在观察者的左边, 那么观察者的走向为边界线的正向;反之,则称为边界线的 负向。
两个复数相乘等于 它们的模相乘,幅 角相加
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
z1 x1 x2 y1 y2 x1 y2 x2 y1 i 2 2 2 2 z2 x2 y 2 x2 y 2 r1 cos(1 2 ) i sin(1 2 ) r2 r1 exp[i(1 2 )] r2
指数函数 e z e x cos y i sin y
e z e x , Arg e z y
z x iy
性质
周期性
y 0时, e z e x ; x 0时, eiy cosy isiny
exp(z i2 ) exp(z)

复变函数第一章

复变函数第一章
内点: N (z0 ) E
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n

复变函数1 复数与复变函数

复变函数1 复数与复变函数
定理2 两个复数的商的模等于它们的模的商, 两个复数 的商的辐角等于被除数与除数的幅角之差.
2 . 乘方与开方运算 1)乘方 z
n
=r e
n inθ
= r ( cos nθ + i sin nθ )
n
n
De Moivre 公式: ( cosθ + i sin θ ) = cos nθ + i sin nθ
z=z1+t(z2−z1). (0≤t≤1)
z1 + z2 z= 2
的中点为
例4 求下列方程所表示的曲线:
1) 2) 3)
| z + i |= 2; | z − 2i |=| z + 2 |; Im(i + z ) = 4.
解:
1)
| z + i |= 2
y x −i
设 z = x + i y , 方程变为

他们的实部和虚部都相等
复数的表示法 1.代数形式 : z = x + iy
1)点表示 虚轴
复数z = x + iy ↔ 平面XOY 上的点 z ( x, y )
y y r
θ
z(x,y)
复平面
0
x
实轴
x
2) 向量表示
y
r 复数z=x+iy ↔ 矢径z
y
r = | |z
r z z=x+iy
| x |≤| z |,| y |≤| z | | z |≤| x | + | y |, zz =| z | =| z | x
4

π π⎞ ⎛ w0 = 2 ⎜ cos + i sin ⎟ , 16 ⎠ ⎝ 16 9π ⎞ ⎛ 9π 8 w1 = 2 ⎜ cos + i sin ⎟ , 16 16 ⎠ ⎝

《复变函数》第一章 复数与复变函数

《复变函数》第一章 复数与复变函数
( z ≠ 0)
的定义域, w 值的全体组成的集合称为函数 w = f ( z ) 的值域. 及 w = z +1
z 1
( z ≠ 1)
均为单值函数,w = n z
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w = f ( z ) 是定义在点集 则
容易验证复数的四则运算满足与实数的四则运算相应的运算规律. 全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域 中,复数是不能比较大小的.
2.复平面
从上述复数的定义中可以看出,一个复数 z = x + iy 实际上是由一对有 序实数 ( x, y ) 唯一确定.因此,如果我们把平面上的点 ( x, y )与复数 z = x + iy 对应,就建立了平面上全部的点和全体复数间的一一对应关系. 由于 x 轴上的点和 y 轴上非原点的点分别对应着实数和纯虚数,因而 通常称
对应相等,即 x1 = x2 且 y1 = y2 虚部为零的复数可看作实数,即x + ii0 = x ,
0 特别地, + ii0 = 0 ,因此,全体实数是全体复数的一部分.
实数为零但虚部不为零的复数称为纯虚数,复数 x + iy 为互为共轭复数,记为
( x + iy ) = x iy
和 x iy
2.区域与约当(Jordan)曲线
定义1.5 若非空点集 D 满足下列两个条件: (1) D 为开集. (2) D 中任意两点均可用全在 D 中的折线连接起来,则称 D 为区域 (图) 定义1.6 若 z0 为区域 D 的聚点且 z0 不是 D 的内点,则称 z0 为 D 的界点, D 的所有界点组成的点集称为 D 的边界,记为 D , 若 r > 0 ,使得 N r ( z0 ) ∩ D = ,则称 z 0 为 D 的外点 定义1.7 区域 D 加上它的边界 C 称为闭区域,记为 D = D + C

复变函数 第1章 复数与复变函数

复变函数 第1章 复数与复变函数
6
6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2

1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .

1.3.2 单连通域与多(复)连通域

1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个

z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s

第1章复数与复变函数汇总

第1章复数与复变函数汇总
2 2
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
z1 z 2 z1 z 2 Re( z1 z 2 ), z1 z2 z1 z2 Re( z1 z2 ).
(2) ∞的实部,虚部及幅角都无 意义, (3)b≠0(但可为∞)时, b b ,
b ; a 0 , 0, (4)a≠∞时, a a a ; 0 (5)运算∞± ∞,0· ∞, , 0 无意义
§3 复数的乘幂与方根
第一章 复数与复变函数
§1 复数及其代数运算
目录
§2 复数几何表示
§3 复数的乘幂与方根
§4 区 域 §5 复变函数
§6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 形如 z=x+iy 或 z=x+yi 的数,称为复数 虚部为零的复数就可看作实数,即 x+i· 0=x 复数
z n r n (cosn i sin n ) r nein
n
2k 2k z r (cos i sin ) n n 1
1 n
w0 r (cos i sin ) n n 1 2 2 n
n


w1 r (cos
1 n
………………………………………
当x在第一象限
当x在第二象限 当x在第三象限 当x在第四象限 当z在正y轴上
2 arg z 2 0, ,
当z在负y轴上
当z在正x轴上 当z在负x轴上

第一章复数与复变函数

第一章复数与复变函数

第一章-复数与复变函数复变函数教案2012—2013学年度第二学期任课教师郭城课程名称复变函数采用教材高教三版(钟玉泉编)周课时数 4数统学院数学教育专业2010 年级1班引言数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。

以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。

我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac<O,就会遇到负数开平方的问题,最简单的一个例子是在解方程x2+1=0时,就会遇到开平方的问题。

1545年,意大利数学物理学家H Cardan(卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程(10)x x-+1154=0的根,它求出形式的根为515-和515-,积为25(15)40--=.然而这只不过是一种纯形式的表示而已,当时,谁也说不上这样表示究竟有什么好处。

为了使负数开平方有意义,也就是要使上述这类方程有解,我们需要再一次扩大数系,于是就引进了虚数,使实数域扩大到复数域。

但最初,由于对复数的有关概念及性质了解不清楚,用它们进行计算又得到一些矛盾,因而,长期以来,人们把复数看作不能接受的“虚数”。

直到十七世纪和十八世纪,随着微积分的发明与发展,情况才逐渐有了改变。

另外的原因,是这个时期复数有了几何的解释,并把它与平面向量对应起来解决实际问题的缘故。

复变函数论产生于十八世纪。

1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。

而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。

因此,后来人们提到这两个方程,把它们叫做“达朗贝尔一欧拉方程”。

到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西一黎曼条件”。

复变函数-第一章-复数与复变函数

复变函数-第一章-复数与复变函数

y
28
1 i
2
q

4
w0
r 2
q 2k
n i sin
w2
q 2k
n )
o
w3
x
wk n r (cos
16
例 2. 求
4
-1
解 : 1 cos i sin
4
1 cos
2k
4
i sin
2k
4
, (k 0,1,2,3).
z1

z2
z0 内点
P
D-区域
(6) 连通 D中任意两点可用一条全在D
中的曲线连接起来。
21
外点
z1

z2
z0 内点
P
(7) 区域
连通的开集.
D-区域
区域D与它的边界一起构成闭区域, 或闭域. D
22
(8) 有界区域 如果存在正数M,使得对于一切D中的点z, z M, 有 则称 D为有界区域,否则称为无界区域。 例如
设 w e , 由w z , 有 ne in re iq ,
i n
则 n r , n q 2k
(k为整数 ).
即 w = n z = n re
r (cos
n
i
θ + 2 kπ n

q 2k
n )
q 2k
n
i sin
(k为整数).
14
当k=0,1,2,…,n-1时,得到n个相异的根:
z. 共轭 x iy为x iy的共轭复数,记为
注:(1)两个复数相等,是指二者实部、虚部分别相同; (2)两个复数之间无法比较大小,除非都是实数; (3)实部为0,虚部不为0,为纯虚数。

第1章复数与复变函数资料

第1章复数与复变函数资料
(3)幅角主值的求法
arc
tan
y x
,
arg
z
arc tan
y x
,
arc
tan
y x
,
,
arc
tan
y x
,
当x在第一象限 当x在第二象限 当x在第三象限 当x在第四象限
2
arg
z
2
0,
,
当z在正y轴上
当z在负y轴上 当z在正x轴上 当z在负x轴上
4.复球面
扩充复平面的 一个几何模型就是 复球面。
对满足α<t1<β, α≤t2≤β, t1≠ t2的t1及t2,当 z(t1)=z2(t)成立时,点z(t1)称为此曲线C的重点;凡 无重点的连续曲线,称为简单曲线或Jordan
目录
第一章 复数与复变函数
§1 复数及其代数运算
§2 复数几何表示 §3 复数的乘幂与方根 §4 区 域 §5 复变函数 §6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 复数 形如
z=x+iy 或 z=x+yi
的数,称为复数 虚部为零的复数就可看作实数,即 x+i·0=x
点z0为G的边界点,点集G的全部边界点称为G的边 界(如图1.4.1)
注意 区域的边界可能是由几条曲线和一些孤
立的点所组成的(如图1.4.2)
定义1.4.3 若点集G的点皆为内点,则称G为
开集
定义1.4.4 点集G称为一个区域,如果 它满足:
(1)G是一个开集; (2)G是连通的,就是说G中任何两点z1 和z2都可以用完全属于G的一条折线连接起 来(图1.4.1)
(6) z z 2 Re z, z-z 2i Im z.

明德 第一章 复数与复变函数

明德 第一章 复数与复变函数
y 虚轴
P x, y
复数z x iy可用xoy平面上 坐标为( x,y )的点p表示.此时,
x轴 — 实 轴 y轴 — 虚 轴 平 面— 复 平 面 或 z平 面
0
z x iy
x 实轴

数z与点z同义
2. 向量表示法
z x iy 点P ( x,y ) oP { x , y } 显然下列各式成立 可 用 向 量 oP表 示z x iy。 x z, y z, 称向量的长度为复数z=x+iy 的模或绝对值; 2 以x轴正方向为始边,OP 为终边的的夹角 θ 称为复数 2 z z z z . z x y, z=x+iy的辐角. y 虚轴 uu r
2 2
法 2. 将 z x iy 代入得: x y 1 i 2
x y 1 i 4 即 x y 1 4
2 2 2
2
z 2i z 2
解: 由几何意义, z 2i z 2 即 z 2i z 2
0
特别的,以z0为圆点?
z z0 Re i 0 2 , 为参数
x
0 2 , 为参数
例5 指出下列方程表示的曲线
1
解:法 1.
zi 2
由几何意义 z i 2 即 z i 2 表示到 i
距离为2的点的轨迹, 即圆 x y 1 4
n
k 0,1,,n 1
(1) 当k=0,1,…,n-1时,可得n个不同的根, 而k取其它整数时,这些根又会重复出现。
n n (2)几何上, z 的n个值是以原点为中心, r 为半 径的圆周上n个等分点,即它们是内接于该圆周 的正n边形的n个顶点。

数学物理方法课件-1 复数与复变函数

数学物理方法课件-1 复数与复变函数

sin z sinx iy
sin x cosiy cosx sin iy
sin x ey e y cos x ey e y
2
2i
sin2 x ey e y 2 cos2 x ey e y 2
4
4
1 sin 2 x e2 y 2 e2 y cos2 x e2y 2 e2y 2
所有的无穷大复数(平面上无限远点)投影到唯一的北极 N。故我们为 方便,将无穷远点看作一个点。其模无穷大,幅角无意义。
§1.2 复变函数
1. 定义
zz0
邻域
以复数 z0 为圆心,以任意小实数 为半径
作一圆,则圆内所有点的集合称为z0的邻域.
内点
z0 和它的邻域都属于 E, 则 z0 为 E 的内点。
(2) 极坐标
x cos y sin
z x iy cos i sin 复数的极坐标表示
模 幅角, Argz x2 y2
arctg( y / x)
由于三角函数的周期性,复数的幅角不唯一,且 彼此相差2π的整数倍.
)
,
lim
zz0
g(z)
g ( z0 ),则
lim [ f (z) g(z)]
zz0
f (z0) g(z0)
lim
zz0
f (z)g(z)
f
(z0 )g(z0 )
lim f (z) f (z0 ) zz0 g(z) g(z0 )
(g(z0 ) 0)
§1.4 可导与可微
第一章 复数与复变函数
§1.1 复数与复数运算 1. 复数的基本概念

复数与复变函数

复数与复变函数

复数与复变函数
复数和复变函数是数学中非常重要的概念,它们在许多领域都有广泛的应用。

在本文中,我们将介绍复数的基本概念、复变函数的定义以及它们在数学中的应用。

复数的基本概念
复数是由实数部分和虚数部分组成的数,可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i² = -1。

复数的加法、减法、乘法和除法运算遵循一定的规则,例如:- (a + bi) + (c + di) = (a + c) + (b + d)i
- (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
复变函数的定义
复变函数是一种将复数映射到复数的函数,可以表示为f(z) = u(x, y) + iv(x, y)的形式,其中u和v是实值函数,x和y分别是复数z的实部和虚部。

复变函数具有连续性、可导性和解析性等性质,例如:
- 如果一个复变函数在某一点连续,则它在该点的邻域内也连续;
- 如果一个复变函数在某一点可导,则它在该点附近也一定可导;
- 如果一个复变函数在某一点解析,则它在该点附近也一定解析。

复数和复变函数的应用
复数和复变函数在许多领域都有广泛的应用,例如:
- 在物理学中,复数被用来描述波动现象、电磁场等物理量;
- 在工程学中,复数被用来分析电路、信号处理等问题;
- 在计算机科学中,复数被用来设计算法、加密通信等技术;
- 在数学中,复变函数被用来研究微分方程、积分方程等问题。

总之,复数和复变函数是数学中非常重要的概念,它们在许多领域都有广泛的应用。

通过学习和掌握这些概念,我们可以更好地理解和应用数学知识来解决实际问题。

复变函数第1章 复数与复变函数

复变函数第1章 复数与复变函数
1、乘积
设 z1 r1(cos1 isin1) r1ei1 ,
z2 r2(cos2 isin2 ) r2ei2

z1z2 r1r 2 (cos1 isin1)(cos2 isin2 )
r1r 2[cos( 12 ) isin( 12 )] r1r 2 ei( 12 )
于是, z1z2 z1 z2 , Arg(z1z2 ) Arg(z1) Arg(z2 )
(7) 复变函数理论也是积分变换的重要基础.
积分变换在许多领域被广泛地应用,如电力 工程、通信和控制领域以及信号分析、图象处理 和其他许多数学、物理和工程技术领域.
Josep(8h) Fourier 变换应用于频谱分析和信号处理等. (1768.3.21-1频83谱0.5分.1析6) 是对各次谐波的频率、振幅、相位之 法国数学间家的和关物系理进学行家分.他析致. 力随于着计算机的发展,语音、图 导问题, 象18等22作年出为版信名号著,《在热频的域分中的处理要方便得多.
1 i i
例1. 证明若z是实系数方程 an xn an-1xn1 a1x a0 0 的根,则z也是其根. (实系数方程的复根成对出现)
三、复平面及复数的几何表示y
设 z x iy P(x, y) OP x轴 实轴, y轴 虚轴
1. 模 、辐角 模:z r OP x2 y2 ; 则有
复 实数 ( y =0) 数 (C) 虚数 ( y 0)
纯虚数 ( x=0) 非纯虚数 (x 0 )
简单性质:
(1) 设 z1 x1iy1 , z2 x2 iy2,则 z1 z2 x1 x2且y1 y2
(2) z x iy 0 x 0且y 0
注意:一般说来,. 任意两个复数不能比较大小!

第一章复数与复变函数

第一章复数与复变函数

n 次幂,
cos i sin
n
cosn i sinn
此式称为棣莫佛(De Moivre)公式。
2、复数的开方 开方是乘方的逆运算,设 w z 则称复数 z的n次方根记作: n z . w w为复数
n
容易得
1 1 w z | z |[cos( 2k ) i sin( 2k )] n n
2 2 2 2
2
2

三、复数的表示方法
1. 点的表示法 2. 向量表示法
3. 三角表示法 4. 指数表示法
1. 点的表示法
复数z x iy 一对有序实数x, y), (
在平面直角坐标系中, 任 意 点 ( x , y ) 一 对 有 序 实 数x , y ) P ( z x iy 平 面 上 的 点 ( x , y ) P
则有 z1z2 | z1 || z2 | [cos( 1 2 ) i sin( 1 2 )]
于是得到:1z2 || z1 || z2 | |z
Arg( z1z2 ) Argz1 Argz2
后一个式子应理解为集合相等。
几何意义 : 将复数 z 1 按逆时针方向旋转一个 角度2 ,再将其伸缩 z2 倍。
内接于该圆周的正 n 边形的 n 个顶点。
如 wk 4 1 i
2k 2k 8 2 (cos 4 i sin 4 ) ( k 0,1,2,3) 4 4
(见下图)
w1
y
1 i
2
28
w0
w2
o
w3
x
例5 求解方程 z 3 2 0
解:z 2
故得
1 3

复变函数

复变函数
(2) z1z2 z1 z2 ;
z1 z1 (3) z z 2 2
(5)
2
(z2 0); (4) z z;
2 2
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
n


w1 r (cos
1 n
………………………………………
wn 1 r (cos
n
i sin
n
)
2(n 1)
n
i sin
2(n 1)
n
)
5.复数的共轭运算 根据共轭复数的定义,不难证明共 轭复数具有如下性质
(1) z1 z2 z1 z2 ;
(分配律)
注意 一般说来,任意两个复数不 能比较大小
2 复平面
(1).复数的点表示法 (2).复数的向量表示
(3).复数的极坐标表示 x cos , y sin i z cos i sin e 复数的这种表示 称为复数的极坐标形 式,亦称为三角形式 和指数形式 关于复数的模、辐角,应当作如下 的说明:
z1 ( z2 z3 ) ( z1 z2 z1 z3 )
(分配律)
注意 一般说来,任意两个复数不 能比较大小
2 复平面
(1).复数的点表示法 (2).复数的向量表示
(3).复数的极坐标表示 x cos , y sin i z cos i sin e 复数的这种表示 称为复数的极坐标形 式,亦称为三角形式 和指数形式 关于复数的模、辐角,应当作如下 的说明:

第一章 复数与复变函数

第一章  复数与复变函数
把复数x + iy对应的实数对(x, y) 表现在复平面上。
y
P (x, y)
复平面:如图所示, y x + yi 横轴表示实数, x 纵轴表示纯虚数, O x 整个坐标平面可称为复(数)平面。
2. 复数的向量表示
复数与平面向量等同起来,将复数的实 部与虚部分别看作向量的水平分量与铅 垂分量。
y y
z 2 =x2 − iy2
z1 + z 2 = ( x1 + x2 ) − i ( y1 + y2 )
故 z1 + z 2 = z1 + z 2
3. 复数的共轭运算
根据共轭复数的定义,不难证明共轭复 数具有如下性质:
(1) z1 ± z 2 = z1 ± z 2 ;
(2) z1z 2 = z1 z 2 ;
( x1 x2 + y1 y2 ) + i ( − x2 y1 + x1 y2 )
= 2( x1 x2 + y1 y2 ) = 2 Re( z1 ⋅ z2 ).
或 z1 ⋅ z2 + z1 ⋅ z2 = z1 ⋅ z2 + z1 ⋅ z2 = 2Re(z1 ⋅ z2 ).
§2 复数的表示法
1. 复数的点表示法
z = x + iy = x − iy
易知 ( z ) = z
2. 复数的代数运算zFra bibliotek复数的相等 z1 = x1+ iy1 x1= x2 y1= y2
z2 = x2+ iy2 ⇒ z1= z2
3i与2i
任意两个复数不能比较大小
z
复数的代数运算
(1)复数的加(减)法
z1 ± z 2 = ( x1 ± x2 ) + i ( y1 + y2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 逆时针的转角为正,顺时针的转角为负(补充规定)。
[例] [定义]
1 i
的辐角:7
4

4
7
4
2
取值在(- , ]的辐角称z的辐角主值, 记为 arg z 0 (- , ],Arg z arg z 2k .
z x iy
由z平面的图可知,x r cos, y r sin.
(3) (三角) z rcos i sin .
r1r2cos1 cos2 sin1 sin2 isin1 cos2 cos1 sin2 r1r2cos1 2 i sin1 2
z rcos i sin
[定理一] 复数乘积的模 模的乘积;乘积的辐角 辐角的和,即
z1z2 z1 z2, Arg(z1z2) Arg(z1) Arg(z2)
设z1 x1 iy1, z2 x2 iy2
[加减法] z1 z2 (x1 x2) i( y1 y2).
[对比] ( x1, y1 ) ( x2 , y2 ) ( x1 x2 , y1 y2 )
[共轭] z1 x1 iy1
z1 z2 z1
z1 z2
[注]
z2
1. 复数加减法与向量加减法一样。
2.复数的代数运算
设z1 x1 iy1, z2 x2 iy2, z x iy
[加减法] z1 z2 (x1 x2) i( y1 y2).
[乘法] z1 z2 ( x1 iy1 )( x2 iy2 )
i2 1
( x1 x2 y1 y2 ) i( x1 y2 x2 y1 ).
t , t
0
t
2
x2 y2 1 (单位圆 z
1)
[直观理解]

定一个曲线
x y
x(t) ,a
y(t )
t
b,我们可以
把(x(t), y(t))理解为某个人在t 时刻所处的位置。随着
时间t 的推移,这个人走出一个轨迹。x(t), y(t)分别代表
他在X方向、Y方向的行走情况。
椭圆:z z1 z z2 r
第一章 复数与复变函数
●复数的概念及运算:±×÷共轭, 乘幂方根 ●复数的各种表示法及相互关系 ●区域的概念 ●复变函数的概念及性质:映射、极限、连续
S1 复数及其代数运算
1. 复数的概念
常用的数集:
自然数集 N {1,2,3, }
整数集 Z { ,3,2,1,0,1,2,3, }
有理数集Q
(4) (指数) z rei . 例: 1 1ei
i ry
1 O x1
Euler公式: ei cos i sin i
[例] 1 i
2
cos
4
i
sin
4
2 cos i sin
4
4
i
2e 4
i
2e 4
i
2e 4
注:不要利用sin, cos的奇偶性化简。否则看不出辐角。
i
2e 4
8
2ei ,
2k
4
, k 0,1,2,3
2
4
2
82
o
0
x
3
1
zn
r n1cos
2k
n
i sin
2k
n
r n1ei
2k n
,
k Z.
[例] u
[解释] 在实数域内对正数开偶次方,有两个根, 一正一负,例如4 16 2;开奇次方,只有一个 正根,3 8 2。负数不能开偶次方;开奇次方,有 一个负根,3 8 2。
(实部•实部-虚部• 虚部) i(交叉相乘)
[共轭] z x iy.(虚部变号) z ? (z R)
[除法]
z1 z2
z1 z2 z2 z2
( x1 ( x2
iy1 ) iy2 )
( x2 ( x2
iy2 ) iy2 )
( ) i( )
x22
y22
. i0
性质:
z x iy
和虚部,记为Re(z), Im( z). ( Real, Imaginary ) [定义] x 0, y 0时的z iy称纯虚数. [复数表示法的唯一性] x iy a ib x a且y b.
r1ei1 r2ei2 r1 r2 且 1 2 2k .
两个复数不能比较大小. i 2i
双曲线:z z1 z z2 r [例] 4P9 u [例] 25(4) P34
(单位圆z 1上点的n次幂仍在单位圆上,角度为n .)
[例]
3 i 6 2
3 2
i 2
6
26ei
6
6
64ei
64.
[例] u
[定义] 若对z, 存在,使得n z(n N), 称是z的n次
1
方根, 记为n z或 zn . 求方根的运算叫开方。
设 cos i sin,z rcos i sin rei
球面称作复球面.
复平面上的直线对应着复球面上的圆(过北极N)。所
以直线被看作是广义的圆-过的圆。
C 扩充复平面 :复平面 C + {},与复球面一一对应。
S3 复数的乘幂与方根
1. 乘积与商
设z1 r1cos1 i sin1, z2 r2cos2 i sin2,则
z1z2 r1r2cos1 i sin1cos2 i sin2
[计算] 如何由一种表示法求另一种表示法:
(1)(2): x, y,(3)(4): r,, ( A) 已知r, ,求x, y ? 简单:x r cos , y r sin . (B) 已知x, y,求r,0(主值 : ( , ])?
r
x2
y2简



0




特殊点:
x 0, y 0, z 0, 0不定。 x 0, y 0, 典型z 1, 0 0. x 0, y 0, 典型z 1, 0 . x 0, y 0, 典型z i, 0 / 2. x 0, y 0, 典型z i, 0 / 2.
z1
2. 减法时向量箭头指向被减数。
3. 互相共轭的两向量关于x轴对称,长度相等,角度相反。
实部相等,虚部相反。
* 4. z1 z2 可以表示两点(即两复数)间的距离。 z i 1
5. (三角不等式) z1 z2 z1 z2 .
x2 ( y 1)2 1
复球面(第五种表示)
N
P SO
2
2k
2n
2
2m
.
ZZZ
2Z 0,2,4,
* 3. 涉及 z1 z2 ,z1 z2 ,zn , n z 时三角(指数)表示式比 x iy好 此时辐角的计算变成加减。
z1z2
zn
r1r2
r e i(1 2 n ) n
,
z2 r2 e i(2 1 ) z1 r1
[例]
[例]1 P14
(x x0)2 ( y y0)2 r2
* 直 线 :(1)有 参 数t: xy
x1 y1
t(x2 t( y2
x1) y1)
z
z1
t(z2
z1)
(2)无参数t:z 1 z 1表示1, 1的垂直平分线,
即y轴 : x 0, Re z 0。
x y
x1 y1
x2 x1 y2 y1
[曲线的参数表示法] 平面上的曲线F ( x, y) 0可以表示

x y
x(t) ,a
y(t )
t
b,在复积分C
f
(z)dz
中要用到。
C
f (z)dz
b
a
f z(t) z'(t) dt, z(t) x(t) iy(t)
要化成我们熟悉的方程的话,只要消去t 即可,例如
x y
cos sin
i ry
1 O x1
i tan y
x
其他点的辐角主值: ( , ]
arctan x ,
2 2
z I , IV象限,0 arctan
y , 典型z 1 i,1 i. x
0
z
II象限,0
arctan
y x
, 典型z
1
i.
0
z
III象限,0
arctan
y x
, 典型z
2.幂与根
[定义] n个相同的复数z的乘积称z的n次幂,记为zn.
zn rcos i sin n r n cos n i sin n r nein
如果定义zn
1 zn
, z0
1,则上式对任意整数都成立。当
r 1时即De Moivre公式
cos i sin n cos n i sin n
x
y z
除了复数的平面表示方法外, 还可以用球面上的点来表 示复数.
取一个与复平面切于原点z=0的球面, 球面上的一点S与 原点重合. 通过S作垂直于复平面的直线与球面相交于另一 点N. 称N为北极, S为南极.
对复平面内任一点z, 用直线将z与N相连, 与球面相交 于P点, 则球面上除N点外的所有点和复平面上的所有点有一 一对应的关系,而N点本身可代表无穷远点, 记作. 这样的
n
1
zn
r n1cos
2k
n
i sin
2k
n
1
r nei
2k n
,
k Z.
1
[几何意义] z rei 的n个根都在半径为r n的圆上,是内
接正n边形的n个顶
点,每隔2
n
有一个根,即n个根


了360o,






相关文档
最新文档