2021年高中数学3..1直线的点斜式方程教学案新人教A版必修

合集下载

直线的点斜式方程教案示范三篇

直线的点斜式方程教案示范三篇

直线的点斜式方程教案示范三篇直线的点斜式方程教案1教材分析:本节课程涉及的教材主要有《数学》(人教版)高中数学必修一第四章、第五章。

教学目标:1. 理解点斜式方程的概念和含义;2. 掌握点斜式方程的求法;3. 熟练掌握点斜式方程的应用;4. 培养学生的逻辑思维能力和数学解决问题的能力。

教学重点:1. 点斜式方程的概念和求法;2. 点斜式方程的应用。

教学难点:1. 点斜式方程的应用;2. 解决实际问题时对点斜式方程的转化和运用。

学情分析:学生已经掌握了直线的斜率和截距方程,并对直线的一些基本概念有了一定的了解,但考虑到点斜式方程对于初学者而言相对较难,学生对此可能会存在一些困难。

教学策略:1. 强化基本概念:在本课中重点突出斜率和截距等基本概念的讲解,以帮助学生更加清楚地了解概念的含义和运用。

2. 分步讲解:采用分步讲解和逐步引导的方式,辅助学生理解点斜式方程的求法和应用。

3. 情境教学:能够让学生在实际问题中进行运用,并对不同情景进行思考。

教学方法:1. 教师讲解法:介绍点斜式方程的基本概念和求法。

2. 案例分析法:以实际案例为背景,引导学生掌握方法,并解决实际问题。

3. 课堂互动法:充分利用学生在课堂中的讨论和互动,加强对于点斜式方程的理解和应用。

直线的点斜式方程教案2一、导入环节(5分钟)教学内容:复习两点式和一般式方程。

引入点斜式方程的概念。

教学活动:1.老师出示两个点坐标,引导学生用两点式求出直线方程。

2.老师出示一个一般式方程,引导学生将其化为标准式或斜截式。

3.老师介绍点斜式方程的概念和公式。

4.老师出示例题,让学生尝试用点斜式求出直线方程。

二、课堂互动(35分钟)教学内容:点斜式方程的应用,如平行和垂直直线的计算。

教学活动:1.学生根据点斜式求出一些直线方程,并化简、分类讨论。

2.老师出示两条直线,引导学生求出它们的关系(平行或垂直)。

3.学生按照要求写出两条直线平行或垂直时的点斜式方程。

人教A版高一年级数学必修二3.2.1《直线的点斜式方程》教案

人教A版高一年级数学必修二3.2.1《直线的点斜式方程》教案

3、2、1 直线的点斜式方程一、【学习目标】1、引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程;2、在理解的基础上掌握直线方程的点斜式的特征及适用范围.【教学重点】直线的点斜式、斜截式方程的推导及运用;【教学难点】直线的点斜式、斜截式方程的意义及运用;根据条件熟练地求出直线的方程二、【自学内容和要求及自学过程】1、阅读教材第92—93页内容,然后回答问题(点斜式方程)<1>如果已知直线l 经过点),(000y x P ,且斜率为k ,设点),y x P ( 是直线l 上不同于点0P 的任意一点,你能求出直线的方程吗?你怎么说明我们根据斜率所得到的方程就是我们所求的直线方程?<2>我们由<1>所得的方程是斜率存在的情况,若斜率不存在也就是倾斜角是直角的情况,方程怎么求?倾斜角为零度呢? 结论:<1>由斜率公式得:=k (0y y -)/(0x x -),即)(00x x k y y -=-就是我们所求的方程.证明过程:由上述推导过程我们可知:01过点),(000y x P ,斜率为k 的直线l 的坐标都满足上述方程;反过来我们还可以验证.02坐标满足上述方程的点,都在过点),(000y x P ,斜率为k 的直线l 上. <2>两种特殊情况的方程分别为:00y y x x ==、【例1】已知直线l 过点A(2,1)且与直线y -1=4x -3垂直,求直线l 的方程.【解析】方程y -1=4x -3可化为y -1=4(x -34),由点斜式方程知其斜率k =4,又∵l 与直线y -1=4x -3垂直, ∴直线l 的斜率为-14,又由l 过点A(2,1). ∴直线l 的方程为y -1=-14(x -2), 即x +4y -6=0.练习一:教材95页练习1、2.2、阅读教材第94页思考上面的内容,回答问题(斜截式)<3>如果直线l 的斜率为k ,且与y 轴的交点为),0(b ,代入直线的点斜式方程,我们能得到什么结论?结论:<3>我们可以得到)0(-=-x k b y 即b kx y +=,我们把直线l 与y 轴的交点),0(b 的纵坐标b 叫做直线l 在y 轴上的截距.我们把这个方程叫做直线的斜截式方程.练习二:①请同学们记住这个结论,并且思考,截距是距离吗?②观察方程b kx y +=,它的形式具有什么特点?k 和b 分别表示什么含义?③请同学们完成教材第95页练习3.3、阅读教材94页例2,回答问题(复习直线垂直、平行的条件)<4>已知直线111:b x k y l +=,222:b x k y l +=,那么21//l l ,21l l ⊥ 的条件分别是什么?若反过来,成立吗?结论:<4>212121,//b b k k l l ≠=⇔,12121-=⋅⇔⊥k k l l .(要注意特殊情况,譬如斜率不存在或斜率为零的情况)练习三:①完成教材第95页练习4;②习题3.2A 组1<1><2><3>.三、【作业】习题3.2A 组2、3、5、10;四、【小结】本节课主要学习了三大块内容,直线的点斜式、斜截式方程,以及两直线平行和垂直的条件.要重点理解点斜式、斜截式方程的推导过程和结构特征以及适用范围.五、【反思】教学,重要的是学生的学,而不是教师的教.老师要做到的是怎样推动学生积极的学习.个人认为推动学生学习,最重要的是给学生一个台阶,上得去的台阶.譬如上一章学习的立体几何,由于是新知识,学生学习起来比较吃力,课堂效果和作业效果都一般,但是直线这一章相比之下简单一些,学生的学习效果很不错,并且乐意学.所以调动学生的积极性,重要的是循序渐进,不要过分拔高,也就是说给学生一个台阶.。

直线的点斜式方程教案

直线的点斜式方程教案

直线的点斜式方程教案教案标题:直线的点斜式方程引言:直线是几何图形中最基本的一种形式。

了解直线的特征和方程形式是学习代数和几何的重要基础。

点斜式方程(也称为斜截式方程)是表达直线的一种常见形式。

本节课将介绍直线的点斜式方程,帮助学生理解直线方程的意义和具体表示方法。

教学目标:1. 了解直线的标准方程和点斜式方程的概念;2. 掌握使用点斜式方程确定直线的方法;3. 能够根据直线上的一个点和斜率来写出点斜式方程;4. 能够根据点斜式方程确定直线上的一个点和斜率。

教学准备:1. 教师准备:投影仪、电脑、白板、黑板笔等;2. 学生准备:笔、纸、教科书。

教学过程:一、导入新知识(5分钟)1. 教师使用投影仪和电脑展示一条直线的图形。

2. 引导学生观察直线的特征,如直线上的两个点、与横轴和纵轴的交点等。

3. 提出问题:如何用数学语言描述这条直线?二、介绍点斜式方程(10分钟)1. 解释直线的点斜式方程的定义:y-y₁ = m(x-x₁),其中m为直线的斜率,(x₁, y₁)为直线上的一个已知点。

2. 强调斜率的概念和意义:斜率表示直线的倾斜程度,可以为正、负或零。

3. 讲解点斜式方程在代数和几何中的应用和重要性。

三、推导和解答案例题(20分钟)1. 通过一个具体的案例,教师向学生展示如何通过给定的点和斜率求出点斜式方程。

2. 教师引导学生一起推导点斜式方程的相关公式。

3. 学生独立完成教科书上的相关练习题。

四、巩固练习(15分钟)1. 学生结对或小组合作,互相出题,练习写出直线的点斜式方程。

2. 教师巡视指导,对学生答疑解惑。

3. 邀请学生上台展示并解答问题。

五、拓展应用(10分钟)1. 引导学生思考点斜式方程在实际生活中的应用。

2. 提示学生探究其他类型直线的方程表示方法。

总结与评价:1. 简要总结本节课所学内容,强调直线的点斜式方程的应用和重要性。

2. 教师对学生的学习情况进行评价,并提供必要的指导和建议。

高中数学 (3.2.1 直线的点斜式方程)示范教案 新人教A版必修2

高中数学 (3.2.1 直线的点斜式方程)示范教案 新人教A版必修2

3.2 直线的方程3.2.1 直线的点斜式方程整体设计教学分析直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kx +b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.三维目标1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.重点难点教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.课时安排1课时教学过程导入新课思路1.方程y=kx +b 与直线l 之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l 上任意一点P(x 1,y 1)的坐标是方程y=kx +b 的解.(2)(x 1,y 1)是方程y=kx+b 的解⇒点P(x 1,y 1)在直线l 上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题——直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:一次函数y=kx+b 的图象是一条直线,它是以满足y=kx+b 的每一对x 、y 的值为坐标的点构成的.由于函数式y=kx+b 也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题). 推进新课新知探究提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l 的斜率k 且l 经过点P 1(x 1,y 1),如何求直线l 的方程?③方程导出的条件是什么?④若直线的斜率k 不存在,则直线方程怎样表示? ⑤k=11x x y y --与y-y 1=k(x-x 1)表示同一直线吗? ⑥已知直线l 的斜率k 且l 经过点(0,b),如何求直线l 的方程?讨论结果:①确定一条直线需要两个条件:a.确定一条直线只需知道k 、b 即可;b.确定一条直线只需知道直线l 上两个不同的已知点.②设P(x ,y)为l 上任意一点,由经过两点的直线的斜率公式,得k=11x x y y --,化简,得y -y 1=k(x -x 1).③方程导出的条件是直线l 的斜率k 存在.④a.x=0;b.x=x 1.⑤启发学生回答:方程k=11x x y y --表示的直线l 缺少一个点P 1(x 1,y 1),而方程y -y 1=k(x -x 1)表示的直线l 才是整条直线.⑥y=kx+b.应用示例思路1例1 一条直线经过点P 1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.图1解:这条直线经过点P 1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0,这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力. 变式训练求直线y=-3(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程.解:设直线y=-3(x-2)的倾斜角为α,则tanα=-3,又∵α∈[0°,180°),∴α=120°.∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2.例2 如果设两条直线l 1和l 2的方程分别是l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,试讨论:(1)当l 1∥l 2时,两条直线在y 轴上的截距明显不同,但哪些量是相等的?为什么?(2)l 1⊥l 2的条件是什么?活动:学生思考:如果α1=α2,则tanα1=tanα2一定成立吗?何时不成立?由此可知:如果l 1∥l 2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b 1≠b 2且k 1=k 2,则l 1与l 2的位置关系是怎样的?由学生回答,重点说明α1=α2得出tanα1=tanα2的依据.解:(1)当直线l 1与l 2有斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2时,直线l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)l 1⊥l 2⇔k 1k 2=-1.变式训练判断下列直线的位置关系: (1)l 1:y=21x+3,l 2:y=21x-2; (2)l 1:y=35x,l 2:y=-53x.答案:(1)平行;(2)垂直.思路2例1 已知直线l 1:y=4x 和点P(6,4),过点P 引一直线l 与l 1交于点Q ,与x 轴正半轴交于点R ,当△OQR 的面积最小时,求直线l 的方程.活动:因为直线l 过定点P(6,4),所以只要求出点Q 的坐标,就能由直线方程的两点式写出直线l 的方程.解:因为过点P(6,4)的直线方程为x=6和y -4=k(x -6),当l 的方程为x=6时,△OQR 的面积为S=72;当l 的方程为y -4=k(x -6)时,有R(k k 46-,0),Q (k k 46-,41624--k k ), 此时△OQR 的面积为S=21×k k 46-×41624--k k =)4()23(82--k k k . 变形为(S -72)k 2+(96-4S)k -32=0(S≠72).因为上述方程根的判别式Δ≥0,所以得S≥40.当且仅当k=-1时,S 有最小值40.因此,直线l 的方程为y -4=-(x -6),即x +y -10=0.点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导.变式训练如图2,要在土地ABCDE 上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1 m 2)(单位:m ).图2解:建立如图直角坐标系,在线段AB 上任取一点P 分别向CD 、DE 作垂线,划得一矩形土地. ∵AB 方程为2030x x +=1,则设P(x,20-32x )(0≤x≤30), 则S 矩形=(100-x)[80-(20-32x )] =-32(x-5)2+6 000+350(0≤x≤30), 当x=5时,y=350,即P (5,350)时,(S 矩形)max =6 017(m 2). 例2 设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为x -2y +1=0,y=1,求△AB C 中AB 、AC 各边所在直线的方程.活动:为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图3,设AC 的中点为F ,AC 边上的中线BF :y=1.图3AB 边的中点为E ,AB 边上中线CE :x -2y +1=0.设C 点坐标为(m ,n),则F(23,21++n m ). 又F 在AC 中线上,则23+n =1, ∴n=-1.又C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0.∴m=-3.∴C 点为(-3,-1).设B 点为(a,1),则AB 中点E(213,21++a ),即E(21a +,2). 又E 在AB 中线上,则21a +-4+1=0.∴a=5. ∴B 点为(5,1).由两点式,得到AB ,AC 所在直线的方程AC :x -y +2=0,AB :x +2y -7=0.点评:此题思路较为复杂,应使同学们做完后从中领悟到两点:(1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来.变式训练已知点M (1,0),N (-1,0),点P 为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?解:∵P 点在直线2x-y-1=0上,∴设P (x 0,2x 0-1).∴|PM|2+|PN|2=10(x 0-52)2+512≥512. ∴最小值为512. 知能训练课本本节练习1、2、3、4.拓展提升已知直线y=kx +k +2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k 的取值范围.图4活动:此题要首先画出图形4,帮助我们找寻思路,仔细研究直线y=kx +k +2,我们发现它可以变为y -2=k(x +1),这就可以看出,这是过(-1,2)点的一组直线.设这个定点为P(-1,2).解:我们设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,且α1<α<α2. 则k 1=tanα1<k <k 2=tanα2.又k 1=132-+=-5,k 2=312--=-21, 则实数k 的取值范围是-5<k <-21. 课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.作业习题3.2 A 组2、3、5.设计感想直线方程的点斜式给出了根据已知一个点和斜率求直线的方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从初中代数中的一次函数y=kx +b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.。

直线的点斜式方程 教案

直线的点斜式方程 教案

直线的点斜式方程教案教案标题:直线的点斜式方程教案目标:1. 了解直线的点斜式方程的概念和应用。

2. 掌握求解直线的点斜式方程的方法。

3. 能够应用点斜式方程解决实际问题。

教学准备:1. 教师准备:黑板、白板、彩色粉笔/马克笔、教学投影仪。

2. 学生准备:教科书、笔记本、铅笔、直尺、计算器。

教学步骤:Step 1: 引入知识(5分钟)1. 教师通过引入问题的方式激发学生对直线的点斜式方程的兴趣,例如:我们如何用一个点和斜率来表示一条直线呢?2. 引导学生思考,并与他们讨论他们对点斜式方程的了解和猜测。

Step 2: 点斜式方程的定义和公式(10分钟)1. 教师向学生介绍点斜式方程的定义:直线的点斜式方程是指通过一个已知点和直线的斜率来表示直线的方程。

2. 教师给出点斜式方程的公式:y - y1 = m(x - x1),其中m是直线的斜率,(x1, y1)是直线上的已知点。

Step 3: 求解点斜式方程的步骤(15分钟)1. 教师通过示例演示如何求解点斜式方程。

首先,给出一个已知点和直线斜率的例子,然后按照公式进行步骤演示。

2. 学生跟随教师的步骤,进行练习。

Step 4: 应用实例(15分钟)1. 教师提供一些实际问题,要求学生应用点斜式方程解决。

例如:一辆汽车从一个已知点出发,以一定的斜率行驶,如何表示汽车的行驶轨迹?2. 学生独立或小组合作解决问题,并向全班展示他们的解答。

Step 5: 总结与评价(5分钟)1. 教师对本节课的内容进行总结,并强调点斜式方程的重要性和应用。

2. 教师鼓励学生提出问题和疑惑,并进行解答和评价。

3. 教师布置相关的作业,巩固学生对点斜式方程的掌握程度。

Step 6: 拓展活动(可选)(10分钟)1. 教师提供更多的点斜式方程的拓展问题,鼓励学生进行探究和解答。

2. 学生可以在小组内合作解决问题,并向全班展示他们的解答。

教学反思:本节课通过引入问题、定义和公式的讲解、求解步骤的演示和实际问题的应用,使学生逐步理解和掌握了直线的点斜式方程。

数学新课标人教A版高中必修二《直线的点斜式方程》教学设计

数学新课标人教A版高中必修二《直线的点斜式方程》教学设计

3.2.1 直线的点斜式方程教学目标:1、掌握直线方程的点斜式,体会斜截式与一次函数的关系;2、经历由直线上一点和直线的斜率推导直线方程的过程;3、体会用代数的表达式来研究几何的思想方法。

教学重点:直线方程的点斜式 教学难点:直线方程点斜式的推导 教学方法:启发探究,讲练结合 教学准备:PPT 课件,三角板 教学过程: 一、复习回顾1、复习直线上两点的斜率公式;2、在直角坐标系内确定一条直线的几何要素: 直线上一点和直线的倾斜角(斜率);直线上的两点。

二、动手操作在直角坐标系作出32+=x y 的图像。

(学生拿出工具作图,找一个学生板演。

) 通过一次函数的图像我们得到了一条直线。

我们知道点动成线,直线就是点的集合。

求直线的方程就是求直线上点的坐标),(y x 所满足的等量关系。

设置问题:已知一条直线过点(0,3),斜率为2,能否通过这两特征(点和斜率),求出该直线的方程?三、探索研究1、实例分析设点),(y x Q 是直线l 上不同于点)3,0(P 的任意点,因为P 、Q 都在直线l 上, 所以203=--=x y k ,化简得方程32+=x y 。

推导基础:两点确定一条直线,根据直线上的两点能够求出直线的斜率。

(学生板演,注意指出方程化简前后的区别;表达从特殊到一般的过程。

)2、抽象概括如图,设),(y x Q 是直线l 上不同于点),(000y x P因为0P 、Q 都在直线l上,有方程:k x x y y =--0, 即:)(00x x k y y -=-。

(学生板演,注意表扬对上式的整理化简。

)方程k x x y y =--0表示去了点),(000y x P 的直线,而方程)(00x x k y y -=-能表示一条完整的直线。

四、形成新知由前面实例和上述推导可知:一方面,直线l 上每一点的坐标),(y x 都满足这个方程;另一方面,以这个方程的解为坐标的点都在直线l 上。

即:1、方程)(00x x k y y -=-是由直线上的一点和斜率(一个方向)所确定的,故称为直线方程的点斜式方程,简称点斜式。

高中数学《直线的点斜式方程》教案

高中数学《直线的点斜式方程》教案

高中数学《直线的点斜式方程》教案一、教学目标1. 知识与技能:(1)理解直线的点斜式方程的概念;(2)学会运用点斜式方程求直线方程;(3)能够将直线方程转化为点斜式方程。

2. 过程与方法:(1)通过观察直线图形,引导学生发现直线的点斜式方程;(2)利用实例讲解点斜式方程的求法;(3)通过练习,提高学生运用点斜式方程解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生积极参与、合作探究的学习态度;(3)培养学生解决问题的能力和创新精神。

二、教学重点与难点1. 教学重点:(1)直线的点斜式方程的概念;(2)运用点斜式方程求直线方程;(3)将直线方程转化为点斜式方程。

2. 教学难点:(1)点斜式方程的推导过程;(2)运用点斜式方程解决实际问题。

三、教学过程1. 导入:(1)复习已学的直线方程知识,如斜截式方程;(2)引导学生思考:如何用一条已知的直线方程来描述另一条直线?2. 新课讲解:(1)介绍直线的点斜式方程的概念;(2)讲解点斜式方程的推导过程;(3)举例说明如何运用点斜式方程求直线方程;(4)讲解如何将直线方程转化为点斜式方程。

3. 课堂练习:(1)布置几个练习题,让学生运用点斜式方程解决问题;(2)引导学生互相讨论,共同解决问题。

四、课后作业(1)经过点(2,3),斜率为1的直线;(2)经过点(0,-2),斜率为2的直线。

(1)y=2x+1;(2)x-y+3=0。

五、教学反思本节课通过引导学生观察直线图形,让学生发现直线的点斜式方程,并通过实例讲解点斜式方程的求法。

学生在课堂练习中能够运用点斜式方程解决问题,但在课后作业中,部分学生对将直线方程转化为点斜式方程还存在一定的困难。

在今后的教学中,应加强对学生的引导和辅导,提高学生运用点斜式方程解决问题的能力。

注意激发学生的学习兴趣,培养学生的合作探究精神。

六、教学策略1. 案例教学:通过具体的直线图形,让学生观察并发现直线的点斜式方程。

高中数学 3.2.1直线的点斜式方程教案 新人教版A版必修2

高中数学 3.2.1直线的点斜式方程教案 新人教版A版必修2
3.判断:直角坐标系内的所有直线都有斜截式方程.( )
例2:已知直线l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)l1∥l2的条件是什么?(2)l1⊥l2的条件是什么?
巩固练习:
4.写出下列直线的斜截式方程:
(1)斜率是 ,在y轴上的截距是-2
(2)斜率是-2,在y轴上的截距是4
(3)斜率是-1,在y轴上的截距是1
5.判断下列各对直线是否平行或垂直:
(1)l1:y= x+3, l2: y= x-2
(2)l1:y= x, l2:y=
(3)l1:y=3, l2x=0
课堂小结:本节课你学到了什么?请认真总结写在下面。
本节作业:教材第100页第1题(1பைடு நூலகம்(2)(3),第5题
自助餐
1.分别用点斜式和斜截式写出:斜率是2,在x轴上的截距是4的直线方程.
(2)经过点(1,3)和(2,5)的直线PQ的斜率是( )
A.2 B.-2 C. D.-
(3)斜率为2的直线经过点(3,5),(a,7),(-1,b)三点,则a,b的值是( )
A.a=4,b=0 B.a=-4,b=-3 C.a=4,b=-3 D.a=-4,b=3
我们能否用给定的条件将直线上所有点的坐标(x,y)满足的关系表示出来呢?
2.直线y=mx+2m+1恒过一定点,则此点是
二、直线的点斜式方程
1/。/。。。。。 1.点斜式方程是如何得到的?
2.直线的点斜式方程形式是
X轴所在直线的方程是
Y轴所在直线的方程是
3.判断:直角坐标系内的所有直线都有点斜式方程.( )
试举例说明.
例1:直线l经过点P0(-2,3),且倾斜角 =45,求直线l的点斜式方程,并画出直线l.

人教版高中数学直线的点斜式方程教案

人教版高中数学直线的点斜式方程教案

人教版高中数学直线的点斜式方程教案一、教学目标1. 让学生理解直线的点斜式方程的含义和意义。

2. 让学生掌握直线的点斜式方程的求法和应用。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点1. 直线的点斜式方程的含义。

2. 直线的点斜式方程的求法。

三、教学难点1. 直线的点斜式方程的推导过程。

2. 直线的点斜式方程在实际问题中的应用。

四、教学准备1. 教师准备PPT和教学案例。

2. 学生准备笔记本和笔。

五、教学过程1. 导入:教师通过一个实际问题引入直线的点斜式方程的概念,例如:已知直线上一点A(x1, y1)和斜率k,求直线的方程。

2. 讲解:教师讲解直线的点斜式方程的含义,即直线上任意一点(x, y)与点A(x1, y1)的连线的斜率等于直线的斜率k。

教师给出直线的点斜式方程的求法,即直线的方程可以表示为y y1 =k(x x1)。

3. 案例分析:教师展示一个案例,引导学生运用直线的点斜式方程求解直线的方程。

4. 练习:学生独立完成一些练习题,巩固直线的点斜式方程的知识。

5. 总结:教师引导学生总结直线的点斜式方程的含义和求法。

6. 作业布置:教师布置一些相关的作业题,巩固学生的学习成果。

六、教学拓展1. 教师引导学生思考:直线的点斜式方程是否唯一?2. 学生通过思考和讨论,得出结论:直线的点斜式方程不唯一,因为直线上任意一点都可以作为点A,从而得到不同的点斜式方程。

3. 教师进一步提问:如何判断两个点斜式方程是否表示同一直线?4. 学生通过思考和讨论,得出结论:两个点斜式方程表示同一直线当且仅当它们的斜率和截距相等。

七、应用举例1. 教师展示一个实际问题:已知直线过点(2, 3)且斜率为1/2,求直线的方程。

2. 学生运用直线的点斜式方程求解,得出直线的方程为y 3 = 1/2(x 2)。

3. 教师引导学生思考:如果已知直线过点(2, 3)且斜率为-1/2,求直线的方程。

4. 学生运用直线的点斜式方程求解,得出直线的方程为y 3 = -1/2(x2)。

人教新课标A版必修2《3.2.1 直线的点斜式方程》教学设计(表格式)

人教新课标A版必修2《3.2.1  直线的点斜式方程》教学设计(表格式)

请学生作答
提示:由直线的点斜式方程需要直线上的一点),(000y x P 和斜率k 共同确定,但当倾斜角为90°时直线没有斜率,故此时直线没有点斜式方程.
3.考虑两种特殊直线:
过点),(000y x P
(1)平行于x 轴或与x 轴重合的直线方程是什么?
(2)平行于y 轴或与y 轴重合的直线方程是什么?
在黑板上板书:
000)
-(0-0
0tan 0αy y x x y y k ===°=°
=即: 0090tan 90αx x x l k =°=°=故上每一点的横坐标均为此时直线不存在
4.课本P93例1.直线l 经过点)(3
,20P ,且倾斜角为45°,求直线l 的点斜式方程,并画出直线. 请学生回答
分析:(1)点斜式方程为)-(-00x x k y y =,将点)(3
,20P 与斜率k 代入即可; (2)确定一条直线需要两个点的坐标.
5.写出下列直线的点斜式方程:
(1)经过点(2,1),且倾斜角为150°;
(2)经过点(3,2),且垂直于y 轴的直线;
(3)经过点(2,1),且斜率是-1的直线.
请学生上黑板做,根据情况进行订正.
6.已知直线的方程是y+7=-x-3,则( )
A.直线经过点(-3,7),斜率为-1;
B.直线经过点(7,-1),斜率为-1;
C.直线经过点(-3,-7),斜率为-1;
D.直线经过点(-7,-3),斜率为1.
请学生回答,并给出正确答案C.
7. 过点(1,3),且斜率不存在的直线方程是( )
A.x=1
B.x=3。

人教版高中数学直线的点斜式方程教案

人教版高中数学直线的点斜式方程教案

人教版高中数学直线的点斜式方程教案一、教学目标1. 让学生理解直线的点斜式方程的定义和意义。

2. 让学生掌握直线的点斜式方程的求法和应用。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点1. 教学重点:直线的点斜式方程的定义和求法。

2. 教学难点:直线的点斜式方程在实际问题中的应用。

三、教学方法1. 采用问题驱动法,引导学生思考直线的点斜式方程的定义和求法。

2. 通过实例分析,让学生掌握直线的点斜式方程在实际问题中的应用。

3. 利用数形结合法,帮助学生直观地理解直线的点斜式方程。

四、教学准备1. 教学课件:直线的点斜式方程的定义、求法和应用。

2. 教学素材:实际问题相关的直线图示和数据。

3. 练习题:巩固直线的点斜式方程的知识。

五、教学过程1. 导入:通过一个实际问题,引导学生思考直线的点斜式方程的定义和意义。

2. 新课讲解:讲解直线的点斜式方程的定义、求法和应用。

3. 实例分析:分析实际问题,让学生掌握直线的点斜式方程的应用。

4. 练习巩固:让学生独立完成练习题,巩固直线的点斜式方程的知识。

5. 总结:对本节课的内容进行总结,强调直线的点斜式方程的重要性和应用。

教案示例:一、教学目标1. 让学生理解直线的点斜式方程的定义和意义。

2. 让学生掌握直线的点斜式方程的求法和应用。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点1. 教学重点:直线的点斜式方程的定义和求法。

2. 教学难点:直线的点斜式方程在实际问题中的应用。

三、教学方法1. 采用问题驱动法,引导学生思考直线的点斜式方程的定义和求法。

2. 通过实例分析,让学生掌握直线的点斜式方程在实际问题中的应用。

3. 利用数形结合法,帮助学生直观地理解直线的点斜式方程。

四、教学准备1. 教学课件:直线的点斜式方程的定义、求法和应用。

2. 教学素材:实际问题相关的直线图示和数据。

3. 练习题:巩固直线的点斜式方程的知识。

3.2.1《直线的点斜式方程》教案(人教A版必修2)

3.2.1《直线的点斜式方程》教案(人教A版必修2)

3.2.1《直线的点斜式方程》教案【教学目标】1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系. 【导入新课】问题导入:在直线坐标系内确定一条直线,应知道哪些条件? 新授课阶段 1.直线的点斜式方程直线l 经过点),(000y x P ,且斜率为k 。

设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。

根据斜率公式,可以得到,当0x x ≠时,0x x y y k --=,即)(00x x k y y -=-问题:(1)过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1)吗? (2)坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上吗? 点斜式方程:方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式。

特例:x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?(2)经过点),(000y x P 且平行于x 轴(即垂直于y 轴)的直线方程是什么? (3)经过点),(000y x P 且平行于y 轴(即垂直于x 轴)的直线方程是什么?例1 已知直线l 的斜率为k ,且与y 轴的交点为),0(b ,求直线l 的方程。

解:根据直线方程的点斜式得到,直线l 的方程:b kx y +=思考:1 直线b kx y +=在x 轴上的截距是什么?2 “截距”与“距离”两个概念的区别?(1)21//l l 时, 2121,;,b b k k 有何关系?(2)21l l ⊥时,2121,;,b b k k 有何关系?在此由学生得出结论:,//2121k k l l =⇔且21b b ≠; 12121-=⇔⊥k k l l课堂小结1.直线的点斜式方程推导;2.斜截式方程中截距的理解。

作业见同步练习部分。

直线的点斜式方程教学设计

直线的点斜式方程教学设计

直线的点斜式方程教学设计一、教学目标1. 理解直线的点斜式方程的概念和特点;2. 掌握求解直线的点斜式方程的方法;3. 能够应用直线的点斜式方程解决实际问题。

二、教学重点与难点1. 教学重点:直线的点斜式方程的概念和求解方法;2. 教学难点:直线的点斜式方程在实际问题中的应用。

三、教学准备1. 教师准备:黑板、彩色粉笔、直尺;2. 学生准备:教材、作业本、笔。

四、教学过程设计Step 1 引入新知识(5分钟)1. 教师可通过提问的方式,引导学生回顾直线的斜率和截距的概念。

2. 教师引入直线的点斜式方程的概念,解释其意义和特点。

Step 2 理解直线的点斜式方程(10分钟)1. 教师通过例题,引导学生观察并理解直线的点斜式方程的形式。

2. 教师解释直线的点斜式方程中斜率的含义,讲解斜率的计算方法和取值范围。

Step 3 求解直线的点斜式方程(15分钟)1. 教师给出几个实例,引导学生求解直线的点斜式方程的步骤与方法。

2. 学生进行课堂练习,巩固直线的点斜式方程的求解方法。

Step 4 实际问题的应用(15分钟)1. 教师引导学生通过实例,了解直线的点斜式方程在实际问题中的应用。

2. 学生进行小组讨论,归纳整理出直线的点斜式方程在实际问题中的一般应用方法。

Step 5 拓展与应用(10分钟)1. 教师提供一些更复杂的问题,要求学生运用直线的点斜式方程进行求解。

2. 学生进行个人或小组拓展练习,进一步巩固和应用直线的点斜式方程。

Step 6 总结与小结(5分钟)1. 教师带领学生总结直线的点斜式方程的概念和求解步骤。

2. 学生进行小结,回答教师提出的问题,巩固所学知识。

五、课堂作业1. 完成教材上的练习题;2. 思考在实际生活中,如何利用直线的点斜式方程解决问题,并书写一篇相关的应用文章。

六、教学反思本节课通过示例引入知识点,并结合实际问题进行应用,能够培养学生的分析和解决问题的能力。

在教学过程中,教师可以根据学生的反馈情况进行适当调整,确保教学效果。

高中数学《直线的点斜式方程》教案

高中数学《直线的点斜式方程》教案

高中数学《直线的点斜式方程》教案一、教学目标:1. 让学生理解直线的点斜式方程的概念和意义。

2. 让学生掌握直线的点斜式方程的推导过程。

3. 让学生能够运用直线的点斜式方程解决实际问题。

二、教学内容:1. 直线的点斜式方程的定义。

2. 直线的点斜式方程的推导过程。

3. 直线的点斜式方程的应用。

三、教学重点与难点:1. 直线的点斜式方程的推导过程。

2. 直线的点斜式方程的应用。

四、教学方法:1. 采用问题驱动法,引导学生思考直线的点斜式方程的推导过程。

2. 采用案例分析法,引导学生运用直线的点斜式方程解决实际问题。

3. 采用小组讨论法,引导学生合作探讨直线的点斜式方程的应用。

五、教学步骤:1. 导入新课:通过回顾直线的斜率公式,引导学生思考如何根据直线上两个点求直线的斜率。

2. 讲解直线的点斜式方程的定义:以直线上两个点为例,说明直线的点斜式方程的概念。

3. 推导直线的点斜式方程:引导学生通过代数方法推导直线的点斜式方程。

4. 应用直线的点斜式方程:给出实际问题,引导学生运用直线的点斜式方程解决问题。

5. 总结与拓展:对本节课的内容进行总结,并给出相关的拓展问题,供学生课后思考。

教案编辑专员敬上六、教学评估:1. 通过课堂提问,检查学生对直线的点斜式方程的理解程度。

2. 通过课后作业,检查学生对直线的点斜式方程的掌握情况。

3. 通过小组讨论,评估学生在解决实际问题时的合作能力和创新能力。

七、教学反馈:1. 根据学生的课堂表现和作业情况,及时给予反馈,指出学生的优点和不足。

2. 鼓励学生在课后进行自主学习,提高他们对直线的点斜式方程的深入理解。

3. 根据学生的反馈,调整教学方法和教学内容,以提高教学效果。

八、教学资源:1. 使用多媒体教学,如PPT等,展示直线的点斜式方程的推导过程和应用实例。

2. 提供相关的数学软件或工具,如几何画板等,帮助学生更好地理解和应用直线的点斜式方程。

3. 提供充足的练习题,包括基础题和提高题,以满足不同学生的学习需求。

人教版高中数学直线的点斜式方程教案

人教版高中数学直线的点斜式方程教案

人教版高中数学直线的点斜式方程教案一、教学目标1. 知识与技能:(1)理解直线的点斜式方程的含义;(2)学会用点斜式方程求直线的方程;(3)能够运用点斜式方程解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳直线的点斜式方程的定义和性质;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和探究欲望;(2)培养学生的团队协作精神。

二、教学重点与难点1. 教学重点:(1)直线的点斜式方程的含义;(2)用点斜式方程求直线方程的方法。

2. 教学难点:(1)直线的点斜式方程在实际问题中的应用。

三、教学准备1. 教师准备:(1)熟练掌握直线的点斜式方程的相关知识;(2)准备相关的教学案例和练习题。

2. 学生准备:(1)掌握直线的基本概念;(2)了解斜率的概念。

四、教学过程1. 导入新课(1)复习直线的基本概念和斜率的概念;(2)提出问题:如何用一条已知直线上的一点和斜率来表示直线方程?2. 讲解直线的点斜式方程(1)介绍直线的点斜式方程的定义;(2)解释直线的点斜式方程的含义;(3)用图示和实例来演示直线的点斜式方程的推导过程。

3. 练习与讨论(1)让学生分组讨论并尝试用点斜式方程求解给定的直线方程;(2)挑选几组学生的答案进行讲解和评价。

五、作业布置1. 请学生用点斜式方程求解教材上的练习题;2. 让学生思考如何将直线的点斜式方程应用到实际问题中,如测量两点的距离和方向。

六、教学拓展1. 讲解直线的点斜式方程的变形式(1)介绍直线的点斜式方程的变形式;(2)解释直线的点斜式方程变形式的应用。

2. 练习与讨论(1)让学生分组讨论并尝试用直线的点斜式方程变形式求解给定的直线方程;(2)挑选几组学生的答案进行讲解和评价。

七、直线的点斜式方程在实际问题中的应用1. 讲解直线的点斜式方程在实际问题中的应用(1)通过实例讲解直线的点斜式方程在测量两点距离和方向中的应用;(2)解释直线的点斜式方程在其他实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学3.2.1直线的点斜式方程教学案新人教A版必修2
一、教学目标:
1.理解直线方程的点斜式、斜截式的形式特点和适用范围;
2.能正确利用直线的点斜式、斜截式公式求直线方程;
3.体会直线的斜截式方程与一次函数的关系
教学重点:直线的点斜式方程和斜截式方程..
教学难点:直线的点斜式方程和斜截式方程的应用.
二、预习导学
(一)知识梳理
1、直线的点斜式方程-
(1)定义:已知直线经过点,且斜率为,则把方程叫做直线的点斜式方程,简称点斜式。

(2)特例:已知直线经过点,倾斜角为,其方程为。

即倾斜角为的直线没有点斜式。

2、直线的斜截式方程
(1)定义:已知直线的斜率为,且与轴的交点为,则把方程叫做直线的斜截式方程,简称斜截式,其中纵坐标叫做直线在轴上的。

(2)特例:已知直线与轴的交点为,倾斜角为,其方程为。

即倾斜角为的直线没有斜截式。

3、已知直线
则∥

(二)预习交流
求过点(6,-3),斜率为0.5的直线方程,并求出它在直线在轴上的截距.
三、问题引领,知识探究
问题1:已知直线经过点,且斜率为,如何求直线的方程?
问题2:平面上的所有直线是否都可以用点斜式表示?
练习内化1:求斜率是且经过点的直线的方程.
变式1:直线l经过点P (-2,3),且倾斜角为60°,求直线l的点斜式方程.问题3:已知直线的斜率为,且与轴的交点为,则直线的方程为?
练习内化2:写出下列直线的斜截式方程.
⑴斜率是,在轴上的距截是-2;
⑵斜角是,在轴上的距截是3
变式2:(1)直线的斜率是 ,在轴上的截距为
(2)已知直线过点(-2,3),斜率为-1,则直线在轴上的截距为 变式3:已知直线,试讨论:(1)∥的条件是什么?(2)的条件是什么?
四、目标检测
1.根据下列各条件写出直线的方程.
(1)斜率是-,经过点A (8,-2);
(2)经过点B (4,2),平行于轴;
(3)经过点(0,-3),倾斜角为60º.
2、判断下列各对直线是否平行或垂直:
(1);532:,332:21-=+=x y l x y l (2);12
1:,12:21+-=+=x y l x y l 五、分层配餐
A 组题
1.求下列直线的斜截式方程:
(1)经过点A(-1,2),且与直线 y=3x+1垂直;
(2)斜率为-2,且在x 轴上的截距为5.
2.与轴的交点为(0,-6),且与轴相交成角的直线方程为:。

B组题
3.直线过点P(2,-3),倾斜角是直线倾斜角的2倍,求直线的方程。

4.已知直线,当B≠0时,斜率是多少?当B=0时呢?
5.直线过点P(-2,1),倾斜角为,且,求直线的方程。

C组题
6、一条直线经过点A(1,2),且与两坐标轴的正半轴所围成的三角形面积是4,求这
条直线的方程。

相关文档
最新文档