七年级下册数学几何复习题
初中七年级的数学下册的平面直角坐标系中几何综合题总结复习题

2015 年七年级下学期《平面直角坐标系中几何综合题》2015-07一.解答题(共17 小题)1.( 2015 春?玉环县期中)如图在平面直角坐标系中,A( a,0),B(b,0),(﹣ 1,2).且 |2a+b+1|+=0.(1)求 a、b 的值;(2)①在 y 轴的正半轴上存在一点 M ,使 S△COM= S△ABC,求点 M 的坐标.(注明:三角形 ABC 的面积表示为S△ABC)②在坐标轴的其他地址可否存在点M ,使 S△COM= S△ABC仍成立?若存在,请直接写出吻合条件的点M 的坐标.2.( 2015 春?汕头校级期中)如图,在下面直角坐标系中,已知 A ( 0,a),B(b,0),C( 3,c)三点,其中a、b、2c 满足关系式:|a﹣ 2|+( b﹣ 3) +=0.( 1)求 a、b、 c 的值;( 2)若是在第二象限内有一点P( m,),请用含m 的式子表示四边形ABOP 的面积;(3)在( 2)的条件下,可否存在负整数 m,使四边形 ABOP 的面积不小于△AOP 面积的两倍?若存在,求出所有满足条件的点 P 的坐标,若不存在,请说明原由.3.( 2015 春 ?鄂城区期中)如图,在平面直角坐标系中,点 A ,B 的坐标分别为 A ( a,0), B( b, 0),且 a、 b 满足 a=+﹣1,现同时将点 A , B 分别向上平移 2 个单位,再向右平移 1 个单位,分别获取点 A ,B 的对应点 C, D,连接 AC ,BD , CD .( 1)求点 C, D 的坐标及四边形ABDC 的面积 S 四边形ABDC.P 的坐标;若不( 2)在 y 轴上可否存在一点P,连接 PA, PB,使 S△PAB=S 四边形ABDC?若存在这样一点,求出点存在,试说明原由.( 3)点P 是线段BD 上的一个动点,连接PC, PO,当点P 在BD 上搬动时(不与 B ,D 重合)的值可否发生变化,并说明原由.4.(2014 春?富顺县校级期末)在平面直角坐标系中, A( a,0),B( b,0),C(﹣ 1,2)(见图 1),且 |2a+b+1|+ =0 ( 1)求 a、b 的值;( 2)①在 x 轴的正半轴上存在一点M ,使△COM 的面积 =△ABC的面积,求出点M 的坐标;② 在坐标轴的其他地址可否存在点M ,使△ COM 的面积 = △ ABC 的面积依旧成立?若存在,请直接写出吻合条件的点 M 的坐标;( 3)如图2,过点 C 作CD⊥y 轴交y 轴于点 D ,点P 为线段CD 延长线上的一动点,连接OP, OE 均分∠ AOP ,OF⊥ OE .当点P 运动时,的值可否会改变?若不变,求其值;若改变,说明原由.5.( 2014 春 ?泰兴市校级期末)已知:如图①,直线 MN ⊥直线 PQ,垂足为 O,点 A 在射线 OP 上,点 B 在射线 OQ 上( A、 B 不与 O 点重合),点 C 在射线 ON 上且 OC=2,过点 C 作直线 l∥ PQ,点 D 在点 C 的左边且 CD=3 .(1)直接写出△ BCD 的面积.(2)如图②,若 AC ⊥BC ,作∠ CBA 的均分线交 OC 于 E,交 AC 于 F,求证:∠ CEF= ∠ CFE.(3)如图③,若∠ ADC= ∠ DAC ,点 B 在射线 OQ 上运动,∠ ACB 的均分线交 DA 的延长线于点 H ,在点 B 运动过程中的值可否变化?若不变,求出其值;若变化,求出变化范围.26.( 2014 春 ?江岸区期末)如图 1,在平面直角坐标系中, A ( a ,0), B ( b , 3),C ( 4, 0),且满足( a+b ) +|a﹣ b+6|=0 ,线段 AB 交 y 轴于 F点.( 1)求点 A 、 B 的坐标.( 2)点 D 为 y 轴正半轴上一点,若 ED ∥ AB ,且 AM ,DM 分别均分∠ CAB ,∠ ODE ,如图 2,求∠ AMD 的度数.( 3)如图 3,(也可以利用图 1)① 求点 F 的坐标; ② 点 P 为坐标轴上一点,若△ABP的三角形和 △ABC 的面积相等?若存在,求出 P 点坐标.7.( 2014 春?黄陂区期末) 在直角坐标系中,已知点 A 、B 的坐标是( a ,0)( b ,0),a ,b 满足方程组,c 为 y 轴正半轴上一点,且S △ ABC =6 .( 1)求 A 、 B 、 C 三点的坐标;( 2)可否存在点 P ( t , t ),使 S △PAB =S △ABC ?若存在,央求出P 点坐标;若不存在,请说明原由;( 3)若 M 是 AC 的中点,N 是 BC 上一点,CN=2BN ,连 AN 、BM 订交于点 D ,求四边形 CMDN 的面积是.8.( 2014 春 ?海珠区期末)在平面直角坐标系中,点 A ( a , b )是第四象限内一点, AB ⊥ y 轴于 B ,且 B (0, b )是 y 轴负半轴上一点, b 2=16 , S △AOB =12.( 1)求点 A 和点 B 的坐标;( 2)如图 1,点 D 为线段 OA (端点除外)上某一点,过点∠ AFD 的均分线订交于N ,求∠ 的度数.D 作AO垂线交x 轴于E,交直线AB 于F,∠EOD、( 3)如图E,交直线2,点AB 于D 为线段 OA(端点除外)上某一点,当点F,∠ EOD,∠ AFD 的均分线订交于点D 在线段上运动时,过点 D 作直线 EF 交 xN.若记∠ ODF= α,请用α的式子表示∠ONF轴正半轴于的大小,并说明原由.9.( 2014 春 ?黄梅县校级期中)如图,在下面的直角坐标系中,已知 A ( 0, a),B( b, 0), C( b, 4)三点,其中a,b 满足关系式.( 1)求a,b 的值;( 2)若是在第二象限内有一点P( m,),请用含m 的式子表示四边形ABOP 的面积;( 3)在( 2)的条件下,可否存在点若不存在,请说明原由.P,使四边形ABOP 的面积与△ ABC 的面积相等?若存在,求出点P 的坐标;10.( 2014 春 ?通州区校级期中)在如图直角坐标系中,已知 A ( 0, a), B( b,0), C( b, c)三点,其中a、 b、 c满足关系式2 2+( b﹣ 3) =0 ,( c﹣ 4)≤0.(1)求 a、b、 c 的值;(2)若是点 P( m, n)在第二象限,四边形 CBOP 的面积为 y,请你用含 m, n 的式子表示 y;( 3)若是点P 在第二象限坐标轴的夹角均分线上,并且y=2S 四边形CBOA,求 P 点的坐标.11.(2014 春 ?鄂州校级期中)如图,A 、B 两点坐标分别为2=0,A(a,4),B( b,0),且 a,b 满足( a﹣2b+8) +E 是 y 轴正半轴上一点.(1)求 A 、 B 两点坐标;(2)若 C 为 y 轴上一点且 S△AOC= S△AOB,求 C 点的坐标;( 3)过 B 作 BD ∥ y 轴,∠ DBF=∠DBA,∠ EOF=∠ EOA,求∠ F与∠ A间的数量关系.12.( 2014 春 ?东湖区期中)如图,平面直角坐标系中 A (﹣ 1,0), B( 3, 0),现同时将 A 、B 分别向上平移 2 个单位,再向右平移 1 个单位,分别获取 A 、 B 的对应点C、D ,连接 AC 、BD( 1)直接写出C、D 的坐标: C D及四边形ABCD 的面积:( 2)在 y 轴负半轴上可否存在点 M ,连接 MA 、 MB 使得 S△MAB> S 四边形ABCD?若存在,求出 M 点纵坐标的取值范围;若不存在说明原由( 3)点 P 为线段 BD 上一动点,连PC、PO,当点 P 在 BD 上搬动(不含端点)现给出①的值不变,②的值不变,其中有且只有一个正确,请你找出这个结论并求其值.13.( 2014 春 ?台州月考)如图,在平面直角坐标系中,点 A , B 的坐标分别为 A ( 0,α), B( b,α),且α、 b 满22 个单位,再向左平移 1 个单位,分别获取点 A ,B 的对应足( a﹣ 2) +|b﹣ 4|=0,现同时将点 A ,B 分别向下平移点 C,D ,连接 AC , BD ,AB .( 1)求点 C, D 的坐标及四边形ABDC 的面积 S 四边形ABCD(2)在 y 轴上可否存在一点 M ,连接 MC , MD ,使 S△MCD =S 不存在,试说明原由.(3)点 P 是线段 BD 上的一个动点,连接 PA, PO,当点 P 在四边形ABDC?若存在这样一点,求出点M 的坐标,若BD 上搬动时(不与B, D 重合)的值可否发生变化,并说明原由.14.( 2014 春 ?海安县月考)如图,在平面直角坐标系中,点 A ,B ,C 的坐标分别为(﹣1, 0),( 3, 0),( 0, 2),图中的线段 BD 是由线段 AC 平移获取.( 1)线段 AC 经过怎样的平移可获取线段BD ,所得四边形是什么图形,并求出所得的四边形ABDC 的面积 S 四边形ABDC;( 2)在 y 轴上可否存在点 P,连接 PA, PB,使 S =S 四边形ABDC?若存在,求出点P 的坐标;若不存在,试说△ PAB明原由;( 3)点 P 是线段 BD 上的一个动点,连接PC、 PO,当点 P 在 BD 上搬动时(不与 B ,D 重合)给出以下结论:①的值不变;②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.15.( 2014 春 ?武汉月考)已知,在平面直角坐标系中,2;点 A(0,m),点 B( n,0),m、n 满足( m﹣ 3) =﹣( 1)求 A 、 B 的坐标;( 2)如图1, E 为第二象限内直线 AB 上一点,且满足S△AOE= S△AOB,求 E 的坐标.( 3)如图 2,平移线段 BA 至 OC,B 与 O 是对应点, A 与 C 对应,连 AC .E 为 BA 的延长线上一动点,连 EO.OF均分∠ COE,AF 均分∠ EAC ,OF 交 AF 于 F 点.若∠ ABO+ ∠ OEB= α,请在图 2 中将图形补充完满,并求∠F(用含α的式子表示).16.( 2013 秋 ?江岸区校级月考)如图,已知点 A (﹣ m, n), B( 0, m),且 m、 n 满足2+( n﹣5) =0,点 C在 y 轴上,将△ ABC 沿 y 轴折叠,使点 A 落在点 D 处.(1)写出 D 点坐标并求 A 、 D 两点间的距离;(2)若 EF 均分∠ AED ,若∠ ACF ﹣∠ AEF=20 °,求∠ EFB 的度数;(3)过点 C 作 QH 平行于 AB 交 x 轴于点 H,点 Q 在 HC 的延长线上, AB 交 x 轴于点 R,CP、RP 分别均分∠ BCQ和∠ ARX ,当点 C 在 y 轴上运动时,∠CPR 的度数可否发生变化?若不变,求其度数;若变化,求其变化范围.17.( 2013 春 ?武汉校级月考)如图,在平面直角坐标系中,点 A , B 的坐标分别为 A (﹣ 1, 0)、 B( 3, 0).现同时将点 A , B 分别向上平移 2 个单位,再向右平移 1 个单位,分别获取点 A , B 的对应点C、 D,连接 AC , BD .( 1)直接写出点C、 D 的坐标,求四边形ABDC 的面积S 四边形ABDC;( 2)在坐标轴上可否存在一点P,使S△PAC=S 四边形ABDC?若存在这样一点,求出点P 的坐标;若不存在,试说明原由.( 3)如图 3,在线段 CO 上取一点 G,使 OG=3CG ,在线段 OB 上取一点 F,使 OF=2BF , CF 与 BG 交于点 H,求四边形OGHF 的面积 S 四边形OGHF.。
七年级下册数学几何专项训练题

1、下列图形中,是轴对称图形但不是中心对称图形的是()。
A、平行四边形B、等腰三角形C、正方形D、圆(答案:B。
解析:等腰三角形有一条对称轴,即高,但不是中心对称图形,因为不能找到一个点使得图形关于该点中心对称。
平行四边形、正方形和圆都是中心对称图形。
)2、两条直线被第三条直线所截,如果同位角相等,那么这两条直线()。
A、一定平行B、一定不平行C、可能平行也可能不平行D、无法确定是否平行(答案:A。
解析:根据同位角相等定理,如果两条直线被第三条直线所截,且同位角相等,那么这两条直线一定平行。
)3、下列说法中,正确的是()。
A、两条直线被第三条直线所截,内错角一定相等B、直线外一点到这条直线的垂线段,叫做点到直线的距离C、过一点有且只有一条直线与已知直线平行D、在同一平面内,不相交的两条直线叫做平行线(答案:D。
解析:A选项,两条直线被第三条直线所截,内错角不一定相等,除非两条直线平行;B选项,直线外一点到这条直线的垂线段的长度,才叫做点到直线的距离;C 选项,过直线外一点有且只有一条直线与已知直线平行,若点在直线上则无法作出与已知直线平行的直线;D选项,正确。
)4、若一个角的补角是120°,则这个角的余角是()。
A、30°B、60°C、90°D、120°(答案:B。
解析:一个角的补角是180°减去这个角,已知补角是120°,所以这个角是180°-120°=60°,它的余角是90°-60°=30°。
)5、下列图形中,既是轴对称图形又是中心对称图形的是()。
A、等边三角形B、等腰梯形C、菱形D、平行四边形(答案:C。
解析:菱形有两条对角线作为对称轴,且关于其中心点中心对称。
等边三角形只是轴对称图形,等腰梯形也只是轴对称图形,平行四边形只是中心对称图形。
)6、两条平行线被第三条直线所截,同旁内角的角平分线()。
七年级数学下册专题08 期中-几何综合大题必刷(压轴题)(原卷版)

专题08 期中-几何综合大题必刷(压轴题)1.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.2.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠CBM、∠NDC,判断BF与DG的位置关系,并说明理由.3.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过秒后边OC 与边ON互相垂直.(直接写出答案)4.【学科融合】物理学中把经过入射点O并垂直于反射面的直线ON叫做法线,入射光线与法线的夹角i叫做入射角,反射光线与法线的夹角r叫做反射角(如图①).由此可以归纳出如下的规律:在反射现象中,反射光线、入射光线和法线都在同一平面内;反射光线、入射光线分别位于法线两侧;反射角等于入射角.这就是光的反射定律(reflection law).【数学推理】如图1,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.由以上光的反射定律,可知入射角与反射角相等,进而可以推得他们的余角也相等,即:∠1=∠2,∠3=∠4.在这样的条件下,求证:AB∥CD.【尝试探究】两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,光线AB与CD相交于点E,则∠BEC=;(2)如图3,光线AB与CD所在的直线相交于点E,∠BED=β,则α与β之间满足的等量关系是.5.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.6.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B 射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.7.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.8.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.9.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数;(2)【问题迁移】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.10.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.11.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.12.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.13.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.试探究∠E与∠AMP的数量关系,并说明理由;(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN=n°,直接写出m与n的数量关系.14.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.15.已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,给出下列两个结论:①的②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.16.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).17.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.18.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,连接PM、PN、PQ,PQ平分∠MPN,如图①.(1)若∠PMA=α、∠PQC=β,求∠NPQ的度数(用含α,β的式子表示);(2)过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F,如图②,请你判断EF与PQ的位置关系,并说明理由;(3)在(2)的条件下,连接EN,如图③,若∠NEF=∠PMA,求证:NE平分∠PNQ.19.如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.20.如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.(1)如图1,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠EIH的度数.(2)如图2,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠EIH的度数.(3)如图3,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG 的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.21.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.22.已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.(1)如图1,点G在CH的延长线上时,①若∠GAB=36°,则∠MCD=.②猜想:∠GAB与∠MCD之间的数量关系是.(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.23.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)24.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.25.如图1,AB∥CD.G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2.若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系;并证明你的结论.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,此时∠EOC的度数等于(直接写出答案即可);(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求此时∠OCA度数.27.如图1,AB∥CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF =80°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN ﹣∠FNM的值(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN分别交EG、FH分别于点M、N,且∠FMN﹣∠ENM=80°,直接写出m的值.28.已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME的度数;(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME 的度数.(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.29.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.30.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.31.已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.32.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=56°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.33.如图1,G,E是直线AB上两点,点G在点E左侧,过点G的直线GP与过点E的直线EP交于点P.直线PE交直线CD于点H,满足点E在线段PH上,∠PGB+∠P=∠PHD.(1)求证:AB∥CD;(2)如图2,点Q在直线AB,CD之间,PH平分∠QHD,GF平分∠PGB,点F,G,Q在同一直线上,且2∠Q+∠P=120°,求∠QHD的度数;(3)在(2)的条件下,若点M是直线PG上一点,直线MH交直线AB于点N,点N 在点B左侧,请直接写出∠MNB和∠PHM的数量关系.(题中所有角都是大于0°且小于180°的角)34.已知,DE平分∠ADB交射线BC于点E,∠BDE=∠BED.(1)如图1,求证:AD∥BC;(2)如图2,点F是射线DA上一点,过点F作FG∥BD交射线BC于点G,点N是FG 上一点,连接NE,求证:∠DEN=∠ADE+∠ENG;(3)如图3,在(2)的条件下,连接DN,点P为BD延长线上一点,DM平分∠BDE 交BE于点M,若DN平分∠PDM,DE⊥EN,∠DBC﹣∠DNE=∠FDN,求∠EDN的度数.35.综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC ∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?36.已知E,F分别是AB、CD上的动点,P也为一动点.(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.37.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为秒.38.已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.39.如图1,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,∠AGE与∠EHC互补.(1)求证:AB∥CD;(2)如图2,点P在直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,点K在∠PMB的角平分线上,连接KN,若∠MKN=180°∠MPN,求证:∠PNK=∠CNK;(3)如图3,在(2)的条件下,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK:∠PMK=2:7,2∠MKN﹣∠PNO=180°,求∠NOM的度数.40.已知,AB∥CD,点F、G分别在AB、CD上,且点E为射线FG上一点.(1)如图1:当点E在线段FG上时,连接AE、DE,易得∠AED=∠EAF+∠EDG.小明给出的理由是:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,(平行于同一条直线的两条直线互相平行)∴∠EAF=∠AEH,∠EDG=∠DEH,(依据1)∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(依据2)填空:依据1:.依据2:.(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.41.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠P AC=50°,∠ADC=30°,AE平分∠P AD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠P AC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.42.阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,作∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=(直接用含α的式子表示).。
七年级数学(下册)几何典型题

七年级数学(下册)几何典型题1. 如图,AC 、BD 相交于点O ,∠A =ABC ,∠DBC =∠D ,BD 平分∠ABC ,点E 在BC 的延长线上。
(1) 求证:CD//AB;(2) 若∠D =38°,求∠ACE 的度数。
2. 如图,直线AB 、CD 相交于点O ,EO ⊥AB ,垂足为O 。
(1) 若∠EOC =35°,求∠EOD 的度数;(2) 若∠AOC+∠BOD =100°,求∠EOD 的度数。
3. 如图,在直角坐标系XOY 中,点A 、B 的坐标分别是A (-1,0),B (3,0),将线段AB 向上平移2个单位,再向右平移1个单位,得到线段DC ,点AB 的对就点分别是点D 、C ,连接AD 、BC.(1) 直接写出点C 、D 的坐标; (2) 求四边形ABCD 的面积;(3) 点P 为线段BC 上任意一点(与点B 、C 不重合),连接PD 、PO.求证:∠CDP+∠BOP=∠OPD.4. 如图,直接EF 分别与直线AB ,CD 相交于点P 和点Q ,PG 平分∠APQ, QH 平分∠DQP ,并且∠1=∠2,说出图中哪些直线平行。
5. 平面内的两条直线有相交和平行两种位置关系。
(1) 如图1,若AB//CD ,点P 在AB 、CD 内部,∠B =50°,∠D =30°,求∠BPD 的度数。
(2) 如图2,将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间有何数量关系?请写出你的结论并加以证6. 如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题。
(1) 请在图中建立适当的直角坐标系,并写出图书馆(B )的位置坐标。
(2) 若体育馆位置坐标为C (-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积。
7. 如圖,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥A CE FB8. 如图,在平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P (a,b )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A ’B ’C ’,点P 的对应点为P ’(a+6,b-2). (1) 直接写出点C ’的坐标; (2) 在图中画出△A ’B ’C ’; (3) △AOA ’的面积。
七年级下册数学万唯中考小卷几何综合题

七年级下册数学万唯中考小卷几何综合题一.选择题(共10小题,每小题3分,满分30分)1.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【解答】解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124B.0.0124C.﹣0.00124D.0.00124【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.3.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t【解答】解:A、分解不正确,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:B.4.下列运算正确的是()A.2a+3a=5a2B.(2a)3=6a3C.(a2)3=a6D.a6÷a2=a3【解答】解:A、原式=5a,不符合题意;B、原式=8a3,不符合题意;C、原式=a6,符合题意;D 、原式=a 4,不符合题意, 故选:C .5.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有( ) ①了解学校口罩、洗手液、消毒片的储备情况; ②了解全体师生在寒假期间的离锡情况; ③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况. A .1个B .2个C .3个D .4【解答】解:①了解学校口罩、洗手液、消毒片的储备情况适合普查; ②了解全体师生在寒假期间的离锡情况适合普查; ③了解全体师生入校时的体温情况适合普查;④了解全体师生对“七步洗手法”的运用情况适合抽样调查. 故选:C .6.下列分式中不管x 取何值,一定有意义的是( ) A .x 2xB .x−1x 2−1C .x+3x 2+1D .x−1x+1【解答】解:(A )由分式有意义的条件可知:x ≠0,故A 不选; (B )由分式有意义的条件可知:x ≠±1,故B 不选; (D )由分式有意义的条件可知:x ≠﹣1,故D 不选; 故选:C . 7.使分式52x−1的值为整数的所有整数x 的和是( )A .﹣1B .0C .1D .2【解答】解:∵52x−1的值为整数,∴2x ﹣1为5的约数,∴2x ﹣1=±1,或2x ﹣1=±5, 又∵x 为整数,∴x =1,或x =0,或x =3,或x =﹣2, ∴1+0+3﹣2=2, 故选:D .8.计算21×3.14+79×3.14=( )A .282.6B .289C .354.4D .314【解答】解:原式=3.14×(21+79)=3.14×100=314, 故选:D .9.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【解答】解: ∵AB ∥CD , ∴∠C =∠1=45°, ∵∠3是△CDE 的一个外角, ∴∠3=∠C +∠2=45°+35°=80°, 故选:D .10.周末回家,妈妈买了苹果、梨、柚子、橘子四种水果共50个,把苹果的个数加上4,梨的个数减去4,柚子的个数乘以4,橘子的个数除以4,最后四种水果的个数相等,橘子有( )个. A .8B .12C .16D .32【解答】解:设苹果的个数为x ,则梨的个数为x +8,柚子的个数为y ,橘子的个数为16y , 根据题意得,{x +4=4y x +x +8+y +16y =50,解得{x =4y =2,∴16y =32, 答:橘子有32个, 故选:D .二.填空题(共8小题,满分24分,每小题3分) 11.当x = ﹣1 时,分式1−x 2|x−1|的值是0.【解答】解:∵分式1−x 2|x−1|的值是0,∴1﹣x 2=0,且|x ﹣1|≠0, 解得:x =﹣1. 故答案为:﹣1.12.若x 2+2(m ﹣4)x +25是一个完全平方式,那么m 的值应为 ﹣1或9 . 【解答】解:∵x 2+2(m ﹣4)x +25是一个完全平方式, ∴2(m ﹣4)x =±2•x •5, 解得:m =﹣1或9, 故答案为:﹣1或9. 13.若关于x 的方程x−1x−2=m x−2无解,则m 的值是 1 .【解答】解:去分母得:x ﹣1=m , 由分式方程无解,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m =1, 故答案为:114.某校对八年级1600名男生的身高进行了测量,结果身高(单位:m )在1.58~1.65这一小组的频率为0.4,则该组的人数为 640 人.【解答】解:根据题意知该组的人数为1600×0.4=640(人), 故答案为:640.15.把方程2x +3y =5改写成用含x 的式子表示y 的形式,则y = 5−2x 3.【解答】解:方程2x +3y =5, 解得:y =5−2x3, 故答案为:5−2x 316.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 平方厘米.当S =2时,小正方形平移的时间为 1或6 秒.【解答】解:当S=2时,重叠部分长方形的宽=2÷2=1cm,重叠部分在大正方形的左边时,t=1÷1=1秒,重叠部分在大正方形的右边时,t=(5+2﹣1)÷1=6秒,综上所述,小正方形平移的时间为1或6秒.故答案为:1或6.17.如果把分式2y2x2−3y2中的x和y都扩大为原来的2倍,那么这个分式的值y2x2−3y2.【解答】解:原式=4y8x2−12y2=y2x2−3y2故答案为:y2x2−3y218.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,16=52﹣32).已知智慧数按从小到大顺序结构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2019个智慧数是2695.【解答】解:观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2).因2019=3×673,所以第2019个智慧数是第673组中的第3个数,即为4×673+3=2695.故答案为:2695.三.解答题(共7小题,满分46分)19.(6分)化简:(1)(4ab3﹣8a2b2)÷4ab﹣(﹣2a﹣b)(2a﹣b)(2)−a−ba+2b÷a2−b2a2+4ab+4b2+2【解答】解:(1)原式=b2﹣2ab﹣(b2﹣4a2)=4a 2﹣2ab .(2)原式=−a−ba+2b •(a+2b)2(a+b)(a−b)+2=−a+2ba+b+2 =aa+b20.(8分)解下列方程(组): (1)3x−1=2x;(2){x −2y =13x −4(x −2y)=5.【解答】解:(1)3x−1=2x,去分母得:3x =2x ﹣2, 解得:x =﹣2,经检验x =﹣2是分式方程的解; (2)方程组整理得:{x −2y =1①−x +8y =5②,①+②得:6y =6, 解得:y =1,把y =1代入①得:x =3, 则方程组的解为{x =3y =1.21.(5分)先化简,再求值. (5a+3b a 2−b 2+8b b 2−a2)÷1a 2b+ab2,其中a =√2,b =1.【解答】解:原式=5a+3b−8b a 2−b2÷1ab(a+b)=5(a−b)(a+b)(a−b)•ab (a +b ) =5ab ,当a =√2,b =1时, 原式=5√2.22.(5分)某商场出售A 、B 两种型号的自行车,已知购买1辆A 型号自行车比1辆B 型号自行车少20元,购买2辆A 型号自行车与3辆B 型号自行车共需560元,求A 、B 两种型号自行车的购买价各是多少元?【解答】解:设A 型号自行车的购买价为x 元,B 型号自行车的购买价为y 元, 依题意,得:{y −x =202x +3y =560,解得:{x =100y =120.答:A 型号自行车的购买价为100元,B 型号自行车的购买价为120元.23.(6分)某校行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生听写结果.以下是根据抽查绘制的统计图的一部分.组别 正确字数x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息解决下列问题:(1)这次抽样调查的样本容量是 100 ,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是 90° ;(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数. 【解答】解:(1)15÷15%=100人 D 组的人数:100×30%=30人, E 组的人数:100×20%=20人故答案为:100 补全的条形统计图如图所示:(2)C组所占的百分比为:25÷100=25%,C组所对应的圆心角度数为360°×25%=90°:故答案为:90°(3)900×(1﹣20%﹣30%)=450人答:估计这所学校本次比赛听写不合格的学生有450人.24.(6分)已知m﹣n=﹣4,mn=2,求下列代数式的值.①m2+n2②(m+1)(n﹣1)【解答】解:①∵m﹣n=﹣4,mn=2∴m2+n2=(m﹣n)2+2mn=(﹣4)2+2×2=16+4=20②(m+1)(n﹣1)=mn﹣m+n﹣1=mn﹣(m﹣n)﹣1=2﹣(﹣4)﹣1=2+4﹣1=525.(10分)已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.【解答】解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,所以∠APC=∠AMC+∠MAP+∠MCP,所以∠APC=∠AMC+12∠APC,所以∠APC=2∠AMC=120°.(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,∵AM平分∠BAP,CM平分∠PCD,∴∠BAP=2∠BAM,∠DCP=2∠DCM,∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.。
人教版 七年级数学 第4章 几何图形初步 复习题(含答案)

人教版七年级数学第4章几何图形初步复习题一、选择题(本大题共10道小题)1. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我2. 如图,水平的讲台上放置的是圆柱形笔筒和正方体形粉笔盒,从上面看到的是()3. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线4. 如图是一座房子的平面示意图,组成这幅图的平面图形是 ()图A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形5. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 如图,图中小于平角的角有()A.10个B.9个C.8个D.4个8. 如果一个棱柱有12个顶点,那么它的面的个数是 ()A.10B.9C.8D.79. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10. 已知∠AOB=60°,∠AOC=∠AOB,射线OD平分∠BOC,则∠COD的度数为()A.20°B.40°C.20°或30°D.20°或40°二、填空题(本大题共8道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 如图所示的图形中,是棱柱的有______.(填序号)13. 如图,∠1可以用三个大写字母表示为.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 请将图中的角用不同的方法表示出来,并填写下表:角的表示方法一∠ABE角的表示方法二∠1 ∠2用量角器量出∠2,∠A,∠ABE的度数,并写出它们之间的数量关系.20. 如图,下列各几何体的表面中包含哪些平面图形?21. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.22. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).人教版七年级数学第4章几何图形初步复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D[解析] 从上面看,左边是一个圆,右边是一个正方形,故选D.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】B[解析] 小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共9个.8. 【答案】C[解析] 一个棱柱有12个顶点,一定是六棱柱,所以它有6个侧面和2个底面,共8个面.9. 【答案】A10. 【答案】D[解析] 当OC在∠AOB内部时,如图①,则∠BOC=∠AOB-∠AOC=60°-×60°=40°,∴∠COD=∠BOC=20°;当OC在∠AOB外部时,如图②,则∠BOC=∠AOB+∠AOC=60°+×60°=80°,∴∠COD=∠BOC=40°.综上,∠COD的度数为20°或40°.故选D.二、填空题(本大题共8道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】②⑥13. 【答案】∠MCN或∠MCB14. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】两点确定一条直线16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:∠ABE还可以表示为∠3,∠1还可以表示为∠ABC或∠ABF,∠2还可以表示为∠ACB或∠ACE(填表略).∠2=40°,∠A=25°,∠ABE=65°,所以∠ABE=∠A+∠2.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.22. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.。
(完整版)数学f1初中数学七年级(下)易错题和典型题期末复习专练二几何部分

知识决定数运 百度提高自我本文为自自己收藏 版权全部 仅供参照 本文为自自己收藏版权全部仅供参照易错题和典型题专练二 几何部分一、填空题:1、若等腰三角形的底边长为8 cm ,则腰长 x 的取值范围是 ;若等腰三角形的腰长为8 cm ,则底边长 x 的取值范围是。
2、已知一个三角形的两边的长是3 和 4,则第三边的长 x 的取值范围是 ;周长y 的取值范围是;3、三角形按角分类成:,,。
4、已知两个角的两边分别平行,且此中一个角比另一个角的3 倍少36o,则这两个角的度数是。
5、三角形三个内角的比为1:3: 5,则最大的内角是度,最大的外角是度,按角分类,它属于三角形。
6、如图:在△ ABC 中,∠ A =40°,高 BE 、 CF 交于点 O ,则∠ BOC 为=。
(第 6题) (第 10 题) (第 11 题) (第 12 题)7、已知∠ A 、∠ B 、∠ C 是 △ ABC 的三个内角, α=∠ A +∠ B , β=∠ C +∠ A ,γ=∠ B ++∠ C ,则 α、 β、 γ中,锐角最多有__________ 个。
8、将一个正六边形纸片对折,并完整重合,那么,获得的图形是________边形, ?它的内角和(按一层计算)是 _______ 度。
9、合适条件∠ A = 1 ∠B = 1∠ C 的△ ABC 的形状是。
2 3合适条件∠ A = 2∠B = 3∠ C 的△ ABC 的形状是。
10、如图:已知 BC ∥DE ,则∠ 1、∠ 2、∠ 3 之间的关系是 。
11、如图:已知 AB ∥ DE ,则∠ 1、∠ 2、∠ 3 之间的关系是。
12、如图:已知∠ A = 120o ,∠ D =150o , BE 、 CE 分别是角均分线,则∠ E = 。
13、有两角及 上的高对应相等的两个三角形全等。
14、有两边及上的中线对应相等的两个三角形全等。
第1页共11页15、△ A /B/C/是△ ABC 经过平移获得的,则AA /与 BB /的关系是,原由是。
七年级下册数学期末考试几何大题证明必考题

图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
初一下数学几何题10题

初一下数学几何题10题
以下是10道初一下学期的数学几何题:
已知线段AB上有两点C和D,且AC=CD=DB。
若AB=12CM,求CD的长。
在三角形ABC中,AB=AC,D为BC上一点,且∠BAD=30°。
求证:∠ADC=75°。
已知∠AOB=90°,点C在∠AOB内部,且∠AOC=30°。
若OM平分∠AOC,求∠BOM的度数。
在平行四边形ABCD中,E、F分别为AB、CD上的中点,且EF与AC 相交于点G。
求证:AG=CG。
已知△ABC中,∠C=90°,AC=BC,D为AB上一点,且∠ADC=45°。
求证:AD=CD。
在矩形ABCD中,AB=6CM,BC=8CM。
若E为BC上一点,且AE=AB,求CE的长。
已知△ABC中,∠C=90°,D为AB的中点,DE⊥AB交BC于E。
求证:△BDE是等腰三角形。
在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3CM,BC=7CM。
求梯形ABCD的面积。
已知△ABC中,AB=AC,D为BC上一点,且∠BAD=∠CAD。
求证:BD=CD。
已知平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF。
求证:四边形AFCE是平行四边形。
这些题目涉及了线段、角度、三角形、平行四边形、等腰梯形等基础知识,旨在检验学生对初一下学期数学几何内容的掌握程度。
七年级下册数学几何压轴题

七年级下册数学几何压轴题
1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。
2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。
3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。
4. 把一个正方形沿对角线方向移动,它最后完全重合的时候恰好覆盖了一个面积为S的等腰三角形,求三角形面积S。
5. 把一个正方形沿着y轴正方向移动,移动m个单位的时候与另外一个正方形刚好重合,求另外一个正方形的边长。
6. 一个矩形沿x轴正方向移动,移动到另外一个矩形的正上方还有b个单位,求两个矩形的阴影面积比值。
7. 把一个半圆形沿y轴正方向移动,移动到正方形的中心时,求正方形面积和半圆形面积的阴影面积比值。
8. 把一个梯形沿y轴正方向移动,移动到一个与梯形相似的大梯形上面靠着底边的位置,求阴影的面积比值。
9. 把一个正三角形沿着x轴正方向移动,相邻两次的位移满足一个等差数列,第一次移动2个单位,第三次移动8个单位,求正三角形的边长。
10. 一个椭圆形沿y轴正方向移动,移动到一个长方形上方恰好横跨长方形的两个端点,求已经移动了多少个单位。
七下几何题总汇

D
E
C
P
G
F
Q
A
B
13. 如图,已知在△ABC 内,∠BAC =60° ,∠C = 40° ,P、Q 分别在 BC、CA 上,并且 AP、 BQ 分别是∠BAC、∠ABC 的角平分线,求证: BQ + AQ = AB + BP .
A
B Q
P
C
4
14. 如图,在四边形 ABCD 中,∠B+∠ADC=180°,AB=AD,E、F 分别是 BC、CD 延长线
(2)如图②,如果四边形 ABCD 中,AB=AD,∠ABC 与∠ADC 互补,当 ∠EAF= 1 ∠BAD 2
时,EF 与 DF、BE 之间有怎样的数量关系?请写出结论并证明; (3)在(2)中,若 BC=4,DC=7,CF=2,求△CEF 的周长.
A
E
B
D
C
F 图1
A E
B D
F
C 图2
7
18. 如图,已知: AD 、 CE 分别是 ∆ABC 中 BC 、 AB 边上的高, AD 、 CE 交于点 G , BD = GD .
C
(2)求证:AE=CE+2EF.
E D F
A
B
12. 已知正方形 ABCD,点 P、Q 分别是边 AD、BC 上的两动点,将四边形 ABQP 沿 PQ 翻
折得到四边形 EFQP,点 E 在线段 CD 上,EF 交 BC 于 G,连结 AE.
求证:(1)EA 平分∠DEF; (2)EC+EG+GC=2AB.
几何练习题
1.已知:如图,AD 平分∠BAC,DE⊥AB 于 E,DF⊥AC 于 F,且 DB=DC,
七年级下学期几何专题(附参考答案)

七年级下学期几何专题一、精心选一选,慧眼识金!1.过五边形的一个顶点可作()条对角线A.1B.2C.3D.42.三角形的三个内角( )A、至少有两个锐角B、至少有一个直角C、至多有两个钝角D、至少有一个钝角3.下列图形中具有稳定性的是( )A、菱形B、钝角三角形C、长方形D、正方形4.下列图形中,是属于轴对称图形的是()A. B. C. D.●5.如图:BE、CF是ABC∆的角平分线,0∠,A=40则=∠BDC( D )11065 C. 095 D. 0A.050 B. 06.以下列长度的三条线段为边,不能组成三角形的是()A.4,4,5 B.3,2,5 C.3,12,13 D.6,8,107. 下列说法:①等边三角形是等腰三角形;②在三角形中至少有二个锐角;③三角形的一个外角等于两个内角的和;④钝角三角形的三条高相交于三角形外一点,其中正确的个数有()A、1个B、2个C、3个D、4个8. 下列图形:①角;②线段;③等腰三角形;④等边三角形;⑤平行四边形中是轴对称图形的个数是()A、1个B、2个C、 3个D、4个9.平面内三条直线最少有()个交点A.3B.2C.1D.0●10.已知Rt△ABC,∠A=30°,则∠B=( C )A.60°B.90°C.60°或90°D.30°11.如图,由AB∥CD,能推出正确结论的是( B ) A 、∠1=∠2 B 、∠3=∠4 C 、∠A=∠C D 、AD∥BC12.下列命题为真命题的是( D ) A.内错角相等B.点到直线的距离即为点到直线的垂线段C.如果∠A+∠B+∠C=180°,那么∠A 、∠B 、∠C 互补D.同一平面内,垂直于同一直线的两直线平行。
13.用同一种下列形状的图形地砖不能进行平面镶嵌的是( C ) A.正三角形 B.长方形 C.正八边形 D.正六边形14.当多边形的边数增加时,其外角和( C ) A 、增加 B 、减少 C 、不变 D 、不能确定● 15.已知:一光线沿平行于AB经镜面AC 、AB 反射后,如图所示, 若∠A=40°则∠MNA=( B ) A.90° B.100° C.60° D.80°● 16.已知:如图B 处在A 处的南偏西40C 处在A 处的南偏东15°方向上,C 处在B 处的北偏东80°方向,则∠ACB=( B )A.90°B.85°C.40°D.60° 17.若一个三角形中的其中一个外角等于与它相邻的内角,则此三角形是( A ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定18.点到直线的距离是指这点到这条直线的( D )A 、垂线段B 、垂线C 、垂线的长度D 、垂线段的长度二、巧心填一填,一锤定音!19.已知∠a 的对顶角是58°,则∠a=______。
北师大版七年级数学下册期末几何专题复习练习题(无答案)

北师大版七年级数学下册期末几何专题复习练习题1.如图,AB∥EF,CD⊥EF于点D.若∠ABC=40°,则∠BCD的度数为()A.140° B.130° C.120° D.110°2.如图,在△ABC中,BP平分∠ABC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为()A.3 B.4 C.5 D.63.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20° B.30° C.40° D.70°4.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2-∠3 B.∠1+∠3-∠2C.180°+∠3-∠1-∠2 D.∠2+∠3-∠1-180°5.如图,某城市的两座高楼顶部各装有一个射灯,当光柱相交在同一个平面时,∠1+∠2+∠3=________°.6.将一副三角板和一张对边平行的纸条按如图所示方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________.7.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC =________.8.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________°.9.如图,AB∥CD,试解决下列问题:(1)如图①,∠1+∠2=________;(2)如图②,∠1+∠2+∠3=________;(3)如图③,∠1+∠2+∠3+∠4=________;(4)如图④,试探究∠1+∠2+∠3+∠4+…+∠n=__________.10.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.11.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD.试说明:BD=2CE.12.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,试说明:EB⊥AB.13.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.试说明:DE=DF.14.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F 分别在AC,BC上,且CE=BF,试说明:DE=DF.15.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于D,试说明:BC=AB+CD.16.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.17.如图,将Rt△ABC沿斜边翻折得到△ADC,E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并说明理由.18.(1)如图①,AB∥CD,则∠2+∠4与∠1+∠3+∠5有何关系?请说明理由;(2)如图②,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7还有类似的数量关系吗?若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.19.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD=BE;(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.20.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)试说明:PD=DQ;[提示:过点P作PF∥BC交AC于点F](2)若△ABC的边长为1,求DE的长.。
初一下册数学角度几何解析题以及练习题(附答案)-七年级下册几何求角度数

七年级下册数学几何解析题以及练习题(附答案)宇文皓月9.(2011·扬州)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC .(1)求∠DEB 的度数;(2)求∠EDC 的度数.解 (1)在△ABC 中,∠A =80°,∠B =30°,∴∠ACB =180°-∠A -∠B =70°.∵DE ∥AC ,∴∠DEB =∠ACB =70°.(2)∵CD 平分∠ACB ,∴∠DCE =12∠ACB =35°. ∵∠DEB =∠DCE +∠EDC ,∴∠EDC =70°-35°=35°.13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明弥补完整)证明 ∵CF ⊥AB ,DE ⊥AB (已知),∴ED∥FC( ).∴∠1=∠BCF( ).又∵∠1=∠2(已知),∴∠2=∠BCF(等量代换),∴FG∥BC( ).解在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线分歧而得多种证法,如下:证法1:如图甲,延长BC到D,过C画CE∥BA.∵BA∥CE(作图所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.解∵FH∥AC,∴∠BHF=∠A,∠1=∠C.∵FG∥AB,∴∠BHF=∠2,∠3=∠B,∴∠2=∠A.∵∠BFC=180°,∴∠1+∠2+∠3=180°,即∠A+∠B+∠C=180°.15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.解(1)不成立,结论是∠BPD=∠B+∠D.延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED.又∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)设AC与BF交于点G.由(2)的结论得:∠AGB=∠A+∠B+∠E.又∵∠AGB =∠CGF ,∠CGF +∠C +∠D +∠F =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°. 14.把一副经常使用的三角板如图所示拼在一起,那么图中∠ADE 是度. 2.如图,在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2。
2019年北师大版七年级下册数学期末复习:几何压轴题训练

2019年北师大版七年级下册期末复习:几何压轴题训练1.(2017秋•石景山区期末)如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.2.(2018•九龙坡区校级模拟)如图所示,已知AB∥CD,AB∥EF,若CE平分∠BCD,且∠ABC=52°,求∠CEF的度数.3.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH 的度数.4.(2018秋•沙坪坝区校级期中)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A-∠B=8°,求∠BDE的度数.5.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.6.(2017秋•确山县期末)如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED 的位置关系,并说明理由.7.(2018春•泰山区期中)如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.8.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.9.(2018春•相城区期中)将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.10.(2018春•容县期中)如图,直线AB,CD相交于点O,OA平分∠EOC.已知∠DOE=2∠AOC,求证:OE⊥CD.11.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.12.(2018秋•连城县期中)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=70°,求:∠D的度数.13.(2017秋•固始县期末)如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置,若∠DEF=75°,则∠AED′等于多少?14.(2018秋•沙坪坝区校级月考)如图,MN∥PQ,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C.过点B作BD平分∠ABC交AC于点D,若∠NAC=32°,求∠ADB的度数.15.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?16.(2017秋•孟津县期末)如图,AB、CD相交于点O,OE是∠AOD的平分找,∠AOC=25°,求∠BOE的度数.17.(2018春•长白县期中)如图所示,已知直线DE∥BC,GF⊥AB于点F,∠1=∠2,判断CD与AB的位置关系.并说明理由.18.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.19.(2017秋•辉县市期末)如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.20.(2018春•罗庄区期中)如图,已知AB∥CD,EF∥MN,∠1=115°.(1)求∠2和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6°,求这两个角的大小.21.(2017秋•洛宁县期末)如图,直线AB∥CD,EF⊥CD,F为垂足,∠GEF=30°,求∠1的度数.22.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠=180°(邻补角的意义)所以∠1=∠()#JB23.(2018春•兰陵县期中)(1)探究:如图1,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB 交BC于点F.若∠ABC=40°,求∠DEF的度数.(2)应用:如图2,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,求∠DEF的度数.24.(2018秋•綦江区校级月考)如图:已知EF∥AD,∠1=∠2,∠AGD=108°.求∠BAC 的度数.25.(2017秋•渝中区校级期末)如图1,已知A、O、B三点在同一直线上,射线OD、OE 分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=a o(o o<a<90o).a.求∠AOF的度数(用含a的代数式表示);b.若∠BOD是∠AOF的2倍,求∠DOF的度数.26.(2018•九龙坡区校级模拟)如图,AB∥CD,点E在AB上,点F在CD上,连接EF,EH平分∠BEF,交CD于点H,过F作FG⊥EF,交EH于点G,若∠G=32°,求∠HFG的度数.27.(2018春•大田县期中)如图,如果∠1=∠2,那么图中哪两条线段平行?请说明理由.28.(2018春•大田县期中)如图,AB∥CD,直线EF交AB于点G,交CD于点H,HM⊥CD 于点H,如果∠1=48°,求∠2的度数.29.(2018春•杏花岭区校级期中)如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.30.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.31.(2017秋•南召县期末)阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠,∠C=∠.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为°(用含n的代数式表示)32.(2018春•西城区校级期中)如图,∠1=∠2,AB∥EF,求证:∠3=∠4.33.(2017秋•惠阳区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.34.(2017秋•南召县期末)操作:如图,直线AB与CD交于点O,按要求完成下列问题.(1)用量角器量得∠AOC=度.AB与CD的关系可记作.(2)画出∠BOC的角平分线OM,∠BOM=∠=度.(3)在射线OM上取一点P,画出点P到直线AB的距离PE.(4)如图若按“上北下南左西右东”的方位标记,请画出表示“南偏西30°”的射线OF.35.(2018春•北海期末)如图,直线AB,CD,EF相交于点O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度数.36.(2017秋•淅川县期末)观察发现:已知AB∥CD,点P是平面上一个动点.当点P在直线AB、CD的异侧,且在BC(不与点B、C重合)上时,如图(1),容易发现:∠ABP+∠DCP=∠BPC.拓展探究:(1)当点P位于直线AB、CD的异侧,且在BC左侧时,如图(2),∠ABP、∠DCP、∠BPC之间有何关系?并说明理由.(2)当点P位于直线AB、CD的异侧,且在BC右侧时,如图(3),直接写出∠ABP、∠DCP、∠BPC之间关系.(3)当点P位于直线AB、CD的同侧,如图(4),直接写出∠ABP、∠DCP、∠BPC之间关系.37.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.38.(2017秋•金牛区校级期末)如图,已知AB∥CD,若∠C=35°,AB是∠FAD的平分线.(1)求∠FAD的度数;(2)若∠ADB=110°,求∠BDE的度数.39.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.40.(2018春•上饶县期末)如图,已知∠1=∠2,AB∥EF.求证:∠A=∠E.。
北师大版七年级下册数学几何解答题专题复习

2021-2022学年七年级下学期数学几何解答题专题复习1、如图,在ABC中,CD平分∠ACB,E为边AC上一点,连接DE,EC=ED,过点E作EF⊥AB,垂足为F.(1)判断DE与BC的位置关系,并说明理由;(2)若∠A=30°,∠ACB=80°,求∠DEF的度数.2、已知:如图,AB∥DE,AC∥DF,BF=EC.(1)求证:△ABC≌△DEF;(2)过点C作CG⊥AB于点G,若S△ABC=9,DE=6,求CG 的长.3、如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.4、如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数.5、如图,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从点A出发,沿AB向点B方向运动,同时,点Q从点B出发,以相同的速度沿BC向点C方向运动.连接AQ,CP,AQ,CP交于点M.(1)求证:AQ=CP;(2)求∠QMC的度数;(3)若点P,Q分别运动到AB,BC的延长线上,直线AQ,CP交于点M,请在备用图中补全图形,并求出∠QMC的度数.6、如图,ABC中,过点A,B分别作直线AM,BN,且AM//BN,过点C作直线DE交直线AM于D,交直线BN于E,设AD=a,BE=b.(1)如图1,若AC,BC分别平分∠DAB和∠EBA,求∠ACB的度数;(2)在(1)的条件下,若a=1,b=52,求AB的长;(3)如图2,若AC=AB,且∠DEB=∠BAC=60°,求DC的长.(用含a,b的式子表示)7、如图,点C线段AB上一点,以线段AC为腰作等腰直角△ACD,∠ACD=90°,点E 为CD延长线上一点,且CE=CB,连接AE,BD,点F为AE延长线上一点,连接BF,FD.(1)①求证:△ACE≌△DCB;②试判断BD与AF的位置关系,并证明;(2)若BD平分∠ABF,当CD=3DE,S△ADE32,求线段BF的长.8、如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.9、如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE//BC时,若△DEF的面积为2,请直接写出△ABC的面积.10、(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.11、如图,在边长为8的正方形ABCD中,点E在边AB上移动(不与端点重合).连接CE,以CE为一边在其右侧作△CEF,其中∠CEF=90°,CE=EF,点G为FC的中点,过点F 作FH⊥AD,垂足为点H,连接GD,GH,F A.(1)求证:∠EAF=135°;(2)请判断线段GD和GH之间有何关系?写出你的结论并证明;(3)在点E移动过程中,△EAF面积有最大值吗?如果有,求出△EAF面积的最大值及此时BE的长;如果没有,说明理由.12、如图,已知四边形ABCD ,连接AC ,其中AD AC ⊥,BC AC ⊥,AC BC =,延长CA 到点E ,得AE AD =,点F 为AB 上一点,连接FE 、FD ,FD 交AC 于点G .(1)求证:EAF DAF ≌;(2)若ADF α∠=,DFE β∠=,试探究α、β的数量关系,并说明理由; (3)如图2,连接CF ,若DF CF ⊥,求DCF ∠的度数.13、如图1,在△ABC 中,CA =CB ,∠ACB =90°.点D 是AC 中点,连接BD ,过点A 作AE ⊥BD 交BD 的延长线于点E ,过点C 作CF ⊥BD 于点F . (1)求证:∠EAD =∠CBD ; (2)求证:BF =2AE ;(3)如图2,将△BCF 沿BC 翻折得到△BCG ,连接AG ,请猜想并证明线段AG 和AB 的数量关系.14、在△ABD中∠A=45°,BC⊥AD于点C,E为AB上一点,连接DE交BC于点F,且∠ADE=∠CBD.(1)如图1,求证:DE=BD.(2)如图2,作AM⊥BD于点M,交BC于点H,判断AH与BD的数量关系,并证明.(3)在(2)的条件下,当CH:BH=4:7,△ADE的面积为152时,①求线段AD的值;②设AH=a,用含a的代数式表示线段BM的值.15、如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON 于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO=∠CEB,求△CDH的面积(用含a,b的代数式表示).16、 以BC 为斜边在它的同侧作Rt DBC 和Rt ABC ,其中90A D ∠=∠=︒,AB AC =,AC 、BD 交于点P .(1)如图1,BP 平分ABC ∠,求证:BC AB AP =+;(2)如图2,过点A 作AE BP ⊥,分别交BP 、BC 于点E 、点F ,连接AD ,过A 作AG AD ⊥,交BD 于点G ,连接CG ,CG 交AF 于点H ,求证:GH CH =;(3)如图3,点M 为边AB 的中点,点Q 是边BC 上一动点,连接MQ ,将线段MQ 绕点M 逆时针旋转90︒得到线段MK ,连接PK 、CK ,当15DBC ∠=︒,4AP =时,求PK CK +的最小值.17、 已知△ABC ≌△EDC ,过点A 作直线l ∥BC ;(1)如图1,点D 在线段AC 上时,点E 恰好落在直线l 上点A 的右侧,求∠ACB 的度数; (2)如图2,在(1)的条件下,连接BE 交AC 于点F ,G 是线段CE 上一点,且满足CG=CF ,连接DG 交EF 于点H ,连接CH .求证:CHG CBE S GHS BE; (3)如图3,∠ACB 大小与(1)中相同,当点D 不在线段AC 上时,且点F 、点G 、点H 满足(2)中条件,点M ,N 分别为线段CE ,GD 的延长线与直线l 的交点.请直接写出△GMN 为等腰三角形时,∠EBC 与∠BCD 满足的数量关系.18、(1)问题引入:如图1,点F 是正方形ABCD 边CD 上一点,连接AF ,将ADF 绕点A 顺时针旋转90°与ABG 重合(D 与B 重合,F 与G 重合,此时点G ,B ,C 在一条直线上),∠GAF 的平分线交BC 于点E ,连接EF ,判断线段EF 与GE 之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD 中,∠ADC +∠B =180°,AB =AD ,E ,F 分别是边BC ,CD 延长线上的点,连接AE ,AF ,且∠BAD =2∠EAF ,试写出线段BE ,EF ,DF 之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD 中,∠ABC =90°,AC 平分∠DAB ,点E 在AB 上,连接DE ,CE ,且∠DAB =∠DCE =60°,若DE =a ,AD =b ,AE =c ,求BE 的长.(用含a ,b,c 的式子表示)。
七年级下册数学几何压轴题集锦 (2)

在矩形ABCD 中,点E 为BC 边上的一动点,沿AE 翻折,△ABE 与△AFE 重合,射线AF 与直线CD 交于点G 。
1、当BE :EC=3:1时,连结EG ,若AB=6,BC=12,求锐角AEG 的正弦值。
2、以B 为原点,直线BC 和直线AB 分别为X 轴、Y 轴建立平面直角坐标系,AB=5,BC=8,当点E 从原点出发沿X 正半轴运动时,是否存在某一时刻使△AEG 成等腰三角形,若存在,求出点E 的坐标。
1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
B C B C(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关BCACFA系?说明你的理由。
2022-2023学年人教版数学七年级下册期末几何解答题专题练习

2022-2023学年人教版七年级下学期期末数学几何解答题专题练习1、如图,AB∥CD,∠A=∠C,BE平分∠ABC交AD的延长线于点E,(1)证明:AD∥BC;(2)若∠ADC=118°,求∠E的度数.2、如图,已知∠1=∠BDC,∠2+∠3=180°.(1)AD与EC平行吗?试说明理由.(2)若DA平分∠BDC,CE⊥AE于点E,∠1=80°,试求∠F AB的度数.3、小聪把一副三角尺ABC,DCE按如图1的方式摆放,其中边BC,DC在同一条直线上,过点A向右作射线AP∥DE.(1)如图2,求∠P AC的度数;(2)如图3,点Q是线段BC上一点,若∠AQB=53∠PAQ,求∠QAB的度数.4、已知:在四边形ABCD中,AD∥BC,AE平分∠DAB交BC于点E,点M为线段BC上一点,且AM∥DC.(1)如图(1),若点M与点E重合,求证:∠C=∠BAE;(2)如图(2),若AN平分∠BAM交BC于点N,且∠NAE=25°,求∠C的度数;(3)在(1)的条件下,F为线段BA的延长线上一点,∠DCB=75°,若∠DCB的三等分线与∠F AD的角平分线交于点P,请直接写出∠APC的度数.5、直线AB∥CD,BE﹣EC是一条折线段,BP平分∠ABE.(1)如图1,若BP∥CE,求证:∠BEC+∠DCE=180°;(2)CQ平分∠DCE,直线BP,CQ交于点F.①如图2,写出∠BEC和∠BFC的数量关系,并证明;②当点E在直线AB,CD之间时,若∠BEC=40°,直接写出∠BFC的大小.6、如图1,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠BEF=α,∠FHD=β.(1)直接写出∠EFH的度数为;(2)如图2,若HM平分∠CHF,MN平分∠BEF,证明:∠EFH+2∠M=180°;(3)如图3,若∠BEN=1n∠BEF,∠MHC=1n∠FHC,则∠M=.(用含有n,α,β的式子表示)7、如图,已知A(0,a),B(b,0),且满足|a−4|+√b+6=0.(1)求A、B两点的坐标;(2)点P(m,n)在线段AB上,当PB=2P A时,求P点的坐标;(3)若点M(c,6),△ABM的面积记作S△ABM,当S△ABM>10时,直接写出c的取值范围.8、在平面直角坐标系中,已知点A(a,0),B(0,b),若a,b满足(a﹣b+6)2+|2a﹣3b+14|=0.(1)求点A,B的坐标;(2)将线段AB向右平移2个单位至CD,线段CD与y轴交于点E,求点E的坐标;(3)点P为直线CD上一动点,连接BC,PB,若4≤S△BCP<6,则点P的横坐标x P的取值范围是.9、如图,已知AB∥CD,M,N分别是直线AB,CD上一点,点E在直线AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,F是EM上一点,NE平分∠FND,FH平分∠NFE,试探究∠NHF与∠BME 之间的数量关系?并证明你的结论;(3)如图3,P为直线MN上一动点(不与点N重合),过点P作PG⊥MN交直线CD 于点G,∠PNG的角平分线和∠PGC的角平分线交于点O,则∠O的度数为(直接写出结果).10、平面直角坐标系中,A(a,0),B(0,b),a,b均为整数,且满足b=√2a−4−√4−a,点C在y轴负半轴上且S△ABC=10,将线段AB平移到DE,其中点A的对应点是点D.(1)请直接写出点A ,B ,C 的坐标;(2)如图(1),若点D 的坐标为(﹣1,0),点F (m ,n )为线段DE 上一点,且△ACF 的面积大于12,求m 的取值范围;(3)如图(2),若DE 与y 轴的交点G 在B 点上方,点P 为y 轴上一动点,请直接写出∠EBO ,∠BPD ,∠PDA 之间的数量关系.11、在平面直角坐标系中,A (a ,0),B (1,b ),a ,b 满足|a +b ﹣1|+√2a −b +10=0,连接AB 交y 轴于C .(1)直接写出a = ,b = ;(2)如图1,点P 是y 轴上一点,且三角形ABP 的面积为12,求点P 的坐标;(3)如图2,直线BD 交x 轴于D (4,0),将直线BD 平移经过点A ,交y 轴于E ,点Q (x ,y )在直线AE 上,且三角形ABQ 的面积不超过三角形ABD 面积的13,求点Q 横坐标x 的取值范围.12、已知,AB ∥DE ,点C 是直线AB ,DE 下方一点,连接BC ,DC .(1)如图1,求证:∠B +∠D ﹣∠C =180°;(2)如图2,若BF ,DG 分别平分∠ABC 和∠CDE ,BF 、DG 所在的直线相交于点H ,若∠H =α°,求∠C 的度数;(用含α的式子表示)(3)如图3,若BF ,DG 分∠ABC 和∠CDE 为两部分,且∠ABF =n ∠FBC ,∠EDG =n ∠CDG ,直线BF ,DG 相交于点H ,则∠H = .(用含n 和∠C 的式子表示)13、已知,在平面直角坐标系中,点A 在y 轴上,OA =a ,点B (b ,b ),且a 、b 满足√a +b −8+(a −b −4)2=0.(1)则a = ;b = ;(2)如图1,在x 轴上是否存在点C ,使三角形ABC 的面积等于三角形ABO 面积的一半?若存在,请求出点C 的坐标;若不存在,请说明理由;(3)如图2,将线段AB 向左平移m 个单位(m >0),得到线段A 'B ',其中点A ,点B 的对应点分别为点A ',点B '.若点N (﹣1,n )在射线A 'B '上,连接ON ,BN 得到三角形BON ,若三角形BON 的面积大于三角形ABO 面积的12并且小于三角形ABO 面积,则m 的取值范围是 .14、如图1,已知点A (﹣2,0),B (0,﹣4),C (﹣4,﹣6),过点C 作x 轴的平行线m ,一动点P 从C 点出发,在直线m 上以1个单位长度/秒的速度向右运动,与此同时,直线m 以2个单位长度/秒的速度竖直向上运动.(1)直接写出:运动1秒时,点P 的坐标为 ;运动t 秒时,点P 的坐标为 ;(用含t 的式子表示)(2)若点P 在第三象限,且S △ABP =8,求点P 的坐标;(3)如图2,如果将直线AB 沿y 轴负半轴向下平移n 个单位长度,恰好经过点C ,求n 的值.15、已知BE 平分∠ABD ,DE 平分∠BDC ,且∠BED =∠ABE +∠EDC .(1)如图1,求证:AB ∥CD ;(2)如图2,若∠ABE =3∠ABF ,且∠BFD =30°时,试求∠CDF ∠FDE 的值;(3)如图3,若H 是直线CD 上一动点(不与D 重合),BI 平分∠HBD ,画出图形,并探究出∠EBI 与∠BHD 的数量关系.问题探究:(1)如图1,∠CFP +∠EPF =∠AEP ,证明:AB ∥CD ;问题拓展:(2)如图2,AB ∥CD ,∠AEP 的角平分线EK 所在的直线和∠DFP 的角平分线FR 所在的直线交于Q 点,请写出∠EPF 和∠EQF 之间的数量关系,并证明.问题迁移:(3)如图3,AB ∥CD ,直线MN 分别交AB ,CD 于点M ,N ,若点H 在线段MN 上,且∠MEF =α,请直接写出∠HFE ,∠MEH 和∠EHF 之间满足的数量关系(用含α的式子表示).16、当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB 与BC 的夹角∠ABC =α.(1)如图①,若α=90°,判断入射光线EF 与反射光线GH 的位置关系,并说明理由.(2)如图②,若90°<α<180°,入射光线EF 与反射光线GH 的夹角∠FMH =β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD 与BC 的夹角∠BCD =γ(90°<γ<180°),入射光线EF 与镜面AB 的夹角∠1=m (0°<m <90°),已知入射光线EF 从镜面AB 开始反射,经过n (n 为正整数,且n ≤3)次反射,当第n 次反射光线与入射光线EF 平行时,请直接写出γ的度数.(可用含有m 的代数式表示)17、在平面直角坐标系中,点A ,C 均在x 轴上,点B 在第一象限,直线AB 上所有点的坐标(x ,y )都是二元一次方程x ﹣y =﹣2的解,直线BC 上所有点的坐标(x ,y )都是二元一次方程2x +y =8的解.(1)求B 点的坐标时,小明是这样想的:先设B 点坐标为(m ,n ),因为B 点在直线AB 上,所以(m ,n )是方程x ﹣y =﹣2的解;又因为B 点在直线BC 上,所以(m ,n )也是方程2x +y =8的解,从而m ,n 满足{m −n =−22m +n =8.据此可求出B 点坐标为 ,再求出A 点坐标为 ;C 点坐标为 .(均直接写出结果)(2)若线段BC 上存在一点D ,使S △OCD =12S △ABC (O 为原点),求D 点坐标;(3)点E (a ,﹣3)是坐标平面内的动点,若满足S △ABE ≤13S △ABC ,求a 的取值范围.18、已知:点E 在直线AB 上,点F 在直线CD 上,AB ∥CD .(1)如图1,连EF ,EP 平分∠AEF ,FP 平分∠CFE ,求∠P 的度数.(2)如图2,若∠EGF =160°,射线EH ,FH 分别在∠AEG ,∠CFG 的内部,且∠EHF =40°,当∠AEG =4∠AEH 时,求∠GFH ∠CFG 的值.(3)如图3,在(1)的条件下,在直线CD 上有一动点M (点M 不与点F 重合),EN 平分∠MEF ,若∠PEN =α(0°<α<90°),请直接写出∠EMF = (结果用含α的式子表示).19、在平面直角坐标系中,A (a ,0),B (b ,b ),C (0,c ).(其中a ,b ,c 均为正数),且a ,b ,c 满足{3a −b +2c =8a −2b −c =−9,若√b 的算术平方根为√2. (1)求a ,b ,c 的值.(2)如图1,在第二象限内有一点P (m ,12),若四边形ACPO 的面积与△ABC 的面积相等,求不等式:x−32≥2x−m 3的解集.(3)如图2,BO 平分∠AOC ,过点C 作CD ∥AB 交BO 的延长线于点D ,AE 平分∠BAX ,AE 的反向延长线交BO 的延长线于点F ,设∠CDB =α,∠F =β(其中α,β均为锐角),请直接写出:α+2β3= .23.(10分)如图1,已知直线l1∥l2,点A、B在直线l1上,点C、D在l2上,线段AD交线段BC于点E,且∠BED=60°.(1)求证:∠ABE+∠EDC=60°;(2)如图2,当F、G分别在线段AE、EC上,且∠ABF=2∠FBE,∠EDG=2∠GDC,标记∠BFE为∠1,∠BGD为∠2.①若∠1﹣∠2=16°,求∠ADC的度数;②当k=时,(k∠1+∠2)为定值,此时定值为.24.(12分)如图1,在平面直角坐标系中,已知A(a,1),B(0,b),且实数a,b满足√a+b−2+|a+2b|=0.(1)直接写出两点坐标:A(),B();(2)如图2,将线段AB沿着横坐标均为m的点组成的直线l对折,A与C对应,B与D 对应,若凸四边形ABDC的面积为18,求m的值;(3)如图3,点P在第二、四象限的角平分线上,设P点坐标为(h,﹣h),其中h≠0.①当P在线段AB上时,求h的值;②若S△ABP≥2+32S△OBP.直接写出h的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.12.如图所示,在△ABC 中,∠A =80°,∠B =30°,CD 平分∠ACB ,DE ∥AC .(1)求∠DEB 的度数; (2)求∠EDC 的度数.解 (1)在△ABC 中,∠A =80°,∠B =30°,∴∠ACB =180°-∠A -∠B =70°. ∵DE ∥AC ,∴∠DEB =∠ACB =70°. (2)∵CD 平分∠ACB , ∴∠DCE =12∠ACB =35°.∵∠DEB =∠DCE +∠EDC , ∴∠EDC =70°-35°=35°.13.已知,如图,∠1=∠2,CF ⊥AB 于F ,DE ⊥AB 于E ,求证:FG ∥BC .(请将证明补充完整)证明 ∵CF ⊥AB ,DE ⊥AB (已知),∴ED ∥FC ( ). ∴∠1=∠BCF ( ). 又∵∠1=∠2(已知), ∴∠2=∠BCF (等量代换), ∴FG ∥BC ( ).解 在同一平面内,垂直于同一直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.14.如图,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法,如下:证法1:如图甲,延长BC到D,过C画CE∥BA.∵BA∥CE(作图所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图乙,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.解∵FH∥AC,∴∠BHF=∠A,∠1=∠C.∵FG∥AB,∴∠BHF=∠2,∠3=∠B,∴∠2=∠A.∵∠BFC=180°,∴∠1+∠2+∠3=180°,即∠A+∠B+∠C=180°.15.(2010·玉溪)平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?(不需证明) (3)根据(2)的结论求图d 中∠A +∠B +∠C +∠D +∠E +∠F 的度数.解 (1)不成立,结论是∠BPD =∠B +∠D .延长BP 交CD 于点E , ∵AB ∥CD ,∴∠B =∠BED . 又∠BPD =∠BED +∠D , ∴∠BPD =∠B +∠D .(2)结论:∠BPD =∠BQD +∠B +∠D . (3)设AC 与BF 交于点G .由(2)的结论得:∠AGB =∠A +∠B +∠E .又∵∠AGB =∠CGF ,∠CGF +∠C +∠D +∠F =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.14.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度.2.如图,在△ABC 和△ABD 中,现给出如下三个论断:①AD =BC ;②∠C =∠D ;③∠1=∠2。
请选择其中两个论断为条件,一个论断为结论,另外构造一个命题. (1)写出所有的正确命题(写成“②③①⇒⎭⎬⎫”形式,用序号表示):. (2)请选择一个正确的命题加以说明.你选择的正确命题是: ⇒⎭⎬⎫ 说明:3.如图,直线AD 和BC 相交于O ,AB ∥CD ,∠AOC =95°,∠B =50°,求∠A 和∠D .AB CDE第14题4.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AB ,垂足为G ,那么∠AHE =∠CHG 吗?为什么?5.如图17,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是228cm ,AB=20厘米,AC=8厘米,求DE 的长.6.如图,已知AB ⊥CD ,垂足为B ,AB=DB ,AC=DE .请你判断∠D 与∠A 的关系,并说明理由.第6题7.如图,AD=BC ,DC=AB ,AE=CF ,找出图中的一对全等三角形,并说明你的理由.第5题FEDCBAC EDB A第7题8.如图,已知M 在AB 上,BC=BD ,MC=MD .请说明:AC=AD .第8题9.如图, 在△ABC 中,AB=AC ,AC 边上中线BD 把△ABC 的周长分为21厘米 12厘米两部分,求△ABC 各边的长.10.已知AE ⊥BD ,CF ⊥BD ,且AD=BC ,BE=DF ,试判断AD 和BC 的位置关系.说明你的结论.11.如图,∠ACB=∠BDA=90°,AD=BC ,AB//CD .试说明:∠1=∠2.12.如图3,AC ⊥BD ,AC=DC ,CB=CE ,试说明:DE ⊥AB .13.如图,已知AB//DE ,AB=DE ,BE=CF ,试说明△ABC ≌△DEF 的理由. 小明的说理过程如下: 因为AB//DE ,所以∠1=∠2, 在△ABC 和△DEF 中因为BE=CF ,∠1=∠2,AB=DE ,所以△ABC ≌△DEF (SAS ).MDC BADA BC小明的说理正确吗?若不正确,请你指出错误,帮助小明走出说理误区.14.如图2,AC与BD相交于点E,AD=BC,∠D=∠C,试说明AC与BD全等的理由.小华的说理过程如下:在△ABD和△BAC中,因为AD=BC,AB=BA,∠C=∠D,所以△ABD≌△BAC(SSA)所以AC=BD.3.(10分)如图15,在△ABC中,点D在AB上,BD=BE,(1)请你再添加一个条件,使得△BEA≌△BDC,并说明理由,你添加的条件是理由是:(2)根据你添加的条件,再写出图中的一对全等三角形(只要求写出一对全等三角形,不再添加其它线段,不再标注或使用其它字母,不必说明理由).4.(10分)已知:如图16,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有的字母的点为端点,连接两条线段,如图你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.1. 现有两根棍子长分别为3厘米,5厘米,若要选第三根棍子,使其与前两根拼成一个三角形,则它的长可为()A.1厘米B.2厘米C.5厘米D.10厘米图1 图22.如图1所示,AD 是△ABC 的高,延长BC 至E ,使CE =BC ,△ABC 的面积为S 1,△ACE 的面积为S 2,那么( )A.S 1>S 2B.S 1=S 2C.S 1<S 2D.不能确定 2.三角形的三边长分别为5,x ,8,则x 的取值范围是_ .3.(10分)如图16,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AB ,垂足为G ,那么∠AHE =∠CHG 吗?为什么?4. (10分)如图17,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是228cm ,AB=20厘米,AC=8厘米,求DE 的长.四、拓广探索!(本大题共22分)1.(10分)如图18,在△ABC 中,点D 在AB 上,BD=BE , (1)请你再添加一个条件,使得△BEA ≌△BDC , 并说明理由,你添加的条件是 理由是:(2)根据你添加的条件,再写出图中的一对全等三角形(只要求写出一对全等三角形,不再添加其它线段,不再标注或使用其它字母,不必说明理由。
)ED CB A图17E DC BAG HF图162.(12分)(1)如图19①,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB =______,∠XBC +∠XCB =______.(2)如图19②,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ•仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.三、解答题21,先画两条已知线段a 和b (a >b ),然后再画出线段AB =a -b .22,如图,已知AE ∥BD ,∠1=3∠2,∠2=28°.求21∠C .(图22)23,如图,已知l ∥m ,求∠x ,∠y 的度数.②①24,如图,直线l 1,l 2,分别和直线l 3,l 4,相交,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°.求∠3的度数.25,如图,已知∠C =∠D ,DB ∥EC .AC 与DF 平行吗?试说明你的理由.(图25)26,如图,AB 、AE 是两条射线,∠2+∠3+∠4=∠1+∠2+∠5=180°,求∠1+∠2+∠3的度数.27,如图,已知DB ∥FG ∥EC ,∠ABD =60°,∠ACE =60°,AP 是∠BAC 的平分线.求∠PAG 的度数.28,如图,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系,为什么?CFABE D29,如图,已知:AB⊥BF,CD⊥BF,∠BAF=∠AFE.试说明∠DCE+∠E=180°的理由.7、如图,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF,若∠1=72°,则∠2=___________.8、如图,DE∥BC,∠DBE=40°,∠EBC=25°,则∠BED=___________度,∠BDE=___________度.9、已知,如图,∠1=∠2,AB∥CD,∠A=105°,∠ABD=35°,则∠BDE=___________度,∠ABC=___________度.10、如图,AB∥CD,且∠1=42°,AE⊥EC于E,则∠2=__________度.三、认真答一答(每小题10分,共60分)1、如图所示的长方形台球桌面上,如果∠1=∠2=30°,那么∠3等于多少度?∠1与∠3有什么关系?2、给下列证明过程写理由.已知:如图,AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵ AB⊥BC于B,CO⊥BC于C()∴∠1+∠3=90°,∠2+∠4=90°()∴∠1与∠3互余,∠2与∠4互余()又∵∠1=∠2(),∴__________=___________()∴BE∥CF() .3、如图,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2.(1)能判定DF∥AC吗?为什么?(2)能判定DE∥AF吗?为什么?4、如图,已知AB∥CD,AD∥BC,求证:∠A=∠C,∠B=∠D.5、如图,已知AB∥CD,∠1=∠2,求证:∠BEF=∠EFC.6、已知∠α、∠β,用尺规作一个角,使它等于2∠α-∠β.答案:三、1.∠3=60°,∠1与∠3互余.2.已知垂直定义互余定义等角的补角相等∠3∠4内错角相等,两直线平行3.(1)能判定DF∥AC,可以证明,∠BDF=∠BAC,则由同位角相等,两直线平行来判定.(2)能判定DE∥AF,可证∠1=∠BAF,则同位角相等,两直线平行.4.AB∥CD,∴ ∠B+∠C=180°,∠A+∠D=180°又AD∥BC∴ ∠A+∠B=180°,∠C+∠D=180°∴ ∠B=∠D,∠A=∠C。