高中奥赛数学竞赛专题讲座-组合数学
数学竞赛经典讲座-组合不等式
组合不等式 讲 座组合不等式问题是数学竞赛中的热点问题,通常也是教学竞赛中难度很大的问题,同时也是针对学生思维考测的典型问题.组合不等式问题的内容非常广泛,涉及到代数、几何、数论等多个分支。
组合不等式问题有:组合数不等式、组合计数不等式、组合最值、组合几何不等式、组合数论不等式等.下面就从几个典型的组合不等式问题的研究,提高我们的思维能力.例1:对n ≥2,证明(1)n n n n C 422<<;(2)1124--<n n n C证明:(1)当n =2时,22222462<=<⨯C 不等式成立设kk k k C 422<<成立,则1+=k n 时由n k k k k k k k k k n C C C C 22222212121222==⋅>>==++++ n k k k k k k k k kk n n C C C k k C C 4444422112221222122==⋅<=⋅<++⋅<=++ 知不等式成立由归纳原理,对n ≥2不等式nn n n C 422<<恒成立(2)∑-=----=⋅==12012122212122124n k k n n n n C nn n k n n k n C C C 121112122--=---=>=∑ 例2:在一个车厢中,任何()3≥m m 个旅客都有惟一的公共朋友(当甲是乙的朋友时,乙也是甲的朋友;任何人都不作为自己的朋友),问在这个车厢中,朋友最多的人有多少位朋友?解:设朋友最多的人有k 个朋友,显然,m k ≥,若m k >,设A 有k 个朋友B 1,B 2,…,k B ,并记{}k B B B S ,,21=.设{}121,,,-m i i i B B B 是S 的任一个1-m 元子集,则A ,121,,,-m i i i B B B 这m 个人有惟一的公共朋友,记为i C .因i C 是A 的朋友,故S C i ∈.宝义映射{}S C B B B f i i i i m ∈→-121,,,: ,则f 是从S 的所有1-m 元子集的集合到S 的一个单射.事实上,若有S 的两个不同的1-m 元子集{}121,,,-m i i i B B B和{}121,,,-m j j j B B B,二者有相同的象i C ,则因{}{}1111,,,,--m m j j i i B B B B中至少有m 个元素,这m 个人有两个公共朋友A 和i C ,此与已知矛盾.由于f 是单射,故有k C m k≤-1.另一方面,因为3≥m ,21≥-m ,所以k C C C k k m k =>≥-121,矛盾.可见,所求的最大值为m .例3:设{}10,,2,1 =S ,k A A A ,,,21 都是S 的子集且满足(1)k i A i ,,2,1,5 ==;(2)k j i A A j i ≤<≤≤1,2 .求k 的最大值.解:设k 有个子集满足题中条件(1)和(2),并设i 属于这k 子集中的i x 个集合,i =1,2,…,10.若j A i ∈ ,k A i ∈,k j ≠,则称i 为一个重复数对.于是由数i 导致的重复数对有2i x C 个.由S 中的10个元素所导致的重复数对的总数为2221021x x x C C C +++ ,k x x x 51021=+++ . 另一方面,每两个子集间至多有两个重复数对,所以k 个子集之间至多有22k C 个得复数对.因而有222221021k x x x C C C C ≤+++ ①由柯西不等式有2221021x x x C C C +++ ()()(){}1112110102211-++-+-=x x x x x x ()()102121022212121x x x x x x +++-+++= ()k x x x 25212102212-++= ()()2452552012-=-≥k k k k ②由①和②得到()1245-≤-k k ③由③解得6≤k .这表明至多有6个子集.例4:设3221,,,+n P P P 为平面上的32+n 个点,其中任何3点都不共线,任何4点都不共圆.过其中3点作圆,使其余n 2个点在圆内和圆外各有n 个点,这种圆的个数词类K ,求证2321+>n C K π.证明:首先证明对任意两点i P ,j P ,一定存在第3点k P ,使得过i P ,j P ,k P 3点的圆满足题中的要求.为此,不妨设直线i P j P 的上方的点数1+≥n m .因为任何3点不共线,任何4点不共圆,故可将直线上方的m 点按对线段i P j P 的张角从小到大排列为1k P ,2k P ,…m k P ,即有︒<∠<<∠<∠<︒180021j k i j k i j k i P P P P P P P P P m由此可知,过i P ,j P ,k P 3点的圆内的点数不多于n .若两圆中有一圆内恰有n 个点,则它就满足要求.否则,前者内部点数大于n ,后者内部点数小于n .而当顺次考察过i P ,j P ,k P (h=1,2,…,m )3点的圆时,圆内给定点的个数每次恰减少1个.故知其中必有1个圆满足题中要求.这样一来,对于{}3221,,,+n P P P 中的任意两点都可以作出1个圆满足题中要求.于是共可得到232+n C 个圆.但在这个计数过程中,每个圆可被计数3次,故得232232131++>≥n n C C K π. 例5:10人到书店去买书,已知(1)每人都买了3种书;(2)任何两人所买的书中,都至少有一种相同.问购买人数最多的一种书最少有几个人购买?说明理由.解:右图中,由正五边形的中心和两个相领顶点构成的三角形共有5个,由正五边形的3个不全相连的顶点构成的三角形也共有5个.不难看出,这10个三角形中的任何两个都至少有一个公共顶点.将这些三角形的顶点号码组写出来并让10人所买的书号依次为这10个三角形的顶点号码组:(123),(134),(145),(156),(162),(245),(356),(426),(523),(634). 显然,每种书都有人购买.故知所求的最小值示超过5.设所求的最小值为4,10人共买了n 种书且第i 种书有i m 人购买,于是4≤i m 且3021=+++n m m m .当两人买同一种书时,称之为一个“书对”.由已知,每两人之间至少有1个书对,于是至少共有45210=C 个书对.另一方面,由第i 种书形成的书对有2i m C 个,共有22221nmm m C C C +++ 个书对.从而有 4522221≥+++nm m m C C C ①因为624=C ,323=C ,122=C ,故又有437222422221=+≤+++C C C C C nm m m ②由于①与②矛盾,故知所求的最小值为5.例6:在1980×1981的方格表的每个方格中都写有+1,-1和0之一,且表中所有数之和等于0.试证存在两行和两列,使得位于它们交点处的4个数之和为0.证明:若不然,则任何一个边在网格线上的矩形的4个角格中的4数之和均不为零. (1)考察数表中0的个数.设表中1981列中0的个数依次为198121,,,k k k .因为不能有两行两列之交的4个方格中同时为0,故有197999019811219802⨯=≤∑=i ki C C.①因为990245=C ,946244=C ,故表中0的个数不超过1980×45个.1980×1936,故-1的个数与+1的个数都不少于1980×968.若有某行中有1015个-1,则因有+1最多的一行至少有968个+1,故必有两个-1与两个+1同列,此与反证假设矛盾,故知每行中-1的个数和+1的个数均不超过1014.设第i 行有ni 个-1,mi 个+1,1980,,2,1 =i .因为不能有两行两列之我的4格中的数之和为0,故必有∑=⨯=≤19801219819901981i Cnimi ,②其中∑=⨯≥198019681980i ni ,∑=⨯≥198019681980i mi ,ni ,1014≤mi ,1980,,2,1 =i .由排序不等式知在②式中可设{}ni 递增而{}mi 递减且在容许条件下前面的mi 尽可能大,前面的ni 尽可能地小.从而有∑=⨯≥19801210141800i nimi ③③与②矛盾,这就完成了反证的证明.例7:在某项竞赛中,共有a 名参赛选手与b 位裁判员,其中3≥b 为奇数,每位裁判对每名选手的评分都只有“合格”与“不合格”两种,设N k ∈,任何两位裁判至多可对k 名选手有完全相同的评分,求证bb a k 21-≥. 证明:当两位裁判对一名选手的评分相同时,称之为一个“相同评分对”下面对相同评分对的个数进行换序求和.一方面,每名运动员都获得b 位裁判的各一个评分.设第i 名选手获得xi 个合格与xi b -个不合格,于是由第i 名选手产生的相同评分对的个数为22i ix b x C C -+,a i ,,2,1 =.从而所有相同评分对的个数为()()221122m m ai x b x C C a C Ci i +≥++=-∑()()()2112am m m m m a=-++=, 其中12+=m b ,N m ∈. 另一方面,任何两位裁判所产生的相同评分对至多k 对,故所有相同评分对的个数不超过2b kC . 结合起来,得到()21222am C C kC ai x b x bii ≥+≥∑=-, ()2121am b b k ≥-⋅, 21-⋅=≥b a am kb , bb a k 21-≥. 例8:n 个平面最多可以将空间分成多少个部分区域?解:为求这个最大值,我们先证如下的引理,平面上的n 条直线,最多可以把平面分成121++n C 个部分.显然,当这n 条直线两两相交且任何三条都不共点时,把平面分成的部分最多.设平面被k 条直线分成的部分数的最大值为k m ,然后加入第1+k 条直线,它与前k 条直线中的每一条都相交,共得到k 个交点,这k 个点将第1+k 条直线分成1+k 段,其中每一段都把它所穿过的区域一分为二.故知由于第1+k 条直线的加入而新增加的小区域数与第1+k .这样,我们得到递推公式11++=+k m m k k由此递推即得211--+-+=+=n n n m n n n m m1112121111+=++++-+=+++-+=+n C n n m n n这就完成了引理的证明,下面利用引理来解原题.设空间中的k 个平面最多能把空间分成k υ个区域,然后考察当第1+k 个平面加入时,新增加的小区域的个数.这时,第1+k 个平面与前k 个平面中的每个平面都交于1条直线,在第1+k 号平面上共得到k 条直线.由引理知,这k 条直线最多能把平面分成121++k C 个部分,其中每部分都把它所穿过的区域一分为二,故得递推关系式mk k k +=+υυ1由此递推即得1121υυ++++=--m m m n n n()2122212+-++++=-n C C C n n 131++=+n C n ,即空间中的n 个平面最多可以把空间分成131+++n C n 个部分,这个最大值当任何3个平面都共点,任何四个平面都不共点时取得.例9:设{}n S ,4,3,2,1=项的数列n a a a ,,,21 具有下列性质:对于S 的任何一个非空子集B (集B 的元数记为B ),在该数列中都有相邻的B 项恰好组成集合B .求项数n 的最小值.解:对于每个S i ∈,它都可以与S 中的另外3个元素各组成一个二元子集,即共有3个含i 的二元子集,若i 在数列中仅出现1次,则含i 的相邻两项组至多两个,所认i 在数列中至少出现两次,由于1,2,3,4都至少出现两次,故数列至少有8项,即8≥n .另一方面,容易验证,8项数列3,1,2,3,4,1,2,4满足题中条件. 综上可知,数列项数n 的最小值为8.例10:给定平面的n 的相异点,证明其中距离为单位长的点对少于32n 对. 证:对于平面上的点集{}n P P ,,1 .令i e 表示与i P 相距为单位长的点j P 的个数,不妨设1≥i e ,则相距为单位长的点对的对数是221ne e e E +++=设i C 是以点i P 为圆心,以1为半径的圆.因为每对圆至多有2个交点,故所有的i C 至多有()122-=n n C n 个交点.点i P 作为j C 的交点出现2j e C 次,因此()∑=≥-nj e j C n n 121()()∑∑==-≥-=n j j nj j j e e e 12112121 ①由柯西不等式及①式得()()∑∑==-⋅≤⎥⎦⎤⎢⎣⎡-n j j n j j e n e 122111()3212n n n n <-⋅≤于是有()∑=⋅<-nj jn e132121∑==nj jeE 33222n n n <+<.于是问题得证.例11:设A 是一个n 元集合,A 的m 个子集m A A A ,,,21 两两互不包含,试证(1)∑=≤mi in A C 111;(2)∑=≥mi i nm A C12,其中i A 表示i A 所含元素的个数 证:按定义有()!!!1n A n A A C i i i n -=, 由此可见,为证(1),只须证明等价不等式()∑=≤-mi iin A n A 1!!!.①对于每个i A ,利用i A 构造集A 中的n 个元素的排列如下:前i A 个位置是i A 中的所有元素的一个排列,后()i A n -个位置是i A 的补集ci A 中的所有元素的一个排列,这样的排列称之为从属于iA的排列,按乘法定理知,这样的排列数是()!!i i A n A -.当i j ≠时,不妨设i j A A ≥,如果有一个A 的元素的排列既从属于i A ,又从属于j A ,则其中的前i A 个元素都属于i A ,前j A 个元素都属于i A ,从而有j i A A ⊂,此与已知矛盾,这表明从属于不同子集的任何两个排列互不相同,因为A 中n 个元素的所有排列总数为!n ,故得不等式①.对于任何m 个正数m a a a ,21,,由柯西不等式有⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⋅=∑∑∑===m i i m i i m i i i a a a a m 1121211. ②在②中令iA ni C a =,m i ,,2,1 =,由已证的不等式(1)即得∑∑∑===≤⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛≤m i An mi A n m i An i i iC C C m 11121 例12:已知一个由0和1组成的数列n x x x ,,,21 ,A 为等于(0,1,0)或(1,0,1)的三元数组()k j i x x x ,,的个数,其中i j x x k j i ≠≤<<≤1的j 的个数.(1)求证:222321nd d d n C C C C A ----= ; 给定奇数n ,求A 的最大值.解:对于n i ,,2,1 =,令{}n j i x x i j x x x D i j i j j i ≤<≠<≤==,;1,,于是有i i d D =,在i D 中任取二元与i x 共3项,按下标从小到大的顺序排成三元数组,所有这样数组的集合记为i S ,显示然,2i d i C S =,将所有不满足题中要求的三元数组的集合记为T ,则T S i ⊂,n i ,,2,1 =且诸i S 两两不交,实际上,若()i k j i S x x x ∈,,,则k j i x x x =≠;若()j k j i S x x x ∈,,,则k j i x x x ≠=;若()k k j i S x x x ∈,,,则k j i x x x ==,由此可知诸i S 两两不交.另一方面,对于T 中任一个三元数组()k j i x x x ,,,必为下列6种情形之一:(0,0,1),(0,1,0),(0,1,1),(1,0,0),(0,0,0),(1,1,1),按定义,前两种情形属于j S ,中间两种情形属于i S ,后两种情形属于k S ,故有 ni iST 1=⊂,从而得到ni i S T 1==⊂由此即得2223321nd d d n n C C C C T C A ----=-= 再解(2)按i D 和i d 的定义,对任一个二元数组()j i x x ,,n j i ≤<≤1,若j i x x =,则j i D x ∈并在j d 中计数一次;若j i x x ≠,则j x 恰在i d 中计数一次,由此可见,所有i d 之和恰为所有二元数组的个数,即有∑==ni n iC d12.为求A 的最大值,只须求∑=ni d jC12的最小值,这时,由柯西不等式有∑∑==≤⎪⎭⎫⎝⎛ni i n i i d n d 1221①所以有()∑∑∑∑====⎪⎭⎫ ⎝⎛-=-=ni ni n i n i i i i i d d d d d C i11112221121 ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛≥∑∑==n i i n i i d d n 121121 ⎪⎭⎫ ⎝⎛-=∑∑==112111n i i n i i d n d ()()3181--=n n n ②因为12+=k n ,所以k n 21=-,223-=-k n ,()181-n n()()21213k nC k nk n =-=-,代入②式即得212k ni d nC C i ≥∑= ③由①知,③式中等号成立当且仅当()12121-====n d d d n ,容易验证,当数列中奇数项均为0而偶数项均为1时,所有i d 都相等,这表明③式右端所表示的最小值是可以取得的,从而知A 的最大值为()()()()()1241318121612230-=-----=-=n n n n n n n n nC C A k n . 例13:圆周上有800个点,依顺时针表为800,,3,2,1 。
数学竞赛专题讲座组合数学
几何图形的构造
通过组合数学的方法,可以构造一些特殊的几何图形 ,如正多边形和欧拉路径,解决一些几何问题。
组合优化问题
最优化问题
组合优化问题涉及到在一组有限的对象中寻找最优解, 如旅行商问题、背包问题和图着色问题等,这些都可以 通过组合数学的方法得到解决。
排列与组合
利用组合数学中的排列组合知识,可以解决一些组合优 化问题,如排列的生成和组合的计数等。
排列与组合的关系
P(n,m)=n!/(n-m)!,C(n,m)=n!/[(n-m)!m!]。
鸽巢原理
鸽巢原理的基本思想是
如果k个鸽子要飞进n个鸽巢,且第 k+1个鸽子没有鸽巢可飞,那么至少 有一个鸽巢中要飞进多于一个的鸽子 。
应用举例
有10个鸽巢,分别飞进10只、12只、 13只、14只、15只、16只、17只、 18只、19只、20只鸽子,至少有一个 鸽巢中要飞进多于一个的鸽子。
亚洲太平洋数学奥林匹克(APMO)组合数学题目解析
总结词
亚洲太平洋数学奥林匹克(APMO)是亚太 地区最高水平的数学竞赛之一,其组合数学 题目具有较高的难度和挑战性。
详细描述
APMO的组合数学题目涉及的知识点与 IMO类似,包括图论、组合计数、排列组合 、组合恒等式等。这些题目要求选手具备较 为扎实的数学基础和较强的思维灵活性,能 够灵活运用所学知识解决实际问题。在解题 过程中,选手需要注重问题的转化和策略的 选择,善于发现问题的本质和关键点。
中国全国数学竞赛(CMO)组合数学题目解析
ห้องสมุดไป่ตู้总结词
中国全国数学竞赛(CMO)是中国最高水平的数学竞 赛之一,其组合数学题目具有一定的难度和挑战性。
详细描述
CMO的组合数学题目涉及的知识点与IMO和APMO 类似,包括图论、组合计数、排列组合、组合恒等式 等。这些题目要求选手具备较为全面的数学知识,并 能够灵活运用所学知识解决实际问题。在解题过程中 ,选手需要注重问题的转化和策略的选择,善于发现 问题的本质和关键点。此外,由于CMO是国内竞赛, 选手还需要注意对国内数学竞赛题目的解题技巧和经 验的积累和应用。
全国数学联赛金牌教练高中中奥数辅导:集合概念及集合上的运算
全国高中数学联赛金牌教练员讲座兰州一中数学组第一讲 会合观点及会合上的运算知识、方法、技术高中一年级数学(上) (试验本)课本中给出了会合的观点;一般地,切合某种条件(或 拥有某种性质)的对象集中在一同就成为一个会合.在此基础上,介绍了会合的元素确实定性、互异性、无序性.深入地逐渐给出了有限集、无穷集,会合的列举法、描绘法和子集、真子集、空集、非空会合、全集、补集、并集等十余个新名词或观点以及二十几个新符号.由此形成了在会合上的运算问题,形成了以会合为背景的题目和用会合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描绘 摆列组合,用会合的性质进行组共计数等综合型题目.赛题精讲Ⅰ.会合中待定元素确实定充足利用会合中元素的性质和会合之间的基本关系,常常能解决某些以会合为背景的高中数学比赛题 .请看下述几例 .例 1:求点集31 3 1 ) lglg } 中元素的个数 .yxy{( x, y) | lg( x39【思路剖析】应第一去对数将之化为代数方程来解之. 【略解】由所设知x 0, y 0, 及x 3 1 y 3 1xy,3 9由均匀值不等式,有x 31 y 31 33 ( x 3 ) ( 1y 3) ( 1) xy,393 9 当且仅当 x 31 y3131 , y31 (虚根舍去)时,等号建立 .3,即 x939故所给点集仅有一个元素.【评论】本题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之 .例 2:已知 A{ y | yx 2 4x 3, x R }, B { y | yx 2 2x 2, x R }.求 A B.【略解】 y (x2) 21 1, 又 y(x 1) 23 3.∴ A= { y | y1}, B { y | y 3}, 故AB { y | 1 y 3}.【评论】本题应防止以下错误会法: 联立方程组y x 2 4x 3, 消去 y,2x 2 2x1 0. 因方程无实根,故 AB .y x 2 2x 2.这里的错因是将 A 、B 的元素误会为平面上的点了.这两条抛物线没有交点是实数 .但这不是抛物线的值域 .例 3:已知会合 A {( x, y) || x | | y | a, a 0}, B {( x, y) || xy | 1 | x | | y |}.若 AB 是平面上正八边形的极点所组成的会合,则a 的值为.【思路剖析】可作图,以数形联合法来解之.【略解】 点集 A 是极点为 ( a ,0),( 0,a ),(- a ,0),( 0,-a )的正方形的四条边组成 (如图Ⅰ- 1- 1- 1) .将 | xy |1 | x | | y |,变形为 (| x | 1)(| y | 1)0,因此,会合 B 是由四条直线 x 1, y1组成 .欲使 AB 为正八边形的极点所组成,只有a 2或1 a 2 这两种状况 .( 1)当 a2 时,因为正八形的边长只好为2,明显有 2a2 22,故 a22 .(2)当 1a 2 时,设正八形边长为 l ,则l cos452 2 l,l22 2,这时, a 1l2.2综上所述, a 的值为 2 2或 2,如图Ⅰ- 1- 1- 1 中 A( 2,0), B( 22,0).图Ⅰ- 1- 1- 1【评论】上述两题均为 1987 年全国高中联赛试题,题目其实不难,读者应从解题过程中领会此类题目的解法 . Ⅱ.会合之间的基本关系充足应用会合之间的基本关系(即子、交、并、补) ,常常能形成一些颇具技巧的会合综合例4:设会合 A{ n| n Z}, B { n | n Z}, C { n 1 | n Z}, D {n 1| n Z}, 则22 3 6在以下关系中,建立的是()A .ABCDB .A B ,C DC . AB C,C DD . AB B, CD【思路剖析】应注意数的特点,即n1 2n 1, n 1 2n1, n Z.2 23 66【解法 1】∵ A{ n| n Z}, B{ n | n Z}, C { n1| n Z}, D{n 1| n Z },223 6∴ A B C,C D .故应选 C.【解法 2】假如把 A 、 B 、C 、 D 与角的会合相对应,令A{n| n Z}, B { n | nZ}, C { n| n Z}, D {n6 | n Z}. 223结论仍旧不变,明显 A ′为终边在座标轴上的角的会合, B ′为终边在 x 轴上的角的集合, C ′为终边在 y 轴上的角的会合,D ′为终边在 y 轴上及在直线 y3x 上的角的集3合,故应选( C ) .【评论】解法 1 是直接法,解法 2 运用转变思想把已知的四个会合的元素转变为我们熟习的 的角的会合,研究角的终边,思路清楚易懂,实属巧思妙解 .例 5:设有会合 A{ x | x 2 [ x] 2} 和 B{ x || x | 2}, 求A B 和 A B (此中 [x]表示不超出实数 x 之值的最大整数) .【思路剖析】应第一确立会合 A 与B.进而 1 x 2.明显 ,2 A. ∴ A B { x | 2 x2}.若 xAB,则 x 2[ x] 2,[ x] {1,0, 1, 2},进而得出 x 3([ x] 1)或 x 1([ x]1). 于是 A B { 1, 3}【评论】本题中会合 B 中元素 x 知足“ |x|<3”时,会出现什么样的结果,读者试解之. 例 6:设 f ( x)x 2bx c(b,c R),且A{ x | x f ( x), x R}, B{ x | xf [ f ( x)], x R} ,假如 A 为只含一个元素的会合,则A=B.【思路剖析】应从 A 为只含一个元素的会合下手,即从方程f ( x) x 0 有重根来解之 .【略解】设 A { |R}, 则方程 f ( x) x 0 有重根 ,于是 f (x) x (x ) 2 ,f ( x) (x) 2 x..进而 x f [ f ( x)], 即 x [( x) 2 ( x )] 2 (x ) 2 x,整理得 ( x)2 [( x1)2 1] 0,因 x, 均为实数( x1) 2 1 0,故 x. 即 B{ }A.【评论】此类函数方程问题,应注意将之转变为一般方程来解之 .例 7:已知 M{( x, y) | yx 2}, N {( x, y) | x 2 ( y a) 2 1}. 求 MN N 建即刻, a需知足的充要条件 .【思路剖析】由 MNN,可知N M.【略解】 M N NN M .由x 2( y a ) 2 1 2y y 2(2a 1) y (1 a 2 ). 于是,得 x若 y 2(2a 1) y (1 a 2 ) 0①必有 yx 2即 4(1 a 2,即 N4(1 a 2 )(2a 1) 2 M . 而①建立的条件是y max40,) (2a 1) 20, 解得 a 1 1.4【评论】此类求参数范围的问题,应注意利用会合的关系,将问题转变为不等式问题来求解 .例 8:设 A 、 B 是坐标平面上的两个点集, C r {( x, y) | x 2 y 2 r 2 }.若对任何 r0 都有 C rA C rB ,则必有 A B .此命题能否正确?【思路剖析】要想说明一个命题不正确,只要举出一个反例即可 .【略解】不正确 .反例:取A {( , ) | x 2 y 21}, B 为 A 去掉( 0, 0)后的会合 .x y简单看出 C rAC r B,但 A 不包括在 B 中.【评论】本题这种举反例判断命题的正确与否的方法十分重要,应注意掌握之 . Ⅲ.有限会合中元素的个数有限会合元素的个数在课本P 23 介绍了以下性质:一般地,对随意两个有限会合A 、B ,有card ( A B) card ( A) card ( B) card ( A B).我们还可将之推行为:一般地,对随意n 个有限会合A1, A2, , A n,有card ( A1 A2 A3 A n 1 A n )[card (A1 ) card ( A2 ) card ( A3 ) card ( A n )] [card ( A1 A2 ) card ( A1 A3 )] card (A1 A n ) card ( A n 1 A n )] [card ( A1 A2 A3 )] card ( A n 2 A n 1 A n )]( 1)n 1 card ( A1 A3 A n ).应用上述结论,可解决一类求有限会合元素个数问题.【例 9】某班期末对数学、物理、化学三科总评成绩有21 个优异,物理总评19 人优异,化学总评有 20 人优异,数学和物理都优异的有9 人,物理和化学都优异的有7 人,化学和数学都优异的有8 人,试确立全班人数以及仅数字、仅物理、仅化学单科优异的人数范围(该班有 5 名学生没有任一科是优异) .【思路剖析】应第一确立会合,以便进行计算.【详解】设 A={ 数学总评优异的学生} ,B={ 物理总评优异的学生 } ,C={ 化学总评优异的学生 }. 则 card ( A) 21,card (B) 19,card (C ) 20, card ( A B ) 9,card (B C ) 7, card (C A) 8. ∵ card ( A B C) card ( A) card (B) card (C) card ( A B) card ( B C ) card (C A)card ( A B C ), ∴ card ( A B C) card ( A B C) 21 19 20 9 8 36. 这里, card ( A B C ) 是数、理、化中起码一门是优异的人数,card ( A B C) 是这三科全优的人数 .可见,预计card ( A B C ) 的范围的问题与预计card ( A B C) 的范围相关 .注意到 card ( A B C ) min{ card ( A B), card ( B C ), card (C A)} 7 ,可知0 card ( A B C ) 7 . 因此可得 36 card ( A B C ) 43.又∵ card ( A B C ) card ( A B C ) card (U ), 此中 card ( A B C ) 5.∴ 41 card (U ) 48. 这表示全班人数在41~48 人之间 .仅数学优异的人数是card ( A B C ).∴ card ( A B C ) card ( A B C ) card ( B C ) card ( A B C ) card (B)card (C ) card ( B C ) card ( A B C ) 32.可见 4 card ( A B C ) 11,同理可知 3 card ( B A C ) 10,5 card (C B A) 12.故仅数学单科优异的学生在4~11 之间,仅物理单科优异的学生数在3~10 之间,仅化学单科优异的学生在5~12 人之间 .【评论】依据题意,设计这些拥有单调性质的会合,列出已知数据,并把问题用会合中元素数量的符号正确地提出来,在此基础上引用相关运算公式计算,这是解本题这种计数问题的一般过程 .针对性练习题1.设 S={1 , 2,, n} ,A 为起码含有两项的、公差为正的等差数列,其项都在S 中,且添加 S 的其余元素于 A 后均不可以组成与A 有同样公差的等差数列.求这种 A 的个数,(这里只有两项的数列也看做等差数列).2.设会合 S ={1 ,2,, n} ,若 X 是 S 的子集,把 X 中的全部数的和为 X 的“容量” .(规n n定空集的容量为0),若 X 的容量为奇(偶)数,则称X 为 S n的奇(偶)子集 .( 1)求证: S n的奇子集与偶子集个数相等 .( 2)求证:当n 3 时, S n的全部奇子集的容量之和与全部偶子集的容量之和相等.( 3)当n 3 时,求S n的全部奇子集的容量之和.3.设 M={1 , 2, 3,, 1995} , A 是 M 的子集且知足条件:当x A时,15x A,则A 中元素的个数最多是多少个 .4.会合{ x | 1 log 1 10 1, x N*} 的真子集的个数是多少个?2x5.关于会合M { x | x 3n, n 1,2,3,4}, N { x | x 3k ,k 1,2,3}. 如有会合S知足M N S M N ,则这样的S有多少个?6.求会合方程有序解的个数X Y {1,2, , n}.7.设 E={1 , 2, 3,, 200} ,G { a1 ,a2 ,a3 , ,a100 } E ,且G拥有以下两条性质:(Ⅰ)对任何 1 i j 100 ,恒有a i a j 201;10010080 .(Ⅱ)a ii 1试证: G 中的奇数的个数是 4 的倍数,且 G 中全部数字的平方和为一个定数.。
高中数学竞赛讲义(十八)组合
高中数学竞赛讲义(十八)──组合一、方法与例题1.抽屉原理。
例1 设整数n≥4,a1,a2,…,an是区间(0,2n)内n个不同的整数,证明:存在集合{a1,a2,…,an}的一个子集,它的所有元素之和能被2n整除。
[证明] (1)若n{a1,a2,…,an},则n个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数ai ,aj(i≠j)属于同一集合,从而ai +aj=2n被2n整除;(2)若n∈{a1,a2,…,an},不妨设a n=n,从a1,a2,…,a n-1(n-1≥3)中任意取3个数a i, a j, a k(a i,<a j< a k),则a j-a i与a k-a i中至少有一个不被n整除,否则a k-a i=(a k-a j)+(a j-a i)≥2n,这与a k∈(0,2n)矛盾,故a1,a2,…,a n-1中必有两个数之差不被n整除;不妨设a1与a2之差(a2-a1>0)不被n整除,考虑n个数a 1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+an-1。
ⅰ)若这n个数中有一个被n整除,设此数等于kn,若k为偶数,则结论成立;若k为奇数,则加上an=n知结论成立。
ⅱ)若这n个数中没有一个被n整除,则它们除以n的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而a2-a1不被n整除,故这个差必为a i, a j, a k-1中若干个数之和,同ⅰ)可知结论成立。
2.极端原理。
例2 在n×n的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n。
证明:表中所有数之和不小于。
[证明] 计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n-k个0,这n-k个0所在的各列的和都不小于n-k,从而这n-k列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,从而表中所有数的总和不小于(n-k)2+k2≥3.不变量原理。
2019-2020年高考数学竞赛组合教案讲义(18)
2019-2020年高考数学竞赛组合教案讲义(18)一、方法与例题1.抽屉原理。
例1 设整数n≥4,a1,a2,…,a n是区间(0,2n)内n个不同的整数,证明:存在集合{a1,a2,…,a n}的一个子集,它的所有元素之和能被2n整除。
[证明] (1)若n{a1,a2,…,a n},则n个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数a i,a j(i≠j)属于同一集合,从而a i+a j=2n被2n整除;(2)若n∈{a1,a2,…,a n},不妨设a n=n,从a1,a2,…,a n-1(n-1≥3)中任意取3个数a i, a j, a k(a i,<a j< a k),则a j-a i与a k-a i中至少有一个不被n整除,否则a k-a i=(a k-a j)+(a j-a i)≥2n,这与a k∈(0,2n)矛盾,故a1,a2,…,a n-1中必有两个数之差不被n整除;不妨设a1与a2之差(a2-a1>0)不被n整除,考虑n个数a1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+a n-1。
ⅰ)若这n个数中有一个被n整除,设此数等于k n,若k为偶数,则结论成立;若k为奇数,则加上a n=n知结论成立。
ⅱ)若这n个数中没有一个被n整除,则它们除以n的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而a2-a1不被n整除,故这个差必为a i, a j, a k-1中若干个数之和,同ⅰ)可知结论成立。
2 极端原理。
例2 在n×n的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n。
证明:表中所有数之和不小于。
[证明] 计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n-k个0,这n-k个0所在的各列的和都不小于n-k,从而这n-k 列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,从而表中所有数的总和不小于(n-k)2+k2≥3.不变量原理。
高中数学竞赛讲义(一)──集合与简易逻辑
高中数学竞赛讲义(一)──集合与简易逻辑-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中数学竞赛讲义(一)──集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。
1高中数学新课标奥林匹克竞赛辅导讲义(集合部分)解析
第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.第一节 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10 【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22yx y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n 2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间.即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++≥∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 MN ≠∅, 则 a 的取值范围是. 【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅. ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅. ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤,即[13a ∈ 时, M N ≠∅.故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍)此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1;{1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ=,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立. 【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1± 3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是 A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S , S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈- (1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合?(2)当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个.【参考答案】A 组1.解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得.为此,只要考虑在第一象限的面积就可以了.由题意可得,N M 的图形在第一象限的面积为A =613121=-.因此N M 的图形面积为32. 所以选B.2.解:由M=P,从而1,0==a a b ,即0,1==b a ,故.1=+b a 从而选C. 3. 解:M N ≠∅相当于点(0,b )在椭圆2223x y +=上或它的内部221,322b b ∴≤∴-≤≤.故选A. 4.解: 用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得 32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M ' 中的最大数为107]2400[]6666[=.在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396.而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C. 5.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.从而选A.6.解:被7除余2的数可写为7k +2. 由100≤7k +2≤600.知14≤k ≤85.又若某个k 使7k +2能被57整除,则可设7k +2=57n . 即57256227778n n n nk n -+--===+. 即n -2应为7的倍数. 设n =7m +2代入,得k =57m +16. ∴14≤57m +16≤85. ∴m =0,1.于是所求的个数为85-(14-1)-2=70. 7.解:依题意可得{13}A x x =<<,设1()2x f x a -=+,2()2(7)5g x x a x =-++ 要使A B ⊆,只需()f x ,()g x 在(1,3)上的图象均在x 轴的下方,则(1)0f ≤,(3)0f ≤, (1)0g ≤,(3)0g ≤,由此可解得结果.8.解:由于1995=15⨯133,所以,只要n >133,就有15n >1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15⨯9=135, … 15⨯133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870.另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870.9.解:考虑M 的n +2元子集P={n -l ,n ,n +1,…,2n }.P 中任何4个不同元素之和不小于(n -1)+n +( n +1)+( n +2)=4 n +2,所以k ≥n +3.将M 的元配为n 对,B i =(i ,2 n +1-i ),1≤i ≤n . 对M 的任一n +3元子集A ,必有三对123,,i i i B B B 同属于A(i 1、I 2、I 3两两不同).又将M 的元配为n -1对,C I (i ,2n -i ),1≤i ≤n -1.对M 的任一n +3元子集A ,必有一对4i C 同属于A ,这一对4i C 必与123,,i i i B B B 中至少一个无公共元素,这4个元素互不相同,且和为2 n +1+2 n =4 n +1,最小的正整数k = n +310.10.解: ⑴∵k ,1k -∈Z 且21k -=22(1)k k --,∴21k -∈A ;⑵假设42 ()k A k Z -∈∈,则存在,x y Z ∈,使42k -=22x y -即()()2(21)x y x y k -+=- (*)由于x y -与x y +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立.由此,42()k A k Z -∉∈.11.解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由AB ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅得1a >-; 当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所述,()()1,00,3a ∈-.12.解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈(1)由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N )故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P .(2)2∉P .若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾.于是,由②知P 中必有正奇数.设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2.前后矛盾B 组1.证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立.再由①,若r∈S ,则S r ∈2;若-r ∈S ,则S r r r ∈-⋅-=)()(2.总之,S r ∈2. 取r =1,则1∈S .再由①,2=1+1∈S ,3=1+2∈S ,…,可知全体正整数都属于S .设S q p ∈,,由①S pq ∈,又由前证知S q ∈21,所以21qpq q p ⋅=∈S .因此,S 含有全体正有理数.再由①知,0及全体负有理数不属于S .即S 是由全体正有理数组成的集合.2.证明:(1)若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,,所以每个集合中均有非负元素.当三个集合中的元素都为零时,命题显然成立.否则,设321,,S S S 中的最小正元素为a ,不妨设1S a ∈,设b 为32,S S 中最小的非负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则0≤b -a <b ,与b 的取法矛盾.所以b =0.任取,1S x ∈因0∈2S ,故x -0=x ∈3S .所以⊆1S 3S ,同理3S 1S ⊆.所以1S =3S .(2)可能.例如1S =2S ={奇数},3S ={偶数}显然满足条件,1S 和2S 与3S 都无公共元素.3.解:C B A )(=)()(C B C A .C A 与C B 分别为方程组(Ⅰ)⎩⎨⎧=+=+1122y x y ax (Ⅱ)⎩⎨⎧=+=+1122y x ay x 的解集.由(Ⅰ)解得(y x ,)=(0,1)=(212a a +,2211aa +-);由(Ⅱ)解得 (y x ,)=(1,0),(2211a a +-,212a a +) (1)使C B A )(恰有两个元素的情况只有两种可能: ①⎪⎪⎩⎪⎪⎨⎧=+-=+111012222a a a a ②⎪⎪⎩⎪⎪⎨⎧=+-=+011112222aa a a 由①解得a =0;由②解得a =1.故a =0或1时,C B A )(恰有两个元素.(2)使C B A )(恰有三个元素的情况是:212a a +=2211a a +- 解得21±-=a ,故当21±-=a 时,C B A )(恰有三个元素.4.解: (1)设1212,min P A P B d P P ∈∈=(即集合A 中的点与集合B 中的点的距离的最小值), 则称d 为A 与B 的距离.⑵解法一:∵A 中点的集合为圆22(2)(2)1,x y +++=圆心为(2,2)M --,令(,)P x y 是双曲线上的任一点,则2MP =22(2)(2)x y +++=224()8x y x y ++++=2()24()x y xy x y +-+++8=2()4()28x y x y ++++令t x y =+,则2MP =22428(2)24t t t ++=++当2t =-时,即102xy x y =-⎧⎨+=-⎩有解,∴min MP =∴1d = 解法二:如图,P 是双曲线上的任一点, Q 为圆22(2)(2)1x y +++=上任一点,圆心为M .显然,P M MP +Q Q ≥(当P M 、Q 、三点共线时取等号)∴min 1d MP =-.5.解:记!18=n 时,由于1,2,……18都是n 的约数,故此时.19)(=n f 从而.19M ∈ 若存在P n ∈,使99)(=n f ,则对于小于99的正整数k ,均有n k |,从而n n |11,|9,但是1)11,9(=,由整数理论中的性质9×11=99是n 的一个约数,这是一个矛盾!从而.99M ∉6.证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21 。
高中竞赛集合讲解教案模板
课时:1课时年级:高中教材:《高中数学》教学目标:1. 知识与技能:使学生掌握集合的概念、性质、运算等基本知识,能够熟练运用集合进行解题。
2. 过程与方法:通过讲解、讨论、练习等方式,培养学生分析问题、解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生严谨、求实的科学态度。
教学重点:1. 集合的概念、性质、运算。
2. 集合的表示方法。
教学难点:1. 集合运算的应用。
2. 集合的运算顺序。
教学过程:一、导入1. 回顾初中阶段所学的集合知识,引导学生思考集合在高中数学中的重要性。
2. 介绍高中竞赛中集合的应用。
二、新课讲解1. 集合的概念:集合是由一些确定的、互不相同的对象组成的整体。
例如,自然数集合、有理数集合等。
2. 集合的性质:a. 确定性:集合中的元素是确定的,不能模糊不清。
b. 互异性:集合中的元素是互不相同的。
c. 无序性:集合中的元素没有先后顺序。
3. 集合的表示方法:a. 列举法:将集合中的元素一一列举出来。
b. 描述法:用数学语言描述集合中元素的共同特征。
4. 集合的运算:a. 并集:由属于集合A或集合B的所有元素组成的集合。
b. 交集:由同时属于集合A和集合B的所有元素组成的集合。
c. 差集:由属于集合A但不属于集合B的所有元素组成的集合。
d. 补集:由不属于集合A的所有元素组成的集合。
三、例题讲解1. 列举法表示集合的运算。
2. 描述法表示集合的运算。
3. 集合运算顺序的应用。
四、课堂练习1. 基本概念和性质练习。
2. 集合运算练习。
五、课堂小结1. 总结本节课所学内容。
2. 强调集合在高中数学中的重要性。
六、作业布置1. 完成课后习题。
2. 复习本节课所学内容,为下一节课做好预习。
教学反思:本节课通过讲解、讨论、练习等方式,使学生掌握了集合的概念、性质、运算等基本知识。
在教学过程中,要注意以下几点:1. 注重启发式教学,引导学生主动思考。
2. 加强对集合运算的应用,提高学生的解题能力。
柳铁一中组合高中数学竞赛同步讲义
高中数学竞赛同步讲义——组合数学基础一、基础知识梳理1、集合覆盖、分类、拆分2、分类原理3、容斥原理4、加法原理5、极端原理6、抽屉原理7、平均量重叠原则8、面积的重叠原理一、基础题型例析1、抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:(1)13个人中至少有两个人出生在相同月份;(2)某校400名学生中,一定存在两名学生,他们在同一天过生日;(3)2003个人任意分成200个小组,一定存在一组,其成员数不少于11;(4)把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数. 这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也称“鸽巢原理”(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
例1.(1978年广东省数学竞赛题)已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。
证明:至少有两个点之间的距离不大于1/2.例2 (第14届1M0试题)一个集合含有10个互不相同的两位数,试证明:这两个集合必有两个无公共元素的子集合,此两子集的各元素之和相等.例3.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
例4.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。
例4说明:(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为{26,27,28,29,30,31,32,33,34,35,36,37,38,39};第8个抽屉为:{40,41,42,…,60};第9个抽屉为:{61,62,63,…,90,91};……那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;……(2)从前39个自然数中任取8个自然数;……(3)从前60个自然数中任取9个自然数;……(4)从前91个自然数中任取10个自然数;……上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。
[VIP专享]高中数学竞赛专题讲座---竞赛中的数论问题
解:令()。
若中有一个数被m 整除,则结论成立。
i i a a a b +++= 21m i ,,2,1 =m b b b ,,,21 否则,各均不能被m 整除,此时可设。
这样,m 个余数i b )11(-≤≤+=m r r mq b i i i i 只能从1至m -1这m -1个数中取值,由抽屉原理知,必有,使得m r r r ,,,21 )1(,m j k j k ≤<≤,于是,故取即得到结论。
j k r r =)(k j k j q q m b b -=-)()(|21j k k k j a a a b b m +++=-++ 1+=k s 3. 互素性的条件当(a ,b )=d >1时,我们总是作如下考虑:令,则必有。
这种互素d b b d a a 11,==1),(11=b a 条件的增置往往对解题有很大作用。
例7. (波兰64—65)设整数a ,b 满足,试证及都是完全平方数。
b b a a +=+2232b a -122++b a 解:变形可得:,故只要能证一个,则另一个必是。
我b b a a +=+22322)122)((b b a b a =++-们在排除了字母取零或相等的情况后,可设。
这时令,d b a b a b a =≠≠),(,,0,d b b d a a 11,==,从而方程变为。
显然有。
另一方面又1),(11=b a 21112132db b a da =-+)(|11b a d -212111(223d da db b a -=-=-,有。
注意到,于是有21212121211)(223db b a d da db b +--=-=2111|)(db b a -1),(),(11111==-b a b b a 。
这样就有。
至此已十分容易获得命题的结论了。
这里,由a 1与b 1互素导出d b a |)(11-||11b a d -=a 1—b 1与b 1互素,是证明的关键。
高中奥赛数学竞赛专题讲座-组合数学
举例说明抽屉原理
例2正方体各面上涂上红色或蓝色的油漆 (每面只涂一种色),证明正方体一定有三 个面颜色相同.
证明:把两种颜色当作两个抽屉,把正方体 六个面当作物体,那么6=2×2+2,根据原 则二,至少有三个面涂上相同的颜色.
举例说明抽屉原理
例3 从自然数1,2,3,…99,100这100个数中随意取出51个 数来,求证:其中一定有两个数,,它们中的一个是另一个的倍 数.
组合问题的知识点并不多,主要在于对问题性质的探索与思考。 联赛中组合题以存在性问题和最值问题以及组合数论问题为主,这类 问题的关键常常在于构造例子或反例。因此,只要我们多加练习这两 类问题,在联赛中还是可以拿到满意的分数的。
2016-07-23
二、基础知识
定义4 从n个不同的元素中,允许重复取出m 个元素,按照一定的顺序排成一列,称为n个 相异元素允许重复的m元排列.
相异元素的可重复排列数计算公式为:U n,m nm. 定义5 从n个不同的元素中,允许重复取出m
个元素,不管怎样的顺序并成一组,称为n个 相异元素允许重复的m元组合. 相异元素的可重复组合数计算公式为:
一、概论
(一)主要类型
2、组合设计问题:对集合A,按照某种性质P来作出 安排,包括
①问题类型 主要有:存在性问题,构造性问题,最优化问题. ②解题方法: 主要有:构造法、反证法、抽屉原理、染色方法、
递推方法
一、概论
(二) 发展特点
以组合计数、组合设计为基础,与数论、几何 交叉,形成组合数论、组合几何、集合分拆三大热 点 ,突出而鲜明的体现数学竞赛的“问题解决” 特征.这三方面之所以成为热点,从思维方式、解 题技巧上分析,是因为其更适宜数学尖子的脱颖而 出,且常与现代数学思想相联系;从技术层面上分 析,还由于都能方便提供挑战中学生的新颖题目.
高三数学竞赛讲义教案及练习 §30组合数学选讲
§30组合数学选讲组合数学是中学数学竞赛的“重头戏”,具有形式多样,内容广泛的特点.本讲主要围绕组合计数,组合恒等式及组合最值展开例题讲解1.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?2.集合X 的覆盖是指X 的一族互不相同的非空子集A 1、A 2、…、A k ,它们的并集A 1∪A 2∪…∪A k =X ,现有集合X={1,2,…,n},若不考虑A 1, A 2,…, A k 的顺序,试求X 的覆盖有多少个?3.已知集合X={1,2,…,n},映射f :X →X ,满足对所有的x ∈X ,均有f(f(x))=x ,求这样的映射f 的个数.4.S 为{1,2,…,n}的一些子集族,且S 中任意两个集合互不包含,求证:S 的元素个数的最大值为(Sperner 定理)5.设M={ 1,2,3,…,2m n} (m,n ∈N *)是连续2m n 个正整数组成的集合,求最小的正整数k ,使得Mn n 2⎛⎫ ⎪⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭的任何k 元子集中都存在m+1个数,a 1,a 2,…a m+1,满足a i |a i+1 (i=1,2,…,m).6.计算.7.证明: (范德蒙公式)8.在平面上有n(≥3)个点,设其中任意两点的距离的最大值为d ,我们称距离为d 的两点间的线段为该点集的直径,证明:直径的数目至多有n 条.9.已知:两个非负整数组成的不同集合和.求证:集合与集合相同的充要条件是n 是2的幂次,这里允许集合内,相同的元素重复出现.课后练习n2k 1n k k =⎛⎫⎪⎝⎭∑qk 0n m m n k q k q =+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑},,,{1n a a a a },,,{21n b b b }1{n j i a a j i ≤<≤+}1{n j i b b j i ≤<≤+1. 空间n 条直线,最多能把空间分成多少块空间区域?2. 证明:.3. 证明:.4. 证明:在边长为1的等边三角形内有五个点,则这五个点中一定有距离小于的两点.例题答案:2nk 0n 2n k n =⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑nk k 0n 111(1)1k 2k n=⎛⎫⎛⎫-+++=- ⎪⎪⎝⎭⎝⎭∑121.解:易见,第k 号点能被染红的充要条件是∃j ∈N *⋃{0},使得a 02j ≡k (mod800),1≤k ≤800 ①这里a 0是最初染的点的号码,为求最大值,不妨令a 0=1.即2j ≡k (mod25×52).当j=0,1,2,3,4时,k 分别为1,2,4,8,16,又由于2模25的阶,因此,当j ≥5时 2j+20-2j =2j (220-1)≡0(mod 800),而对∀k<20,k ∈N *,及j ≥5,j ∈N *,由于25+(2k -1),所以2j+k -2j =2j (2k -1)不为800的倍数. 所以,共存在5+20=25个k ,满足①式。
高中数学竞赛专题精讲30组合数学选讲(含答案)
组合数学选讲组合数学是中学数学竞赛的“重头戏”,具有形式多样,内容广泛的特点.本讲主要围绕组合计数,组合恒等式及组合最值展开例题讲解1.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点?2.集合X 的覆盖是指X 的一族互不相同的非空子集A 1、A 2、…、A k ,它们的并集A 1∪A 2∪…∪A k =X ,现有集合X={1,2,…,n},若不考虑A 1, A 2,…, A k 的顺序,试求X 的覆盖有多少个?3.已知集合X={1,2,…,n},映射f :X →X ,满足对所有的x ∈X ,均有f(f(x))=x ,求这样的映射f 的个数.4.S 为{1,2,…,n}的一些子集族,且S 中任意两个集合互不包含,求证:S 的元素个数的最大值为(Sperner 定理)n n 2⎛⎫ ⎪⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭5.设M={ 1,2,3,…,2m n} (m,n ∈N *)是连续2m n 个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在m+1个数,a 1,a 2,…a m+1,满足a i |a i+1 (i=1,2,…,m). 6.计算.7.证明: (范德蒙公式)8.在平面上有n(≥3)个点,设其中任意两点的距离的最大值为d ,我们称距离为d 的两点间的线段为该点集的直径,证明:直径的数目至多有n 条.9.已知:两个非负整数组成的不同集合和.求证:集合与集合相同的充要条件是n 是2的幂次,这里允许集合内,相同的元素重复出现.课后练习n2k 1n k k =⎛⎫ ⎪⎝⎭∑qk 0n m m n k q k q =+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑},,,{1n a a a a },,,{21n b b b }1{n j i a a j i ≤<≤+}1{n j i b b j i ≤<≤+1. 空间n 条直线,最多能把空间分成多少块空间区域?2. 证明:.3. 证明:.4. 证明:在边长为1的等边三角形内有五个点,则这五个点中一定有距离小于的两点.例题答案:2nk 0n 2n k n =⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑nk k 0n 111(1)1k 2k n=⎛⎫⎛⎫-+++=- ⎪⎪⎝⎭⎝⎭∑121.解:易见,第k 号点能被染红的充要条件是∃j ∈N *⋃{0},使得a 02j ≡k (mod800),1≤k ≤800 ①这里a 0是最初染的点的号码,为求最大值,不妨令a 0=1.即2j ≡k (mod25×52). 当j=0,1,2,3,4时,k 分别为1,2,4,8,16,又由于2模25的阶,因此,当j ≥5时2j+20-2j =2j (220-1)≡0(mod 800),而对∀k<20,k ∈N *,及j ≥5,j ∈N *,由于25+(2k -1),所以2j+k -2j =2j (2k -1)不为800的倍数. 所以,共存在5+20=25个k ,满足①式。
林常-数学竞赛组合讲义
组合优化与组合构造讲义林常§1.概述一.组合数学题型1.计数2.存在性3.构造4.最值二.主要方法1.递推与归纳.(1).I型归纳法.定跨度:起点个数等于跨度.不定跨度:起点个数等于1.递推关系的阶数与初始条件.(2).II型归纳法(最小数原理).设P(n)是关于正整数的命题.若由P(n)不成立可推出存在正整数n′<n使得P(n′)不成立.则P(n)对一切正整数成立.(3).倒推归纳法.设A是N*的无穷子集.若P(n)在A上成立,且由P(n)成立及n>1可推出P(n-1)成立.则P(n)对一切正整数成立.(4).乘积归纳法.若P(n)对全体素数成立,且由P(m)及P(n)成立可推出P(mn)成立.则P(n)对一切大于1的正整数成立.若P(n)对全体素数幂成立,且由P(m),P(n)成立及(m,n)=1可推出P(mn)成立.则P(n)对一切大于1的正整数成立.2.调整法(向较优目标逼近).设φ: S→R有最大(小)值(例如,当φ(S)为有限集或φ在紧集S上连续时).若S 的子集A满足:对任一x∈S\A,都有x′∈S使得φ(x′)>(<) φ(x).则φ的最大(小)值点在A中.3.化归(类比,对应)常用的化归模型:赋值(代数化),填表(二元关系),画图(几何,图论),剩余类(整除关系),不定方程解数.棋盘路线.Veen图.数量关系:设φ : A→B, A,B为有限集.则当φ为单射,满射,双射时分别有|A|≤|B|, |A|≥|B|, |A|=|B|.4.算两次(Fubini原理)从不同角度计算(估计)特征量的和数或特征形的个数.累次求和式的换序.由求和区域的边界定上下限.§2.组合优化(最值)一.优化方法(无表达式函数的最值)1.界的估计(对适当的特征量作合理的放缩)与实现(构造),或根据美学观点猜测最优对象再证明相应的不等式.2.调整法.在定义集内(保持约束条件)向较优方向(平均,极端,排序)逼近.离散最值(函数型,排序型)的基本手段.3.递推法二.例题选讲1.设a 1, a 2, ... , a 10是10个两两不同的正整数,它们的和为1995, 试求a 1a 2+a 2a 3+...+a 9a 10+a 10a 1的最小值。
高中数学奥赛辅导 第九讲 组合恒等式、组合不等式
① ⑤②③ ④ ⑥ 数学奥赛辅导 第九讲 组合恒等式、组合不等式知识、方法、技能Ⅰ.组合恒等式竞赛数学中的组合恒等式是以高中排列组合、二项式定理为基础,加以推广、补充而形成的一类组合问题.组合恒等式的证明要借助于高中常见的基础组合等式.例如0)1(2321021011111=-++-+-=++++⋅==+==----+++-n n n n n n n nnn n n n mr mn m n m n r n r n r n r n r nr n rn nr n C C C C C C C C C C C C C C r n C C C C C C组合恒等式的证明方法有: ①恒等变形,变换求和指标; ②建立递推关系; ③数学归纳法; ④考虑组合意义; ⑤母函数. Ⅱ.组合不等式组事不等式以前我们见的不多,在其他一些书籍中组合不等式的著述也很少,但是近年来组合不等式的证明却出现在国内、国际大赛上.例如1993年中国高中数学联赛二试第二大题为:设A 是一个有n 个元素的集合,A 的m 个子集A 1,A 2…,A m 两两互不包含,试证: (1)∑=≤mi A nI C1||;11(2)∑=≥mi A nm CI 12||其中|A i |表示A i 所含元素的个数,||I A n C 表示n 个不同元素取|A i |的组合数. 再如1998年第39届国际数学奥林匹克竞赛中第二大试题为:在某一次竞赛中,共有a 个参赛选手与b 个裁判,其中b ≥3,且为奇数.每个裁判对每个选手的评分中只有“通过”或“不及格”两个等级,设k 是满足条件的整数;任何两个裁判至多可对k 个选手有完全相同的评分. 证明:.21bb a k -≥ 因此我们有必要研究组合不等式的证明方法.组合不等式的证明方法有: 1.在集合间建立单射,利用集合阶的不等关系定理,设X 和Y 都是有限集,f 为从X 到Y 的一个映射, (1)若f 为单射,则|X|≤|Y|; (2)若f 为满射,则|X|≥|Y|. 2.利用容斥原理例如:设元素a 属于集族{A 1,A 2,…,A n }的k 个不同集合k i i i A A A ,,,21 ,则在∑=ni iA1||中a 被计算了k 次,当k ≥2时,集合k i i i A A A ,,,21 两两的交集共有2k C 个.由于||,12)1(12j nj i i k A A a k k k C ∑≤≤≤-≥-=在故中至少少被计算了k -1次,这样我们得到下面的不等式:||||||111j nj i ii ni i ni A AA A ∑∑≤≤≤==-≥组合不等式(*)可由容斥公式:||)1(||||||1)1(111i ni n j nj i ii ni i ni A A AA A =-≤≤≤==-++-=∑∑ 删去右边第三个和式起的所有和式得到.采用这种办法,我们可以从容斥公式得到另外一些组合不等式,只是要注意这些不等式的方向的变化.3.利用抽屉原则由于抽世原则的结论本身就是组合不等式关系,所以我们利用抽屉原则,巧妙构造抽屉的方法证明组合不等式.4.利用组合分析在复杂的组合计数问题、离散极值问题等问题中,会出现一些组合不等式,这时可运用组合分析方法证明之.赛题精讲例1 证明:∑=-⋅+=nk n k n n n n C 0122!!2)!2(2【分析】 把∑∑∑∑+=+===-nn k k nnn k k nnk k nnk k nCC CC21221220202,而对于变形为,变换求和指标.【证明】k n j CCCCCnn k k nnn k k nnnn k k nnk k nnk k n-=-=-=∑∑∑∑∑+=+=+===2,,2212212221220202令对于和式,则.20202212212nn nk k n nj n nj nn j j nnn k k nC C CCCC-=-==∑∑∑∑==-=+= 所以.2202202nn nk k n nnk knC C C+-=∑∑== 即 nn n nk kn C C220222+=∑=,从而有∑=-⋅+=nk n k n n n n C 0122!!2)!2(2.例2 求证:.,)1(111)1(312111210N n C n m C n m C m C m C m nnm nn nnn n ∈++=++-+-+++-++其中 证明 设nnn n n n n C n m C m C m C m a 11)1(312111210++-+-+++-+=,则由基本恒等式r n r nr n r n r n C nr C C C C =+=----1111及得 .1)1()()1()(31)(211111122111112101110------------++-+++-+-+++++-+=n n n n n n n n n n n n n n C n m C C n m C C m C C m C m a.)1(1)1)(2())(1(!,)1)(2(12111,)3())(1(!))(1()1(1.1,1112111nn m n n n n n n n n n n C n m m m n m n m n a m m m m a a m n m n m n a n m n m n n a n m n a a a n m a a n m a a +----++=+++++=++=+-+=++++==+++-=++==+++-=从而有而所以即故 【说明】注意到a n 中各项的系数均与n 无关,且符号正负相同,由此想到a n 与a n -1之间必定存在着某些联系,且是递推关系.例3 求证:∑=+--+=⋅-nk kk n k n kn C 01222.12)1(【分析】考虑到恒等式12212---+-+=k k n k k n k k n C C C ,仿例2解决.【证明】令∑=+--⋅⋅-=nk kk n k n kn C a 01222,2)1(因为,12212---+-+=k k n k k n k k n C C C ,.2)1(2)1(2)1(,1.2)1(2)1()(2)1(22)1(211)1(2102)1(21)1(212)1(21121221212202221212222112222-+---=--+---=--+--=---=-=----=--=+---=--=⋅-=⋅--=⋅-+⋅-=+⋅-+=⋅-+=∑∑∑∑∑∑∑n r r n n r r n r rr n n r r n r k kn nk kn kk k n nk k n k nk kkn kn kk k n nk k k n k n k nnk kk n k n k nn a C C Ck r C C C C C a 则令所以令∑=---+==⋅-nk n n n n kk n k n ka ab b C 01222,2)1(则 ①.42)1(4)1()(2)1(2)1(2)1(21110)1(22)1(211121112222112222---=---------=----=---=⋅--=-++⋅-+=-+⋅-+=∑∑∑n n n j j jn j n j n n k k n n k k k n k n k nn k n k k n k n k nn b a C a C C C b 又于是由①式得1221112112,4,---------=+--=++=n n n n n n n n n n n a a a a a a a a a a b 即从而推知. 这说明{a n }为等差数列,而a 0=1,a 1=2,故公差d=1,且a n =n+1 .【说明】此题运用变换求和指标的方法,找出了a n ,a n -1,a n -2之间的线性关系式,再由 初始条件求得a n .这种利用递推关系求组合数的方法,在解决较复杂的计算或证明组事恒等式时经常用到.例11:设},,,{},,,,{212211n n B B B D A A A D ==是集合M 的两个划分,又对任何两个不变的子集),1(,n j i B A j i ≤≤有,||n B A j i ≥⋃求证:221||n M ≥并说明等号能否成立?【证明】令},1|,||,min{|n j i B A k j i ≤≤=,不妨设,||k A i =因n B B B ,,,21 两两不交,故n B B B ,,,21 中至多有k 个,j B 使=⋂j B A 1 .设≠⋂j B A 1 .,,,2,1,k n m j ≤=由k 的选取知),,2,1(||m j k B j =≥从而.||1mk Bmj j≥=又因 =⋂j B A 1 .,,1,n m i +=故 ,||||||11n B A B A i i ≥⋃=+ 即 .||k n B i -≥ 所以 ))((||||||||111k n m n mk BB B M nm j jmj jnj j --+≥+==+===).2()(k n m k n n ---= 若,2nk <因,k m ≤故.2)2(2)2(2)2()()2()(||222n k n n k n k k n n k n m k n n M ≥-+=---≥---≥若,2n k ≥则),,,2,1(2||n i n A i =≥ 从而 .2||||||211n A A M n i i n i i ≥==∑==下面说明2||2n M =是可以取到的.显然这时n 为偶数,取,4=n 则8||=M ,令},8,7,6,5,4,3,2,1{=M 易验证M 的两个划分.D 1={{1,2}{3,4}{5,6}{7,8}}, D 2={{1,2}{3,5}{4,6}{7,8}}, 满足题目条件.例12:设n 是正整数,我们说集合{1,2,…,2n }的一个排列(n x x x 221,, )具有性质P ,是指在{1,2,…,2n -1}当中至少有一个i ,使得.||1n x x i i =-+求证,对于任何n ,具有性质P 的排列比不具有性质P 的排列的个数多.(1989,第30届IMO 试题6)【证明】设A 为不具有性质P 的排列的集合,B 为具有性质P 的排列的集合,显然)!.2(||||n B A =+为了证明||||B A <,只要得到)!2(21||n B >就够了.使作容斥原理. 设(n x x x 221,,, )中,k 与n k +相邻的排列的集合为.,,2,1,n k A k =则,)!12(2||-=n x A k ,1,)!22(2||2n j k n x A A j k ≤<≤-=⋂由容斥原理得)!22(4)!12(2||||||211-⋅⋅--⋅⋅=⋂-=∑∑≤<≤=n C n n A AA B n nj k j knk k=)!22(2)!22()1(2)!2(-⋅⋅=-⋅--n n n n n n n )!2(21)!22(2122n n n n =-⋅-⋅> 例13:平面上给定n 个点,其中任何三点不共线,任意地用线段连接某些点(这些线段称为边),则确保图形中出现以给定点为顶点的)(n m m <阶完全图的条件是图形中的边的条数.1)1(222--+-≥m n m m n C C C x【证明】构造抽屉:每个抽屉里有m 个相异点,共可得m n C 个抽屉,又由于同一条边会在22--m n C 个抽屉里出现,根据抽屉原则知,当1)1(222+-≥⋅--m m n m n C C C x 时,才能确保有一个抽屉里有2mC 条边,而这2m C 条边恰好与其中不共线的相异m 点构成一个m 阶完全图. 这就是说,确保图形中出现m 阶完全图的条件是其中边的条数.1)1(222--+-≥m n m m n C C C x 【评述】“完全图”,是图论中的基本概念.(此处从略)例14:设n x x x ,,,21 为实数,满足,12232221=++++n x x x x 求证:对于每一整数2≥k ,存在不全为零的整数,,,,21n a a a 使得),,,3,2,1(1||n i k a i =-≤并且(1987年第28届IMO 试题3).1)1(||2211--≤+++nn n k nk x a x a x a 【证】由柯西不等式得).)(111(|)||||(|2232221222221n n x x x x x x x +++++++≤+++即.||||||21n x x x n ≤+++所以,当10-≤≤k a i 时,有.)1(|)||||)(|1(||||||212211n k x x x k x a x a x a n n n -≤+++-≤+++把区间[0,n k )1(-]等分成1-nk 个小区间,每个小区间的长度1)1(2--k nk ,由于每个i a 能取k 个整数,因此||||||2211n n x a x a x a +++共有nk 个正数,由抽屉原则知必有二数会落在同一小区间内,设它们分别是∑='ni ii xa 1||与,||1∑=''ni i i x a 因此有.1)1(||)(21--≤''-'∑=k nk x a a ni i i i ① 很明显,我们有 .,,2,1,1||n i k a a i i =-≤''-' 现在取⎩⎨⎧<'-''≥''-'=.0,,0,i i i i i i x a a x a a a 如果如果这里,,,2,1n i =于是①可表示为.1)1(||1--≤∑=n ni i i k nk x a 这里i a 为整数,适合.,,2,1,1||n i k a i =-≤例15:设A 是一个有n 个元素的集合,A 的m 个子集m A A A ,,,21 两两互不包含,试证:(1);111||≤∑=mi A n i C (2).21||m C m i A n i ≥∑= 其中||i A 表示i A 所含元素的个数,||i A n C 表示n 个不同元素取||i A 个的组合数.(1993年,全国高中数学联赛二试第二大题) 【分析】若(1)式已证,由柯西不等式立即可得(2)式,因此,关键是证(1)式,又据组合公式知,(1)式等价于!.|)!|(|!|1n A n Ai ni i≤-∑= ① 所以我们用组合的方法来证明不等式①.【证明】(1)对于A 的子集},,,,{||21i A i x x x A =我们取补集},,,,{||21i A n i y y y A -= 并取i A 的元素在前,i A 元素在后,作排列||21,,,i A x x x ,||21,,,i A n y y y - . ② 这样的排列共有|)!|(||i i A n A -个.显然,②中每一个排列,也是A 中的一个排列,若i j ≠时,j A 对应的排列与i A 对庆的排列互不相同,则m A A A ,,,21 所对应的排列总数便不会超过A 中排列的总数,!n 现假设j A 中对应的某一排列'''||21,,,j A x x x ,'''-||21,,,j A n y y y . ③与i A (i j ≠)中对应的某一排列②相同(指出现的元素及元素位置都相同),则当||||i j A A ≤时,i j A A ⊆;当||||i j A A >时,i j A A ⊇,这都与m A A A ,,,21 两两互不包含,矛盾.由于m A A A ,,,21 对应的排列对②互不相同,而A 中n 个元素的全排列有n !个,故得!.|)!|(|!|1n A n A i n i i ≤-∑= 即.111||≤∑=ni A ni C (2)由上证及柯西不等式,有.)1()1)((2112||1||1||m C CCmi mi A n mi A nmi A nii i ∑∑∑∑=====≥≥【评述】本题取自著名的Sperner 定理:设Z 为n 元素,m A A A ,,,21 为Z 的子集,互不包含,则m 的最大值为]2[nn C.例16:设S ={0,1,2,…,N 2-1},A 是S 的一个N 元子集.证明存在S 的一个N 元子集B ,使得集合A +B={},|B b A a b a ∈∈+中的元素模N 2的余数的数目不少于S 中元素的一半. (第40届IMO 预选题)【证明】设|X |为子集S X ⊂中元素的个数;又为X S -,是X 的补集;i C 是i a +对k 个参赛选手有相同的判决,证明.21bb a k -≥ (1998年第39届IMO 试题二)【解】设裁判),,2,1(b i B i =对参赛选手),,2,1(b j A j =的判决为ij d ,其中⎩⎨⎧=".",1,"",0不通过若通过若ij d则(a i i i d d d ,,,21 )中i B 对a 个参赛选手判决的记录),,2,1(b i =,它是一个长度为a 的(0—1)序列.我们来考虑这b 个序列中每两个序列的相同的项的总数M . 一方面,由已知条件每两个序列的相同的项不超过k 个,故 .)1(212k b b k C M b -=⋅≤ ①另一方面,设j A 得到0b 个0(通过),1b 个1(不通过),即(a i i i d d d ,,,21 )的第i 个分量中0b 个0,1b 个1,则0b +1b =.b 由这个分量产生的序列的相同的项有)1(21)1(2111002210-+-=+b b b b C C b b ])[(21)]()[(212120102120b b b b b b b -+=+-+= ).2(21)]2)[(2110210210b b b b b b b b b --=--+=但b b b =+10且b 为奇数)3(≥b ,因此).1()1(4110-⋅+≤b b b b 故)]1)(1(21)1([212210-+--≥+b b b b C C b b=.)1(41)1(21)1(212-=-⋅-b b b从而.)1(412-⋅≥b a M ③综合①、②得,)1(21)1(412k b b b a -≤-⋅ 即.21b b a k -≥。
组合数学---数学奥赛教练员培训材料
组合数学---数学奥赛教练员培训材料第一篇:组合数学---数学奥赛教练员培训材料(一)组合数学1.几个常用的排列公式(1)线排列:从n个不同的元素中任取m(m≤mn)个排成一列,其排列数为An.mAn.m(2)圆排列:从n个不同的元素中任取m(m≤n)个排成一圈,其排列数为(3)项链排列:从n粒不同的珍珠中任取m(m≤n)粒用线串成一根项链,得到的不同项链的条数Anm 为.2m(4)可重复排列:从n个不同的元素中任取m(m≤m(可重复取)排成一列,其排列数为n.n)个元素(5)不全相异的元素的全排列:设n个元素可分为k组,每组分别有n1,n2,...,nk个元素,各组内的元素完全相同,不同组的元素互不相同,则这n个元素的全排列数为n!.n1!n2!...nk!2.几个常用的组合公式(1)单组组合:从n个不同的元素中任取m(m≤mn)个并成一组,其组合数为Cn.(2)多组组合:将n个不同的元素分成k组,每组分别有n1,n2,...,nk个元素,则不同的分组方法数为n!.n1!n2!...nk!n-1(3)从n个不同元素中任意取m个元素(可重复取)的组合数为Cn+m-1.3.组合恒等式下面是大家熟知的组合恒等式(1)kkkk-1kn-kCn=Cn-1+Cn-1 , Cn==nk-1Cn-1(n≥k≥1)k (2)Cnnmkkm-k⨯Cm=Cn⨯Cn-k(n≥m≥k).(3)∑Ck=0nkn=2n(n>k≥1)(4)∑(-1)k=0nkkCn=0(n≥1)。
4.二项式定理:设n是正整数,x,y是任意实数,则kkn-k(x+y)=∑Cnxy.k=0n特别有:设n是正整数,x为任意实数,则(1+合恒等式(3),(4))kkx)=∑Cnx.(分别令x=1和x=-1就可得证组nk=0n5.加法原理和乘法原理加法原理:如果完成一件事情的方法可以分成有n个互不相交的类,且第i类中有mi种方法,则完成这件事情一共有m1+m2+Λ+mn 种方法.乘法原理:如果完成一件事情需要分为n个步骤(每个步骤仅完成这件事情的一部分),且第i个步骤有mi种方法,则完成这件事情一共有m1m2⋅Λ⋅mn种方法.6.两个重要定理S的子集,则定理1(容斥原理)设A1,A2,Λ,Am是有限集合|A1Y A2YΛY Am|=∑|Ai|-i=1m1≤i<j≤m∑|Ai I Aj|+1≤i<j<k≤m∑|Ai I Aj I Ak |+Λ+(-1)m-1|A1I A2IΛI Am|.定理2(配对原理)对于两个不具有同类元素的有限集合A与B,如果存在集合A到集合B上的双射(即一一映射)f,则集合A与B的元素个数相等,即|A|=|B|.7.抽屉原则把8件物品任意的放进7个抽屉种,不论怎么放置,则至少有一个抽屉中有两件或两件以上上述物品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的子集 A1, A2,L , Am 组成的集合 叫做的一个子集系.
R A1, A2,L , Am
二、基础知识
定理5 n元集合A中含有 k 0 k n个元素的子集有 Cnk 个;集合A的所有子集共有 2n 个. 定理6 (抽屉原理) (1)把多于n个的物体放到n个抽屉里,则至少有
一个抽屉里的东西不少于两件。 (2)把多于mn+1个的物体放到n个抽屉里,则
相异元素组合数的计算公式为:
Cnm
Anm Amm
nn 1 n mm 1
m 1
3 21
C nm n
n m
C m1 n1
二、基础知识
定理1 (加法原理)
定理2 (乘法原理)
定理3 组合恒等式
(1)
Cnm
Cnm n
0
m
n
(2) Cnm
Cm n1
Cm1 n1
1 m n
(3)
n
Cnk 2n.
二、基础知识
有7个定义、9个定理:
定义1 从n个不同的元素中取出m个,按照一定 的顺序排成一列,叫做从n个不同的元素中取出 m个元素的一个排列.
相异元素排列数的计算公式为:
.
Am n
nn
1
n
m
1
n
n!
m!
m!Cnm
nAm1 n1
二、基础知识
定义2 从n个不同的元素中取出m个,并成一 组,叫做从n个不同的元素中取出m个元素的 一个组合.
是另一个数的倍数.
二、基础知识
定理7 (容斥原理)设集合 A a1,a2,L ,an, A1, A2,L , Am A ,记 Ai 为 Ai 对于全集的补集,则
(1) A1 U A2 UL U Am
m
Ai
Ai U Aj
Ai U Aj U Ak
i 1
1i jm
1i jk n
L 1 m1 A1 U A2 UL U Am .
二、基础知识
定义4 从n个不同的元素中,允许重复取出m 个元素,按照一定的顺序排成一列,称为n个 相异元素允许重复的m元排列.
相异元素的可重复排列数计算公式为:U n,m nm. 定义5 从n个不同的元素中,允许重复取出m
个元素,不管怎样的顺序并成一组,称为n个 相异元素允许重复的m元组合. 相异元素的可重复组合数计算公式为:
组合问题的知识点并不多,主要在于对问题性质的探索与思考。 联赛中组合题以存在性问题和最值问题以及组合数论问题为主,这类 问题的关键常常在于构造例子或反例。因此,只要我们多加练习这两 类问题,在联赛中还是可以拿到满意的分数的。
2016-07-23
一、概论
(一)主要类型
2、组合设计问题:对集合A,按照某种性质P来作出 安排,包括
①问题类型 主要有:存在性问题,构造性问题,最优化问题. ②解题方法: 主要有:构造法、反证法、抽屉原理、染色方法、
递推方法
一、概论
(二) 发展特点
以组合计数、组合设计为基础,与数论、几何 交叉,形成组合数论、组合几何、集合分拆三大热 点 ,突出而鲜明的体现数学竞赛的“问题解决” 特征.这三方面之所以成为热点,从思维方式、解 题技巧上分析,是因为其更适宜数学尖子的脱颖而 出,且常与现代数学思想相联系;从技术层面上分 析,还由于都能方便提供挑战中学生的新颖题目.
解设第一个抽屉里放进数:1,1×2,1×22,1×23,1×24, 1×25,1×26;
第二个抽屉时放进数:3,3×2,3×22,3×23,3×24,3×25; 第三个抽屉里放进数:5,5×2,5×22,5×23,5×24; ……………… 第二十五个抽屉里放进数:49,49×2; 第二十六个抽屉里放进数:51. ……………… 第五十个抽屉里放进数:99. 那么随意取出51个数中,必有两个数同属一个抽屉,其中一个数
f n, m Cnmm1.
二、基础知识
定义6 若n个元素中,有n1个a1, n2个a2...
nm个am,且
n1 n2 L n m n,则这n个元素的
全排列,称为不尽相异元素的全排列.
不尽相异元素的全排列公式为:
V n1, n2 ,L
nm
n1
n! !ห้องสมุดไป่ตู้2 !L
. nm !
定义7 如果A是一个n元有限集合,那么,它
举例说明抽屉原理
例2正方体各面上涂上红色或蓝色的油漆 (每面只涂一种色),证明正方体一定有三 个面颜色相同.
证明:把两种颜色当作两个抽屉,把正方体 六个面当作物体,那么6=2×2+2,根据原 则二,至少有三个面涂上相同的颜色.
举例说明抽屉原理
例3 从自然数1,2,3,…99,100这100个数中随意取出51个 数来,求证:其中一定有两个数,,它们中的一个是另一个的倍 数.
一、概论
(一)主要类型
1、组合计数问题包括: ①问题类型: 主要有:有限集合元素的计算、子集的计算、集合分
拆的计算 ②解题方法: 主要有:代数恒等变形、二项式定理、组合等式、递
推、组合分析、容斥原理、数学归纳法。
一、概论
(一)主要类型
2、组合设计问题 其基本含义是,对有限集合,按照性质来作出
安排,有时,只是证实具有性质的安排是否存在、 或者验证作出的安排是否具有性质(称为存在性问 题,又可分为肯定型、否定型和探究型);有时, 则需把具体安排(或具体性质)找出来(称为构造 型问题);进一步,还要找出较好的安排(称为最 优化问题).
则
A B
(2)若f是满射,则 A B
(3)若f是一一映射(双射),则 A B
二、基础知识
(二)、《高中数学竞赛大纲 》中组合问 题的要求
1、圆排列,有重复元素的排列与组合,组合恒等式.
2、组合计数,组合几何. 3、抽屉原理.
4、容斥原理.
5、极端原理.
6、图论问题.
7、集合的划分.
8、覆盖.
9、平面凸集、凸包及应用*.(加试中暂不考,但在 冬令营中可能考).
数学竞赛中 的组合问题
一、概论
(一)主要类型
1、组合计数问题 包括有限集合元素的计算、相应子集的计算、
集合分拆方法数的计算等,表现为数值计算、组合 恒等式或组合不等式的证明.知识基础是加法原理、 乘法原理和排列组合公式;常用的方法有:代数恒 等变形、二项式定理、数学归纳法、递推、组合分 析、容斥原理等.
三、题型举例
1、计数问题
三、题型举例
1、计数问题
三、题型举例
2、染色问题
三、题型举例
3、存在性问题
三、题型举例
4、组合构造
三、题型举例
5、组合数论
三、题型举例
6、操作性问题
三、题型举例
7、最值性问题
三、题型举例
8、图论 9、组合方法 10、综合问题
(2)
A1 U A2 UL U Am A A1 U A2 UL U Am .
定理8 (自然数的良序性)自然数的任一非空子集中,
必有一个元素是最小的.
二、基础知识
定理9 设A,B是两个有限元集合,A , B 分别是两集合的 元素个数,f是A到B的一个映射.
(1)若f是单射,则 A ;B 特别的,f是单射而非满射,
k 0
(4) n
1k Cnk 0.
k 0
二、基础知识
定理4 (二项式定理) a bn n Cnkankbk .
k 0
定义3 从n个不同的元素中取出m个,按照一 定的顺序排在一个封闭曲线上,叫做环形排列 (或循环排列、圆排列).
相异元素的 圆排列数公式为:
f
n,m
Anm m
m 1!Cnm
至少有一个抽屉里有不少于m+1的物体。 (3)把(mn-1)个物体放入n个抽屉中,其中必 有一个抽屉中至多有(m—1)个物体。
举例说明抽屉原理
例1 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小 朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中 总有两个彼此选的玩具都相同,试说明道理.
解 从三种玩具中挑选两件,搭配方式只能是下面六种: (兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊
猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿) 把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么
根据原则1,至少有两个物体要放进同一个抽屉里,也就是说, 至少两人挑选玩具采用同一搭配方式,选的玩具相同.
四、结束语
在高中数学联赛的所有题目中,相信最让大家头痛的莫过于组合 题了,有些同学觉得做组合题很容易就绕晕了,不知道如何下手;有 些同学看了答案总是会说,这个题想法太怪了,不可能想不出来;有 些同学好不容易想出了答案,却经常因为表达不清楚而得不到分。确 实,组合题对数学思维的要求非常高,它经常作为联赛二试的最后一 题出现,会比另外几块内容难上很多,但也并不是无迹可寻的。