圆心角、圆周角、弦、弧的关系

合集下载

弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)责编:康红梅【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

*如果它们中间有一组量不相等,那么其它各组量也分别不等。

人教版初三数学上册 弧、弦、圆心角、圆周角 讲义

人教版初三数学上册 弧、弦、圆心角、圆周角 讲义

弧、弦、圆心角、圆周角之间的关系解题技巧:1、顶点在圆心的角叫圆心角,顶点在圆周上的角叫圆周角2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等(知道一组相等,就可以推出其它三组相等)3、圆周角定理:同弧所对圆周角是圆心角的一半4、直径所对圆周角等于90°,90°的圆周角所对的弦是直径例1、下列说法正确的是_________________①相等的圆周角所对的弧相等②相等的弦所对的弧相等③等弦对等弧④等弧对等弦例2、如图,点A、B、C在⊙O上,OC、OB是半径,∠COB=100°,则∠A的度数等于()A、20°B、40°C、50°D、100°例3、如图所示,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A、30°B、45°C、60°D、75°例4、如图,AB是⊙O的直径,BD=BC,∠A=25°,则∠BOD的度数为()A、12.5°B、30°C、40°D、50°例5、如图所示,AB是⊙的直径,AC=CD=BD,E是⊙O上一点,连接CE、DE,则∠CED的度数为()A、25°B、30°C、40°D、60°例6、如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是()A、60°B、55°C、50°D、45°例7、如图,经过原点的⊙P与x轴,y轴分别交于A(3,0)、B(0,4)两点,点C是OB上一点,且BC=2,则AC=____1、如图,AB和CD都是⊙O的直径,∠AOC=52°,则∠C的度数是()A、22°B、26°C、38°D、48°2、如图,AB为⊙O直径,∠ABC=25°,则∠D的度数为()A、70°B、75°C、60°D、65°3、如图,AB是⊙O的直径,若∠BDC=30°,则∠AOC的度数为()A、80°B、100°C、120°D、无法确定4、如图,⊙O中弦AB等于半径OA,点C在优弧AB上运动,则∠ACB的度数是()A、30°B、45°C、60°D、无法确定5、如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A、60°B、45°C、30°D、22.5°6、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAB的度数是()A、35°B、55°C、65°D、70°7、如图,AB是⊙O的直径,CD是⊙O的弦。

圆周角定理

圆周角定理

证明:作辅助线
O
DCB

1 2
DOB
1 2
3

1 2
1
A
DCB 3
(12 DOB 1)
4

1 2
2
即 所对的圆周角是它所对圆心角的1/2
C
3 4
B
二、圆周角与圆心角的关系
C
C
O
O
O
C
A
B
A
B
A
B
圆周角定理:
一条弧所对的圆周角等于它所对
圆心角的一半.
·10
O
B
∵CD平分∠ACB,
D
∴AD= BD. ∴AD=BD.
又在Rt△ABD中,AD2+BD2=AB2,
AD BD 2 AB 2 10 5 2(cm)
2
2
课后练习 1.试找出下图中所有相等的圆周角。
D
A1
87
2
3
6
45
B
C
∠2=∠7 ∠1=∠4
∠3=∠6 ∠5=∠8
练习2:
求证: △ABC 为直角三角形.
C
证明: 以AB为直径作⊙O,
∵AO=BO,CO= 1 AB,
2
∴AO=BO=CO.
A
· O
B
∴点C在⊙O上.
又∵AB为直径, ∴∠ACB= 90°. ∴ △ABC 为直角三角形.
合作交流
如图,如何确定一个圆形纸片的圆心吗?交流一下.
方法三
方法一
O
A
B
C
O
方法二
A D
地调学校数学教研组
预习与反馈
知识回顾 :

初三-圆有关的性质含答案

初三-圆有关的性质含答案
由垂径定理,得AE= AB=3,CF= CD=4,
设OE=x,则OF=x-1,
在Rt△OAE中,OA2=AE2+OE2,
在Rt△OCF中,OC2=CF2+OF2,
∵OA=OC,∴32+x2=42+(x-1)2,解得x=4,∴半径OA= =5,∴直径MN=2OA=10(分米).故选C.
答案:C
方法总结有关弦长、弦心距与半径的计算,常作垂直于弦的直径,利用垂径定理和解直角三角形来达到求解的目的.
A.116° B.32°
C.58° D.64°
解析:根据圆周角定理求得,∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半),∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°-∠AOD.还有一种解法,即利用直径所对的圆周角等于90°,可得∠ADB=90°,则∠DAB=90°-∠ABD=32°,∵∠DAB=∠DCB,∴∠DCB=32°.
【经典考题】
A.CM=DMB. C.∠ACD=∠ADCD.OM=MD
3.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )
(第3题图)
A.45° B.85° C.90° D.95°
4.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图所示,则这个小圆孔的宽口AB的长度为__________ mm.
A.2.5cmB.2.5cm或6.5cm
C.6.5cmD.5cm或13cm
4.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD= ,且BD=5,则DE等于( )
A.2 B.4 C. D.

完整版)圆心角圆周角练习题

完整版)圆心角圆周角练习题

完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。

2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。

3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。

4.同一条弧所对的圆周角有两个。

5.圆周角定理:圆周角等于圆心角的一半。

6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。

需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。

7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。

圆内接四边形的对角线相互垂直,且交点为对角线的中点。

夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。

2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。

3.错误的说法是D,相等圆心角所对的弦不一定相等。

4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。

5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。

6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。

8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。

9.∠DCE=∠A。

1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。

证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。

圆周角与圆心角、弧的关系

圆周角与圆心角、弧的关系

(教案)圆周角与圆心角、弧的关系一、知识讲解:1.圆周角与圆心角的的概念:顶点在圆上,同时两边都和圆相交的角叫做圆周角。

2.在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

3.一条弧所对的圆周角等于这条弧所对的圆心角的一半。

4.直径所对的圆周角是90度,90度的圆周角所对的弦是直径。

5.圆的内接四边形对角之和是180度。

6.弧的度数确实是圆心角的度数。

解题思路:1.已知圆周角,能够利用圆周角求出圆心角2.已知圆心角,能够利用圆心角求出圆周角3.已知直径和弧度,能够求出圆周角与圆心角1.圆周角与圆心角的定义顶点在圆上,同时两边都和圆相交的角叫做圆周角。

注意圆周角定义的两个差不多特点:(1)顶点在圆上;(2)两边都和圆相交。

二、教学内容【1】圆心角:顶点在圆心的角。

利用两个错误的图形来强调圆周角定义的两个差不多特点:练习:判断下列各图形中的是不是圆周角,并说明理由.【2】明白得圆周角定理的证明一条弧所对的圆周角的度数等于这条弧所对的圆心角度数的一半。

已知:⊙O中,弧BC所对的圆周角是∠BAC,圆心角是∠BOC,求证:∠BAC= 1/2∠BOC.分析:通过图形的演示指导学生进一步去查找圆心O与∠BAC的关系本题有三种情形:(1)圆心O在∠BAC的一边上 O(2)圆心O在∠BAC的内部(3)圆心O在∠BAC的外部 B D C●假如圆心O在∠BAC的边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明●假如圆心O在∠BAC的内部或外部,那么只要作出直径AD,将那个角转化为上述情形的两个角的和或差即可证明:圆心O在∠BAC的一条边上 AOA=OC==>∠C=∠BAC∠BOC=∠BAC+∠C O==>∠BAC=1/2∠BOC. B C【3】圆周角与圆心角的关系(1).在同圆或等圆中,假如两条弦,两条弧,两个圆心角中有一组量相等,那么它们所对应的其它各组量都分别相等。

圆心角、圆周角与弦切角

圆心角、圆周角与弦切角
2.一直线与一圆最多只有两个交点。
一.弦、弧与圆心角
一.弦、弧与圆心角
一.弦、弧与圆心角
1.通过△ABC的三个顶点的圆,叫做三角形的外接圆,圆 心称为三角形的外心,此三角形称为圆的外接三 角形。
2.一直线与一圆最多只有两个交点。 3.三角形外心的置:
锐角三角形:三角形内部 直角三角形:斜边中点上 钝角三角形:三角形外部
3-2圆心角、圆周角与弦切角
一.弦、弧与圆心角 二.圆周角与弦切角
一.弦、弧与圆心角
一.弦、弧与圆心角
1.通过△ABC的三个顶点的圆,叫做三角形的外接圆,圆 心称为三角形的外心,此三角形称为圆的外接三 角形。
一.弦、弧与圆心角
一.弦、弧与圆心角
1.通过△ABC的三个顶点的圆,叫做三角形的外接圆,圆 心称为三角形的外心,此三角形称为圆的外接三 角形。
4.直角三角形的外心在斜边中点上,它到三个顶点距 离相等。
一.弦、弧与圆心角
一.弦、弧与圆心角
5.直角三角形中,若有一内角为30°,则此角所对的 股其长度是斜边长度的一半。
6.30°-60°-90°的直角三角形的三边比为
1: 3 : 2
一.弦、弧与圆心角
一.弦、弧与圆心角
一.弦、弧与圆心角
一.弦、弧与圆心角
.弦、弧与圆心角
一.弦、弧与圆心角
7.在同一圆中,等弦 等弧 等圆心角
一.弦、弧与圆心角
一.弦、弧与圆心角
一.弦、弧与圆心角
弦 心 距
一.弦、弧与圆心角
一.弦、弧与圆心角
8.在同一圆中,等弦 等弧 等圆心角 弦心距

人教版九年级数学上册《 圆心角、弦、弧、弦心距、圆周角》课件

人教版九年级数学上册《 圆心角、弦、弧、弦心距、圆周角》课件
OD于F.求证:AE=CD=BF

A C
B D
3. ⊙O1与⊙O2为等圆,M是O1O2 的中点,过M作一直线交⊙O1于A、 B ,交⊙O2于C、D 。
求证:A⌒B=C⌒D
B
·O1
E
C AM
D F
·O2
4. 如图,∠BAC=50°,则
∠D+∠E=____2_3__0_°__
5.在Rt△ ABC中,AB=6, BC=8,则这个三角形的外
D
所对的弧也相等
E
如 如图 果,弧⊙ABO等=1和圆弧⊙C也DO成,2是立那等么圆,
O1
A O2
F
∠E和∠F是什么关系?反过
D
来呢?
C
B
推论1 同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。
B
C
E
A
O
D
O
A
B
F
C
D
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。
推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C
E • 什么时候圆周角是直角?
D
反过来呢?
O
• 直角三角形斜边中线有什
A
B 么性质?反过来呢?
已知:点O是ΔABC的外心, ∠BOC=130°,求∠A的度数。
谢谢观赏
You made my day!
我们,还在路上……

圆周角和圆心角、弧的关系ppt课件

圆周角和圆心角、弧的关系ppt课件
∵ OA = OC,∴ ∠ A = ∠ C. ∴ ∠ AOB = 2 ∠ C,
即 ∠ C = 1 ∠ AOB. 2
请你完成图 (2)和图 (3)两种情况的证明.
ppt课件
13
2. 圆周角定理:
知2-讲
圆周角的度数等于它所对弧上的圆心角度数的一半.
要点精析:
(1)圆周角相对于圆心的位置关系有三种,因此定理的证明
ppt课件
(来自《典中点》)
21
知2-练
4 (2015·海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆 心O,点P是 ¼ AMB 上一点,则∠APB的度数为( ) A.45° B.30° C.75° D.60°
ppt课件
(来自《典中点》)
22
知识点 3 同弧或等弧所对的圆周角
知3-导
想一想 在如图的射门游戏中,当球员在B , D,E处射门
ppt课件
(来自《典中点》)
19
知2-练
2 (2016·绍兴)如图,BD是⊙O的直径,点A,C在⊙O上, »AB »BC ,∠AOB=60°,则∠BDC的度数是( ) A.60° B.45° C.35° D.30°
ppt课件
(来自《典中点》)
20
知2-练
3 (2015·珠海)如图,在⊙O中,直径CD垂直于弦AB,若 ∠C=25°,则∠BOD的度数是( ) A.25° B.30° C.40° D.50°
圆周角定理: 圆周角的度数等于它所对弧上的圆心角度数的一半.
(来自教材)
ppt课件
11
知2-讲
1. 圆周角定理的证明: 已知:如图, ∠ C是 »AB 所对的圆 周角, ∠ AOB是 »AB 所对的圆心角. 求证: ∠ C= 1 ∠ AOB 2 分析:根据圆周角和圆心的位置关系,分三 种情况讨论:

圆心角、圆周角、弦、弧的关系

圆心角、圆周角、弦、弧的关系

1圆的基本性质考点一、圆的相关概念 (1)圆的定义圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

固定的端点O 叫做圆心,线段OA 叫做半径。

(2)圆的几何表示以点O 为圆心的圆记作“⊙O ”,读作“圆O ”考点二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。

(如图中的AC )(2)直径:经过圆心的弦叫做直径。

(如图中的AB )直径等于半径的2倍。

(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A ,B为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:过圆心直径 平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧考点四、圆的对称性 (1)圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

(2)圆的中心对称性圆是以圆心为对称中心的中心对称图形。

2考点五、弧、弦、弦心距、圆心角之间的关系定理(1)圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角。

(2)弦心距:从圆心到弦的距离叫做弦心距。

(3)弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相 等,那么它们所对应的其余各组量都分别相等。

课本-圆心角圆周角与弦切角

课本-圆心角圆周角与弦切角
圓O2的半徑為 r2 ∵∠AO1B=∠CO2D ∴AB的長度:CD的長度=r1:r2
8:6=r1:10,r1=430 故圓O1的半徑為430
100
圓上一點和通過此點的兩弦所形成的角稱為 圓周角。如圖2-28,A為圓上一點,∠BAC 為兩弦 AB、AC 所形成的角, 則∠BAC為BC所對 的圓周角,而BC為 ∠BAC所對的弧。
99
2 半径与弦、弧的关系
如图,两同心圆中,大圆的半径为5,小圆 的半径为3,∠AOB=50°,求: (1) AB 的度数: CD 的度数。
解 ∵ AB 的度数=∠AOB=50° CD 的度数=∠COD =50°
∴ AB 的度数:CD 的度数 =50°:50 ° =1:1
99
2 半径与弦、弧的关系
104
前面學過,一弧所對的圓周角度數,等 於此弧度數的一半,如圖 2-32 中,當AB 為直徑時,AB=180°,故圓周角∠ACB =12 AB=12 × 180°=90°。 又∠ACB、∠ADB 與∠AEB 皆為AB所對的圓周角, ∴∠ACB=∠ADB =∠AEB=90°。
104
半圆的圆周角
半圆所对的圆周角是直角。
∵AC=BD ∴∠1=∠2 故AB//CD
106
圆内接四边形
如圖2-33,在圓上依序任取 A、B、C、 D 四個點,連接AB、BC、CD、DA,則四邊 形ABCD稱為圓O的內接四邊形,而圓O 稱為 四邊形ABCD的外接圓。
接著討論圓內接四邊形 的一些性質。
106
6 圆内接四边形对角互补
如图,四边形ABCD为圆O的内接四边形,
弧的度数就是该弧所对圆心角的度数。
96
如图,将一圆分成12等分,求AB的度数。 解 AB 的度數

中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)

中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)

中考数学复习----《圆周角定理》知识点总结与专项练习题(含答案)知识点总结1.圆心角、弦以及弧之间的关系:①定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

②推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧。

2.圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

4.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

5.圆的内接四边形:①定义:四个顶点都在圆上的四边形叫做圆的内接四边形。

②性质:I:圆内接四边形的对角互补。

II:圆内接四边形的任意一个外角等于它的内对角。

练习题1、(2022•襄阳)已知⊙O的直径AB长为2,弦AC长为2,那么弦AC所对的圆周角的度数等于.【分析】首先利用勾股定理逆定理得∠AOC=90°,再根据一条弦对着两种圆周角可得答案.【解答】解:如图,∵OA=OC=1,AC=,∴OA2+OC2=AC2,∴∠AOC=90°,∴∠ADC=45°,∴∠AD'C=135°,故答案为:45°或135°.2、(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC 即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC===13(cm),所以圆形镜面的半径为cm,故答案为:cm.3、(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.4、(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.5、(2022•湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AB ⌒所对的圆周角,则∠APD 的度数是 .【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴,∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =∠AOB =60°,∴∠APD =∠AOD =×60°=30°,故答案为:30°.6、(2022•徐州)如图,A 、B 、C 点在圆O 上,若∠ACB =36°,则∠AOB = .【分析】利用一条弧所对的圆周角等于它所对的圆心角的一半即可得出结论.【解答】解:∵∠ACB =∠AOB ,∠ACB =36°,∴∠AOB =2×∠ACB =72°.故答案为:72°.7、(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB=90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.8、(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为.【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.【解答】解:∵∠DCE=72°,∴∠BCD=180°﹣∠DCE=108°,∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=72°,由圆周角定理,得∠BOD=2∠A=144°,故答案为:144°.9、(2022•甘肃)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.。

专题2.2 圆心角、弧、弦的关系【九大题型】(举一反三)(苏科版)(解析版)

专题2.2 圆心角、弧、弦的关系【九大题型】(举一反三)(苏科版)(解析版)

专题2.2 圆心角、弧、弦的关系【九大题型】【苏科版】【题型1 圆心角、弧、弦的概念】 (1)【题型2 利用圆心角、弧、弦的关系求角度】 (4)【题型3 利用圆心角、弧、弦的关系求线段长度】 (6)【题型4 利用圆心角、弧、弦的关系求周长】 (9)【题型5 利用圆心角、弧、弦的关系求面积】 (12)【题型6 利用圆心角、弧、弦的关系求弧的度数】 (16)【题型7 利用圆心角、弧、弦的关系比较大小】 (19)【题型8 圆心角、弧、弦中的证明问题】 (22)【题型9 圆心角、弧、弦中的的倍数关系】 (25)【题型1 圆心角、弧、弦的概念】【例1】(2022秋•余姚市期中)下列语句中,正确的有( )①相等的圆心角所对的弧相等;②等弦对等弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个【分析】根据圆心角,弧,弦之间的关系,等弧,轴对称等知识一一判断即可.【解答】解:①相等的圆心角所对的弧相等,错误,条件是同圆或等圆中.②等弦对等弧,错误,弦所对的弧有两条,不一定相等.③长度相等的两条弧是等弧,错误,等弧是完全重合的两条弧.④经过圆心的每一条直线都是圆的对称轴.正确.故选:A.【变式1-1】(2022秋•长沙县期末)如图,四边形ABCD内接于⊙O,∠BAC=∠DAC,则下列正确的是( )A.AB=AD B.BC=CD C.AB=AD D.∠BCA=∠DCA【分析】根据∠BAC=∠DAC,得到BC=CD,根据圆心角、弧、弦的关系得到BC=CD.【解答】解:∵∠BAC=∠DAC,∴BC=CD,∴BC=CD,故选:B.【变式1-2】(2022秋•凯里市校级期中)如图,在⊙O中,AB=CD,则下列结论中:①AB=CD;②AC=BD;③∠AOC=∠BOD;④AC=BD,正确的是 ①②③④ (填序号).【分析】利用同圆或等圆中弧,弦以及所对的圆心角之间的关系逐项分析即可.【解答】解:在⊙O中,AB=CD,∴AB=CD,故①正确;∵BC为公共弧,∴AC=BD故④正确;∴AC=BD,故②正确;∴∠AOC=∠BOD,故③正确.故答案为:①②③④.【变式1-3】(2022秋•武汉期末)如图,⊙O中,弦AB⊥CD,垂足为E,F为CBD的中点,连接AF、BF、AC,AF交CD于M,过F作FH⊥AC,垂足为G,以下结论:①CF=DF;②HC=BF:③MF=FC:④DF+AH=BF+AF,其中成立的个数是( )A.1个B.2个C.3个D.4个【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【解答】解:∵F为CBD的中点,∴CF=DF,故①正确,∴∠FCM=∠FAC,∵∠ACF=∠ACM+∠MCF,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴CH=BF,∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴AH的度数+CF的度数=180°,∴CH的度数+AF的度数=180°,∴AH+CF=AH+DF=CH+AF=AF+BF,故④正确,故选:C.【题型2 利用圆心角、弧、弦的关系求角度】【例2】(2022•资中县一模)如图,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是( )A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由AE=BD得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵AE=BD,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.【变式2-1】(2022•灌阳县一模)如图,在⊙O中,AB=CD,∠1=45°,则∠2=( )A.60°B.30°C.45°D.40°【分析】根据在同圆或等圆中,相等的弧所对的圆心角相等即可得到结论.【解答】解:∵AB=CD,∴∠2=∠1=45°,故选:C.【变式2-2】(2022秋•天河区期末)如图,在⊙O中,AC=BD,若∠AOC=120°,则∠BOD= 120° .【分析】证明AC=BD可得结论.【解答】解:∵AC=BD,∴AC=BD,∴∠BOD=∠AOC=120°,故答案为:120°.【变式2-3】(2022秋•亭湖区期末)如图,AB是⊙O的直径,BC=CD=DE,∠COD=34°,则∠AEO 的度数是 51° .【分析】由BC=CD=DE,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵BC=CD=DE,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,×(180°﹣78°)=51°.∴∠AEO=12故答案为:51°.【题型3 利用圆心角、弧、弦的关系求线段长度】【例3】(2022春•永嘉县校级期末)如图,半径为R的⊙O的弦AC=BD.且AC⊥BD于E,连接AB,AD,若AD=R的长为( )A.1B C.2D.【分析】连接OA,OD,由弦AC=BD,可得AC=BD,继而可得BC=AD,然后由圆周角定理,证得∠ABD=∠BAC,即可判定AE=BE,由AE=BE,AC⊥BD,可求得∠ABD=45°,继而可得△AOD是等腰直角三角形,则可求得AD=,由此即可解决问题.【解答】解:连接OA,OD,∵弦AC=BD,∴AC=BD,∴BC=AD,∴∠ABD=∠BAC,∴AE=BE,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD,∵AD=∴R=2,故选:C .【变式3-1】(2022•桂平市二模)如图,在Rt △ACB 中∠ACB =60°,以直角边AB 为直径的⊙O 交线段AC 于点E ,点M 是弧AE 的中点,OM 交AC 于点D ,⊙O 的半径是6,则MD 的长度为( )A B .32C .3D .【分析】根据三角形内角和定理求出∠A =30°,根据垂径定理求出OD ⊥AE ,根据含30°角的直角三角形的性质求出OD ,再求出MD 即可.【解答】解:∵∠ABC =90°,∠ACB =60°,∴∠A =30°,∵M 为弧AE 的中点,OM 过圆心O ,∴OM ⊥AD ,∴∠ADO =90°,∴OD =12OA =12×6=3,∴MD =OM ﹣OD =6﹣3=3,故选:C .【变式3-2】(2022•渝中区校级模拟)如图,AB 是⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙O 于点F ,若AE =2,⊙O 的直径为10,则AC 长为( )A .5B .6C .7D .8【分析】根据垂径定理求出DE =EF ,AD =AF ,求出ADC =DAF ,求出AC =DF ,求出EF 的长,再求出DF 长,即可求出答案.【解答】解:连接OF ,如图:∵DE⊥AB,AB过圆心O,∴DE=EF,AD=AF,∵D为弧AC的中点,∴AD=DC,∴ADC=DAF,∴AC=DF,∵⊙O的直径为10,∴OF=OA=5,∵AE=2,∴OE=OA﹣AE=5﹣2=3,在Rt△OEF中,由勾股定理得:EF==4,∴DE=EF=4,∴AC=DF=DE+EF=4+4=8,故选:D.AB,直径BC=BD=CD,则AD= 【变式3-3】(2022秋•曾都区期中)如图,在⊙O中,AC=12【分析】如图,连接DB,DC,过点D作DE⊥AB于点E,DF⊥AC交AC的延长线于点F.证明四边形DEAF是正方形,可得AD=,想办法求出AF,可得结论.【解答】解:如图,连接DB,DC,过点D作DE⊥AB于点E,DF⊥AC交AC的延长线于点F.∵BC是直径,∴∠BAC=90°,∵BC=AB=2AC,∴AC=2,AB=4,∵∠DEA=∠EAF=∠DFA=90°,∴四边形DEAF是矩形,∵AD平分∠BAC,∴DE=DF,∴四边形DEAF是正方形,∴AD,∵∠DAB=∠DAC,∴BD=CD,∴BD=CD,∵∠DEB=∠F=90°,DB=DC,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF,∴AB+AC=AE+BE=AF﹣CF=2AF=6,∴AF=3,∴AD=故答案为:【题型4 利用圆心角、弧、弦的关系求周长】【例4】(2022秋•龙口市期末)如图,已知⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且AD=DC=CB,则四边形ABCD的周长等于( )A.4cm B.5cm C.6cm D.7cm【分析】如图,连接OD、OC.根据圆心角、弧、弦间的关系证得△AOD、△OCD、△COB是等边三角形,然后由等边三角形的性质求得线段AD、DC、CB与已知线段OA间的数量关系.【解答】解:如图,连接OD、OC.∵AD=DC=CB(已知),∴∠AOD=∠DOC=∠COB(在同圆中,等弧所对的圆心角相等);∵AB是直径,∴∠AOD+∠DOC+∠COB=180°,∴∠AOD=∠DOC=∠COB=60°;∵OA=OD(⊙O的半径),∴△AOD是等边三角形,∴AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,∴AD=CD=BC=OA,∴四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×1cm=5cm;故选:B.【变式4-1】(2022秋•海口期末)如图,A、B是半径为3的⊙O上的两点,若∠AOB=120°,C是AB的中点,则四边形AOBC的周长等于 12 .【分析】通过等弧所对的圆心角相等和∠AOB=120°,得到△AOC和△BOC都是等边三角形,再求出四边形AOBC的周长.【解答】解:∵C是AB的中点∴∠AOC=∠BOC,而∠AOB=120°∴∠AOC=∠BOC=60°∴△AOC和△BOC都是等边三角形∴OA=OB=CA=CB=3所以四边形AOBC的周长等于12.故填12.【变式4-2】(2022秋•西林县期末)如图,在⊙O中,∠AOB=60°,弦AB=3cm,那么△AOB的周长为 9cm .【分析】由OA=OB,得△OAB为等边三角形进行解答.【解答】解:∵OA=OB,∠AOB=60°,∴△OAB为等边三角形,∴OA=OB=AB∵AB=3cm,∴△AOB的周长为3+3+3=9(cm).故答案为:9cm.【变式4-3】(2022•江北区校级开学)如图,⊙O的弦AC=BD,且AC⊥BD于E,连接AD,若AD=⊙O的周长为【分析】接AB,AO,DO,根据⊙O的弦AC=BD求出BC=AD,根据圆周角定理求出∠BAC=∠ABD,求出∠ABD=∠BAC=1(180°﹣∠AEB)=45°,根据圆周角定理求出∠AOD=2∠ABD=90°,解直2角三角形求出AO,再求出答案即可.【解答】解:连接AB,AO,DO,∵⊙O的弦AC=BD,∴ABC=BAD,∴BC=AD,∴∠BAC=∠ABD,∵AC⊥BD,∴∠AEB=90°,(180°﹣∠AEB)=45°,∴∠ABD=∠BAC=12∴∠AOD=2∠ABD=90°,即△AOD是等腰直角三角形,∵AD=AO2+OD2=AD2,∴AO=∴⊙O的周长是2×π×,故答案为.【题型5 利用圆心角、弧、弦的关系求面积】【例5】(2022•海丰县模拟)如图,A,B是⊙O上的点,∠AOB=120°,C是AB的中点,若⊙O的半径为5,则四边形ACBO的面积为( )A .25B .CD 【分析】根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC =∠BOC =60°,易得△OAC 和△OBC 都是等边三角形,即可解决问题.【解答】解:连OC ,如图,∵C 是AB 的中点,∠AOB =120°,∴∠AOC =∠BOC =60°,又∵OA =OC =OB ,∴△OAC 和△OBC 都是等边三角形,∴S 四边形AOBC =2×12×52故选:D .【变式5-1】(2022•嘉兴二模)如图所示,在10×10的正方形网格中有一半径为5的圆,一条折线将它分成甲、乙两部分.S 甲表示甲的面积,则S 甲= 25π2 .【分析】由题意得到AB =CD =6,AD =BC =8,求得S 弓形AD =S 弓形BC ,S 弓形AB =S 弓形CD ,根据三角形的面积公式得到S △ABE +S △DEF =S △BEF +S △CDF ,于是得到结论.【解答】解:如图,AB =CD =6,AD =BC =8,∴S 弓形AD =S 弓形BC ,S 弓形AB =S 弓形CD ,∵S △ABE +S △DEF =S △BEF +S △CDF ,∴S甲=S乙=12S圆=25π2,故答案为:25π2.【变式5-2】(2022秋•朝阳区校级期末)如图,在⊙O中,AC=CB,CD⊥OA于点D,CE⊥OB于点E.(1)求证:CD=CE;(2)若∠AOB=120°,OA=2,求四边形DOEC的面积.【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠AOC=∠BOC,根据角平分线的性质定理证明结论;(2)根据直角三角形的性质求出OD,根据勾股定理求出CD,根据三角形的面积公式计算,得到答案.【解答】(1)证明:连接OC,∵AC=BC,∴∠AOC=∠BOC,又CD⊥OA,CE⊥OB,∴CD=CE;(2)解:∵∠AOB=120°,∴∠AOC=∠BOC=60°,∵∠CDO=90°,∴∠OCD=30°,OC=1,∴OD=12∴CD×OD×CD∴△OCD的面积=12×OE×CE同理可得,△OCE的面积=12∴四边形DOEC的面积=【变式5-3】(2022•浙江自主招生)如图,在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD,分别以A、D为圆心A到C的距离为半径画弧,两弧交于E,以A为圆心O到E的距离为半径画弧,交⊙O于F.则△ACF面积是( )A B C D【分析】连OA,OB,AD,DF,过A作AG⊥CF于G点,由AB=OA=OB=1,得到∠AOB=60°,弧AB的度数=60°,而AB=BC=CD,得弧ABD的度数=3×60°=180°,所以AD为⊙O的直径,∠CFA=60°;再由AN=AF=OE,则AD平分NF,EF过O点,弧FD=弧FA,得到△FAD为等腰直AF AG=Rt△AGC中,角三角形,可得FA=Rt△AGF中,GF=12CG=AG ACF面积.【解答】解:连OA,OB,AD,DF,过A作AG⊥CF于G点,连OE交⊙O于N,连AN,如图,∵AB=OA=OB=1,∴△OAB为等边三角形,∴∠AOB=60°,∴弧AB 的度数=60°,又∵AB =BC =CD ,∴弧AB =弧BC =弧CD ,∴弧ABD 的度数=3×60°=180°,∴AD 为⊙O 的直径,∠CFA =60°,∵AN =AF =OE AD 平分NF ,∴EF 过O 点,∴弧FD =弧FA ,∴△FAD 为等腰直角三角形,∴∠FCA =∠FDA =45°,FA在Rt △AGF 中,GF =12AF AG =在Rt △AGC 中,CG =AG∴S △ACF =12CF •AG =12××=故选:D .【题型6 利用圆心角、弧、弦的关系求弧的度数】【例6】(2022•下城区校级四模)如图,等腰△ABC 的顶角∠CAB 为50°,以腰AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则DE 的度数为( )A .50°B .25°C .80°D .65°【分析】连接AD ,取AB 的中点O ,连接OE ,OD .利用等腰三角形的性质以及圆周角定理求出∠DOE =50°,可得结论.【解答】解:连接AD,取AB的中点O,连接OE,OD.∵AB是直径,∴∠ADB=90°,∴AD⊥CB,∵AB=AC,∴∠BAD=∠DAC=1∠BAC=25°,2∴∠DOE=2∠DAC=50°,∴DE的度数为50°,故选:A.【变式6-1】(2022秋•亭湖区校级月考)如图,在Rt△ABC中,∠C=90°,∠A=28°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为( )A.28°B.64°C.56°D.124°【分析】先利用互余计算出∠B=64°,再利用半径相等和等腰三角形的性质得到∠CDB=∠B=64°,则根据三角形内角和定理可计算出∠BCD,然后根据圆心角的度数等于它所对弧的度数求解.【解答】解:∵∠C=90°,∠A=28°,∴∠B=62°,∵CB=CD,∴∠CDB=∠B=62°,∴∠BCD=180°﹣62°﹣62°=56°,∴BD的度数为56°.故选:C.【变式6-2】(2022•新昌县模拟)如图在给定的圆上依次取点A,B,C,D,连接AB,CD,AC=BD,设AC,BD相交于点E,弧AD=100°,AB=ED,则弧AB的度数为 50° .【分析】连接BC,如图,由弧AD=100°得到∠ACD=50°,再证明AB=CD得到AB=CD,∠ACB=∠DBC,则CD=ED,所以∠DEC=∠DCE=50°,然后计算出∠ECB的度数,从而得到弧AB的度数.【解答】解:连接BC,如图,∵弧AD=100°,∴∠ACD=50°,∵AC=BD,∴AC=BD,即AB+AD=AD+CD,∴AB=CD,∴AB=CD,∠ACB=∠DBC,∵AB=ED,∴CD=ED,∴∠DEC=∠DCE=50°,∵∠DEC=∠EBC+∠ECB=2∠ECB,∠DEC=25°,∴∠ECB=12∴弧AB的度数为50°.故答案为:50°.【变式6-3】(2022•浙江)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则BC 的度数是( )A.120°B.135°C.150°D.165°【分析】直接利用翻折变换的性质得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.【解答】解:如图所示:连接BO,过点O作OE⊥AB于点E,BO,AB∥DC,由题意可得:EO=12可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故BC的度数是150°.故选:C.【题型7 利用圆心角、弧、弦的关系比较大小】【例7】(2022秋•顺义区期末)如图,在⊙O中,如果AB=2AC,则下列关于弦AB与弦AC之间关系正确的是( )A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC【分析】取弧AB的中点D,连接AD,BD,则AB=2AD=2BD,由已知条件AB=2AC,得出AD=BD= AC,根据圆心角、弧、弦关系定理的推论得到AD=BD=AC,又在△ABD中,根据三角形三边关系定理得出AD+BD>AB,即可得到AB<2AC.【解答】解:如图,取弧AB的中点D,连接AD,BD,则AB=2AD=2BD,∵AB=2AC,∴AD=BD=AC,∴AD=BD=AC.在△ABD中,AD+BD>AB,∴AC+AC>AB,即AB<2AC.故选:D.【变式7-1】(2022秋•西林县期末)如图,AB是⊙O的直径,CD的是⊙O中非直径的任意一条弦,试比较AB与CD的大小,并说明理由.【分析】连接OC,OD,再根据三角形的三边关系即可得出结论.【解答】解:连接OC,OD,∵AB=OA+OB=OC+OD,OC+OD>CD,∴AB>CD.【变式7-2】(2022秋•余姚市月考)如图,在三个等圆上各有一条劣弧:弧AB、弧CD、弧EF,如果AB+ CD=EF,那么AB+CD与EF的大小关系是( )A.AB+CD=EF B.AB+CD<EFC.AB+CD>EF D.大小关系不确定【分析】在弧EF 上取一点M 使弧EM =弧CD ,推出弧FM =弧AB ,根据圆心角、弧、弦的关系得到AB =FM ,CD =EM ,根据三角形的三边关系定理求出FM +EM >FE 即可.【解答】解:如图,在弧EF 上取一点M 使弧EM =弧CD ,则弧FM =弧AB ,∴AB =FM ,CD =EM ,在△MEF 中,FM +EM >EF ,∴AB +CD >EF .故选:C .【变式7-3】(2022天河区一模)如图,AB 为半圆的直径,点C 、D 在半圆上.(1)若BC =3AD ,CD =2AD ,求∠DAB 和∠ABC 的大小;(2)若点C 、D 在半圆上运动,并保持弧CD 的长度不变,(点C 、D 不与点A 、B 重合).试比较∠DAB 和∠ABC 的大小.【分析】(1)根据弧和圆心角之间的关系可以得到圆周角的大小;(2)利用相等的弧所对的圆周角相等可以判断圆周角的大小关系.【解答】解:(1)∵BC =3AD ,CD =2AD∴∠BOC =3∠AOD ,∠COD =2∠AOD∵∠BOC +∠COD +∠AOD =180°∴∠AOD =30°,∠BOC =90°,∠COD =60°∴∠DAB =12∠BOD =12(∠BOC +∠COD )=75°∠ABC =12∠AOC =12(∠AOD +∠COD )=45°(2)①若AD <CB ,则∠DAB >∠ABC ;②若AD =CB ,则∠DAB =∠ABC ;③若AD>CB,则∠DAB<∠ABC【题型8 圆心角、弧、弦中的证明问题】【例8】(2022秋•自贡期末)如图,AB为⊙O的直径,BE=CE,CD⊥AB于点D,交BE于F,连接CB.求证:BC=CF.【分析】证明:连接AE,利用圆心角、弧与弦的关系证明即可.【解答】证明:连接AE∵CE=BE∴∠A=∠FBC,∵AB为直径,∴∠E=90°,∴∠A+∠ABE=90°,∵CD⊥AB于D,∴∠FDB=90°,∴∠CFB+∠ABE=90°,∴∠A=∠CFB,∴∠FBC=∠CFB,∴BC=CF.【变式8-1】(2022秋•西林县期末)如图,AB、CD是⊙O的直径,弦CE∥AB.求证:BD=BE.(用两种不同的方法证明)【分析】方法一:由CE∥AB知AC=BE,再由∠BOD=∠AOC知AC=BD,据此可得证;方法二:连接OE,知∠OCE=∠OEC,根据AB∥CE知∠BOD=∠OCE,∠BOE=∠OEC,从而得∠BOD=∠BOE,继而可得证.【解答】证明:方法一:∵CE∥AB,∴AC=BE,∵∠BOD=∠AOC,∴AC=BD,∴BD=BE;方法二:连接OE,∵OC=OE,∴∠OCE=∠OEC,∵AB∥CE,∴∠BOD=∠OCE,∠BOE=∠OEC,∴∠BOD=∠BOE,∴BD=BE.【变式8-2】(2022秋•福清市期末)如图,已知C,D是以AB为直径的⊙O上的两点,连接BC,OC,OD,若OD∥BC,求证:D为AC的中点.【分析】根据等腰三角形的性质和平行线的性质得出∠B=∠C,∠AOD=∠B,∠COD=∠C,求出∠AOD=∠COD,再根据圆心角、弧、弦之间的关系得出即可.【解答】证明:∵OB=OC,∴∠B=∠C,∵OD∥BC,∴∠AOD=∠B,∠COD=∠C,∴∠AOD=∠COD,∴AD=CD,即D为AC的中点.【变式8-3】(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)AD=BC;(2)AE=CE.【分析】(1)由AB=CD,推出AB=CD,推出AD=CD.(2)证明△ADE≌△CBE可得结论.【解答】证明:(1)∵AB=CD,∴AB=CD,∴AC+BC=AD+AC,∴AD=BC.(2)∵AD=BC,∴AD =BC ,∵∠ADE =∠CBE ,∠AED =∠CEB ,∴△ADE ≌△CBE (AAS ),∴AE =EC .【题型9 圆心角、弧、弦的的倍数关系】【例9】(2022•原州区期末)在⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB ,则CE 与BE 之间的等量关系是什么?请证明你的结论.【分析】连接OE ,证出OD =12CO =12OE ,得出∠DEO =30°,求出∠DOE =60°,∠BOE =30°,即可得出结论.【解答】解:CE =2BE ,理由如下:连接OE ,如图所示:∵CO ⊥AB ,∴∠BOC =90°,∵DE ∥AB ,∴DE ⊥CO ,∴∠ODE =90°,∵D 是CO 的中点,∴OD =12CO =12OE ,∴∠DEO =30°,∴∠DOE =90°﹣30°=60°,∴∠BOE =90°﹣60°=30°,∴CE =2BE .【变式9-1】(2022•铁岭模拟)如图,AB 是半圆O 的直径,点C 在半圆O 上,把半圆沿弦AC 折叠,AC 恰好经过点O ,则BC 与AC 的关系是( )A .BC =12ACB .BC =13AC C .BC =ACD .不能确定【分析】连接OC ,BC ,过O 作OE ⊥AC 于D 交圆O 于E ,根据折叠的性质得到OD =12OE ,根据圆周角定理得到∠ACB =90°,根据三角形的中位线的性质得到OD =12BC ,求得∠COB =60°,得到∠AOC =120°,于是得到结论.【解答】解:如图,连接OC ,BC ,过O 作OE ⊥AC 于D 交圆O 于E ,∵把半圆沿弦AC 折叠,AC 恰好经过点O ,∴OD =12OE ,∵AB 是半圆O 的直径,∴∠ACB =90°,∴OD ∥BC ,∵OA =OB ,∴OD =12BC ,∴BC =OE =OB =OC ,∴∠COB =60°,∴∠AOC =120°,AC,∴BC=12故选:A.【变式9-2】(2022•陵城区模拟)圆的一条弦把圆分为度数比为1:3的两条弧,则弦心距与弦长的比为( )A.1:3B.2:3C.1:4D.1:2×360°=90°;求得△AOB是等腰直角三角形,【分析】根据已知条件得到弦所对的圆心角∠AOB=14过O作OC⊥AB于C,根据等腰直角三角形的性质即可得到结论.【解答】解:弦AB将⊙O分成了度数比为1:3两条弧.×360°=90°;则弦所对的圆心角∠AOB=14∴△AOB是等腰直角三角形,过O作OC⊥AB于C,AB,∴OC=12∴弦心距与弦长的比为1:2,故选:D.【变式9-3】(2022•长安区二模)如图,AB为⊙O的直径,点C为⊙O上一点,且AC=3BC,则弦AC与弦BC的关系是( )A.AC=3BC B.AC=C.AC+1)BC D=BC【分析】如图,过点O作OD⊥AB,交AC于D,连接BD,OC,证明△CDB是等腰直角三角形,且AD=BD,设CD=CB=x,则AD=BD=,计算AC和BC的比可得结论.【解答】解:如图,过点O作OD⊥AB,交AC于D,连接BD,OC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=3BC,∴∠AOC=135°,∵OA=OC,∴∠A=∠ACO=22.5°,∵OD是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=22.5°,∴∠CDB=∠CBD=45°,设CD=CB=x,则AD=BD=,∴BCAC∴AC+1)BC.故选:C.。

垂径定理-弦-弧-圆心角-圆周角-

垂径定理-弦-弧-圆心角-圆周角-

圆的对称性,圆周角1. 圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

2. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。

推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.圆周角和圆心角的关系:1. 圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2. 圆周角定理; 一条弧所对的圆周角等于它所对的圆心角的一半.推论1: 同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等; 推论2: 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;1、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是(A 、CE=DEB 、BC BD = C 、∠BAC=∠BAD D 、AC >AD2、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM的长为3,则弦AB 的长是(A 、4 B 、6 C 、7 D 、83、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm,则修理人员应准备_________cm 内径的管道(内径指内部直径). 4、如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.5、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.6、如图,已知AB 是⊙O 的直径,AC 为弦,D 是AC 的中点,6BC cm =,求OD 的长.7. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?第4题CE O A D B 8. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。

第08讲 圆心角与圆周角

第08讲 圆心角与圆周角

第08讲圆心角与圆周角(核心考点讲与练)【知识梳理】一.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.二.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.三.相交弦定理(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条线,各弦被这点所分成的两段的积相等).几何语言:若弦AB、CD交于点P,则P A•PB=PC•PD(相交弦定理)(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.几何语言:若AB是直径,CD垂直AB于点P,则PC2=P A•PB(相交弦定理推论).【核心考点精讲】一.圆心角、弧、弦的关系(共4小题)1.(2021•江北区校级开学)在⊙O中,如果=2.那么弦AB与弦CD之间的关系是()A.AB=2CD B.AB>2CD C.AB<2CD D.无法确定【分析】根据圆周角、弧、弦的关系,三角形的三边关系即可得到结论.【解答】解:取的中点E,连接AE,BE,则=,∵=2,∴==,∴CD=AE=BE,∵AE+BE>AB,∴AB<2CD.故选:C.【点评】本题考查了圆周角、弧、弦的关系,三角形的三边关系,熟练掌握圆周角、弧、弦的关系,三角形的三边关系是解题的关键.2.(2020秋•靖江市期中)已知弦AB的长等于⊙O的半径,弦AB所对的圆周角是30或150度.【分析】在圆中,由半径和弦组成的三角形是等腰三角形,又因为AB的长等于半径,所以由弦和半径组成的三角形是等边三角形,根据等边三角形的性质,弦所对的圆心角为60°,所以弦所对的圆周角为30°或150°.【解答】解:如图示,AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,∴∠ADB=150°.故弦AB所对的圆周角是30或150度.故答案为:30或150.【点评】本题极易漏解,需注意圆中的一条弦对着两个圆周角,它们是互补关系.3.(2021•广州模拟)如图,AB,CD为⊙O内两条相交的弦,交点为E,且AB=CD,求证:AD∥BC.【分析】根据圆心角、弧、弦的关系和平行线的判定定理即可得到结论.【解答】解:∵AB=CD,∴=,∴﹣=﹣,即=,∴∠A=∠B,∴AD∥BC.【点评】本题考查了圆心角、弧、弦的关系,平行线的判定,熟练掌握圆心角、弧、弦的关系是解题的关键.4.(2022春•永嘉县月考)如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.【分析】(1)连接OE、CE,如图,利用=2得到∠COE=2∠AOE=60°,则可判定△OCE为等边三角形,接着证明DE⊥OC,然后根据等边三角形的性质得到结论;(2)先利用勾股定理计算出DE=,然后在Rt△EFD中利用勾股定理计算EF.【解答】(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了等边三角形的判定与性质.二.圆周角定理(共5小题)5.(2022•浦江县模拟)已知:如图,OA是⊙O的半径,若∠BAO=27°,则圆周角∠BDA 的度数是()A.63°B.60°C.58°D.54°【分析】连接OB,可先求出∠AOB的度数,进而根据圆周角定理可得∠BDA的度数.【解答】解:连接OB,∵OA=OB,∠BAO=27°,∴∠BOA=180°﹣2∠BAO=180°﹣54°=126°,∴∠BDA=∠BOA=63°,故选:A.【点评】本题考查圆的性质定理,熟练掌握圆周角定理是解题关键.6.(2021秋•嘉兴期末)如图,AB是⊙O的直径,点C在圆上,若∠ABC=70°,则∠BAC 的度数为()A.70°B.60°C.40°D.20°【分析】由AB是⊙•O的直径,根据直径所对的圆周角是直角,即可求得∠C的度数,又由∠ABC=70°,利用直角三角形中两锐角互余,即可求得∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠ABC=70°,∴∠BAC=90°﹣70°=20°,故选:D.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握直径所对的圆周角是直角定理的应用,注意数形结合思想的应用.7.(2022•柯桥区一模)如图,在⊙O中,AD是直径,∠ABC=35°,则∠CAD等于()A.75°B.65°C.55°D.45°【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ADC的度数,又由AD是⊙O的直径,根据直径所对的圆周角是直角,即可求得答案.【解答】解:∵∠ABC=35°,∴∠ADC=∠ABC=35°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°﹣∠ADC=55°.故选:C.【点评】此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意数形结合思想的应用.8.(2022•文成县一模)如图,点A,B,C都在⊙O上,∠AOC:∠BOC=2:5,OA∥BC,则∠ABC=20°.【分析】根据圆周角定理及三角形内角和定理求解即可.【解答】解:∵OA=OB,∴∠A=∠OBA,∵OA∥BC,∴∠A=∠ABC,∵∠AOC=2∠ABC,∠AOC:∠BOC=2:5,∴∠BOC=5∠ABC,∴∠AOB=7∠ABC,在△AOB中,∠A+∠AOB+∠OBA=180°,∴9∠ABC=180°,∴∠ABC=20°,故答案为:20.【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.9.(2021秋•嵊州市期末)已知:如图,在△ABC中,AB=AC,以腰AB为直径作⊙O,分别交BC,AC于点D,E,连结OD,DE.(1)求证:BD=DC.(2)若∠BAC=50°,求∠ODE的度数.【分析】(1)利用等腰三角形的性质得到∠B=∠ODB,∠B=∠C,再判断OD∥AC,然后利用平行线分线段成比例得到BD=DC;(2)利用三角形内角和计算出∠B=∠C=65°,则∠ODB=∠B=65°,再利用圆内接四边形的性质得到∠EDC=∠A=50°,然后利用平角定义可计算出∠ODE的度数.【解答】(1)证明:∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∴==1,∴BD=DC;(2)∵AB=AC,∴∠B=∠C=(180°﹣∠A)=×(180°﹣50°)=65°,∴∠ODB=∠B=65°,∵∠EDC=∠A=50°,∴∠ODE=180°﹣∠ODB﹣∠EDC=180°﹣65°﹣50°=65°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.三.相交弦定理(共2小题)10.(2021秋•东阳市月考)已知四边形ABCD两条对角线相交于点E,AB=AC=AD,AE =3,EC=1,则BE•DE的值为()A.6B.7C.12D.16【分析】由题意可知AB=AC=AD,点D、C、B在以点A为圆心的圆周上运动,由相交弦定理可得,BE•DE=CE•EF即可求出答案.【解答】解:∵AB=AC=AD,∴点D、C、B在以点A为圆心的圆周上运动,AE=3,EC=1,∴AC=AF=AE+CE=3+1=4,EF=AE+AF=3+4=7,由相交弦定理可得,BE•DE=CE•EF=1×7=7,故选:B.【点评】本题考查了相交弦定理,根据圆心和半径构建圆是解题的关键.11.(2021秋•余姚市期中)如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP =4,则CD长为()A.16B.24C.12D.不能确定【分析】由相交线定理可得出AP•BP=CP•DP,再根据AP=6,BP=8,CP=4,可得出PD的长,从而得出CD即可.【解答】解:∵AP•BP=CP•DP,∴PD=,∵AP=6,BP=8,CP=4,∴PD=12,∴CD=PC+PD=12+4=16.故选:A.【点评】本题考查了相交线定理,圆内两条弦相交,被交点分成的两条线段的积相等.【过关检测】一.选择题(共10小题)1.(2021秋•西城区校级期中)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么所对的圆心角的大小是()A.60°B.75°C.80°D.90°【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到圆心,进而解答即可.【解答】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.连接AQ,CQ,在△APQ与△CQN中,∴△APQ≌△CQN(SAS),∴∠AQP=∠CQN,∠P AQ=∠CQN∵∠AQP+∠P AQ=90°,∴∠AQP+∠CQN=90°,∴∠AQC=90°,即所对的圆心角的大小是90°,故选:D.【点评】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.(2022•富阳区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.则下列结论错误的是()A.∠ADC=∠AGDB.若∠ADC=∠GAD,则=2C.若=,则△ADG是等腰三角形D.若=,则△AGF是等腰三角形【分析】根据圆周角定理求解判断即可.【解答】解:∵AB是⊙O的直径,CD⊥AB,∴=,∴=,∴∠ADC=∠AGD,故A正确,不符合题意;∵∠ADC=∠GAD,∴=,∴=,∵=2,∴=2,故B正确,不符合题意;若=,∴=,∵=,∴=,∴AD=DG,∴△ADG是等腰三角形,故C正确,不符合题意;由=,不能推出△AGF是等腰三角形,故D错误,符合题意;故选:D.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.3.(2022•舟山二模)如图,BC是⊙O的直径,AD⊥BC,∠ABC=25°,则弧CD的度数()A.50°B.25°C.100°D.65°【分析】连接OA,根据圆周角定理可得∠AOC的度数,从而求出的度数,然后再利用垂径定理可得=,即可解答.【解答】解:连接OA,∵∠ABC=25°,∴∠AOC=2∠ABC=50°,∴的度数为50°,∴BC是⊙O的直径,AD⊥BC,∴=,∴弧CD的度数为50°,故选:A.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,垂径定理,熟练掌握圆周角定理,以及垂径定理是解题的关键.4.(2022•西湖区一模)如图,已知AB是⊙O的直径,弦CD与AB交于点E,设∠ABC =α,∠ABD=β,∠AEC=γ,则()A.α+β﹣γ=90°B.β+γ﹣α=90°C.α+γ﹣β=90°D.α+β+γ=180°【分析】连接AC,根据圆周角定理及三角形外角性质求解即可.【解答】解:连接AC,∵AB是⊙O的直径,∴∠ACB=∠BCD+∠ACD=90°,∵∠ACD=∠ABD=β,∴∠BCD=90°﹣β,∵∠AEC=∠ABC+∠BCD=γ,∠ABC=α,∴γ=α+90°﹣β,即γ+β﹣α=90°,故选:B.【点评】此题考查了圆周角定理,熟记“直径所对的圆周角等于90°”是解题的关键.5.(1999•山西)如图,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的长为两根的一元二次方程是()A.x2﹣8x﹣15=0B.x2﹣8x+15=0C.x2+8x﹣15=0D.x2+8x+15=0【分析】如果设AP=a,PB=b;根据相交弦定理:AP×PB=DP×PC;可知ab=15,又根据a+b=AB=8;根据一元二次方程根与系数的关系,可判断谁是正确的.【解答】解:设AP=a,PB=b;则根据相交弦定理可得:AP×PB=DP×PC,∴ab=15,又知:a+b=AB=8;∴根据一元二次方程根与系数的关系可得方程为:x2﹣8x+15=0;故选:B.【点评】本题考查的知识点是相交弦定理和一元二次方程根与系数的关系.6.(2022•鹿城区校级二模)如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°【分析】根据平行线的性质得到∠ADE=46°,进而得到的度数,再用180°减去的度数即可得到答案.【解答】解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.【点评】本题考查了平行线的性质和圆周角定理,解题的关键是先求出的度数.7.(2022•黄岩区一模)如图,△ABC是等边三角形,点A,点B在数轴上,点A表示数﹣2,点B表示数2,以AB为直径作圆交边AC于点P,以B为圆心,BP为半径作弧交数轴于点Q,则点Q在数轴上表示的数为()A.B.2C.2﹣2D.2﹣2【分析】根据题意可得AB=4,利用等边三角形的性质可得∠BAC=60°,由AB是⊙O的直径可得∠APB=90°,由三角形内角和定理可得∠ABP=30°,由此可得AP=2,根据勾股定理可以求得BP的长,进而可以得到点Q表示的数.【解答】解:由题意可得AB=4,∵△ABC是等边三角形,∴∠BAC=60°,∵AB是⊙O的直径,∴∠APB=90°,∴∠ABP=30°,∴AP=AB=2,在Rt△APB中,AB=4,AP=2,∴PB====2,∵BP为半径作弧交数轴于点Q,∴BQ=PB=2.∴点Q表示数为2﹣2.故选:C.【点评】本题主要考查实数与数轴、圆周角定理、勾股定理等知识,解答本题的关键是熟练掌握圆周角定理和勾股定理的运用.8.(2022•永康市模拟)如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P 是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是()A.30°B.25°C.10°D.5°【分析】连接CB,根据一条弧所对的圆周角等于它所对的圆心角的一半,求出∠ABC的度数,再利用三角形的外角即可解答.【解答】解:连接CB,∵∠AOC=60°,∴∠ABC=∠AOC=30°,∵∠ABC是△PBC的一个外角,∴∠ABC>∠APC,∴∠APC的度数不可能是30°,故选:A.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.(2022•东坡区校级模拟)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.16【分析】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【点评】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.(2021秋•杭州期末)如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长为()A.6B.7C.8D.9【分析】根据圆周角定理,可证∠C=∠B,又由AD=BD,可证∠B=∠DAB,即得∠DAP =∠C,可证△DAP∽△DCA,得到AD:CD=DP:AD,代值计算即可求CD的长.【解答】解:连接AC,由圆周角定理知,∠C=∠B,∵AD=BD∴∠B=∠DAB,∴∠DAP=∠C∴△DAP∽△DCA,∴AD:CD=DP:AD,得AD2=DP•CD=CD•(CD﹣PC),把AD=4,PC=6代入得,CD=8.故选:C.【点评】本题考查了圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题.二.填空题(共4小题)11.(2021秋•亭湖区期末)如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是51°.【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故答案为:51°.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.12.(2014秋•柯城区校级期中)如图,在⊙O中,弦AB,CD相交于点E,AE=2cm,BE =6cm,DE=3cm,则CE=4cm;学以致用:点P是直径为10的⊙Q中一点且PQ=2,过点P作弦HK,则线段PH与线段PK的积等于21.【分析】根据相交弦定理得AE•BE=CE•DE,然后把AE=2,BE=6,DE=3代入即可计算出CE的长;如图过P点的直径为MN,先计算出PM=QM﹣PQ=3,PN=QN+PQ=7,然后根据相交弦定理进行计算.【解答】解:∵AE•BE=CE•DE,∴2×6=3×CE,∴CE=4;如图,过P点的直径为MN,∵PQ=2,∴PM=QM﹣PQ=5﹣2=3,PN=QN+PQ=5+2=7,∵PH•PK=PM•PN,∴PH•PK=3×7=21.故答案为4;21.【点评】本题考查了相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.13.(2021秋•定海区期末)一块直角三角板的30°角的顶点A落在圆O上,两边分别交圆O于B、C两点,则弧BC的度数为60°.【分析】利用圆周角定理,圆心角、弧、弦的知识解决问题即可.【解答】解:连接OB、OC,∵∠A=30°,又∵∠BOC=2∠A,∴∠BOC=60°,∴弧BC的度数为60°,故答案为:60°.【点评】本题考查圆周角定理,圆心角、弧、弦的关系,解题的关键是求得圆心角的度数.14.(2021秋•温州期末)如图,点A在半圆O上,BC是直径,.若AB=2,则BC的长为.【分析】连接OA,由圆心角,弦,弧的关系可得OA⊥BC,结合等腰直角三角形的性质可求解OB的长,进而可求解BC的长.【解答】解:连接OA,∵,BC是直径,∴OA⊥BC,∵OA=OB,AB=2,∴OA=OB=,∴BC=2OA=.故答案为:.【点评】本题主要考查圆周角,弦,弧的关系,等腰直角三角形的性质,求解OA,OB的长是解题的关键.三.解答题(共6小题)15.(2021秋•淳安县期中)如图,在⊙O中,弦AD=BC,连接AB、CD.求证:AB=CD.【分析】在⊙O中,由弦AD=BC,可得=,根据等式的性质可得+=+,即=,进而得出AB=CD.【解答】解:在⊙O中,∵AD=BC,∴=,∴+=+,即=,∴AB=CD.【点评】本题考查圆心角、弧、弦的关系以及等式的性质,掌握圆心角、弧、弦的关系以及等式的性质是正确解答的关键.16.(2021秋•上城区期中)如图,AD、BC是⊙O的两条弦,且AB=CD,求证:AD=BC.【分析】根据弦和弧的关系,由AB=CD可得,进而得到=,即可证明AD =BC.【解答】证明:∵AB=CD,∴,∴,∴=,∴AD=BC.【点评】本题考查了圆心角、弧、弦之间的关系,掌握圆心角,弧、弦之间的关系定理是解题的关键.17.(2021秋•长兴县期中)如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.求证:MB=MD.【分析】欲证明BM=DM,只要证明=即可.【解答】证明:∵M是的中点,∴=,∵AB=CD,∴=,∴+=+,即=,∴MB=MD.【点评】本题考查了圆心角、弧、弦之间的关系,能熟记圆心角、弧、弦之间的关系是解此题的关键.18.(2021秋•诸暨市期末)如图,O为半圆的圆心,C、D为半圆上的两点,连接CD、BD、AD,CD=BD.连接AC并延长,与BD的延长线相交于点E.(1)求证:CD=DE;(2)若AC=6,半径OB=5,求BD的长.【分析】(1)连接BC,由CD=BD,AB为直径可得∠E=∠ECD,进而求解.(2)由勾股定理求出BC的值,再由△AEB为等腰三角形可得BD=BE,再通过勾股定理求解.【解答】(1)证明:∵AB为直径,∴∠ADB=∠ADE=90°,∵CD=BD,∴∠EAD=∠DAB,∴∠E=∠ABE,连接BC,则∠DCB=∠DBC,∠ACB=∠ECB=90°,∵∠EBC+∠E=90°,∠DCB+∠ECD=90°,∴∠E=∠ECD,∴CD=DE.(2)解:在Rt△ACB中,由勾股定理得BC===8,∵∠E=∠ABE,∴△AEB为等腰三角形,∴AB=AE,BD=DE,∴CE=AE﹣AC=AB﹣AC=10﹣6=4,在Rt△BCE中,由勾股定理得BE===4,∴BD=BE=2.【点评】本题考查圆与三角形的结合,解题关键是掌握圆周角定理,掌握解直角三角形的方法.19.(2021秋•滨江区期末)如图,在⊙O中,AB=CD,弦AB与CD相交于点M.(1)求证:=.(2)连接AC,AD,若AD是⊙O的直径,求证:∠BAC+2∠BAD=90°.【分析】(1)利用圆心角,弧,弦之间的关系解决问题即可;(2)利用圆周角定理,三角形内角和定理,三角形的外角的性质解决问题.【解答】(1)证明:如图,∵AB=CD,∴=,∴+=+,∴=.(2)证明:连接AD.∵=,∴∠ADC=∠BAD,∴∠AMC=∠MAD+∠MDA=2∠BAD,∵AD是直径,∴∠ACD=90°,∴∠CAB+∠AMC=90°,∴∠CAB+2∠BAD=90°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2001•温州)⊙O的两条弦AB,CD交于点P,已知AP=4,BP=6,CP=3,求CD 的长.【分析】求CD,已知了CP的长,关键是求出PD的长.已知了AP,BP的长,可根据相交弦定理来求出PD的长,进而可求出CD的长.【解答】解:∵圆O的弦AB,CD相交于P,∴AP•PB=CP•PD,∵AP=4,BP=6,CP=3,∴PD=AP•PB÷CP=4×6÷3=8,∴CD=CP+PD=3+8=11.即:CD的长是11.【点评】本题主要考查的是相交弦定理的应用,根据相交弦定理求出PD的长是解题的关键.。

圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系

圆的确定,圆心角、圆周角、弧、弦、弦心距之间的关系

儒洋教育学科教师辅导讲义6、多边形与圆如果一个圆经过一个多边形的各顶点,那么这个圆叫做这个多边形的外接圆,这个多边形叫做这个圆的内接多边形,提示:1、与圆的确定有关的两个图形一定要学生重点理解。

2、补充两个知识点:线段垂直平分线的性质和角平分线的性质3、和学生一起重点分析课本例题1和2,理解题目考察的细节和解题方法。

二、例题分析:1、以线段AB为弦的圆的圆心的轨迹是___________。

cm。

2、已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是cm,扇形的面积是23、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例1:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、下列四边形:①平行四边形,②菱形;③矩形;④正方形。

其中四个顶点一定能在同一个圆上的有()A、①②③④B、②③④C、②③D、③④5、(07上海中考)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块 B.第②块C.第③块 D.第④块6、三角形的外接圆的圆心是(),A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点7、直角三角形的两条直角边分别为5cm和12cm,则其外接圆半径长为。

(三)巩固练习1、圆是轴对称图形,其对称轴是任意一条的直线;圆是中心对称图形,对称中心为.2、三角形的外接圆的圆心——三角形的外心——三角形的交点;三角形的内切圆的圆心——三角形的内心——三角形的交点;3、三角形的外心一定在该三角形上的三角形()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形,第7题 (第2题) 7、如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=_______8、如图,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论)B A CEDOF(第8题) (第11题)9、已知,如图所示,点O 是∠EPF 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B和C 、D 。

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版知识精讲

九年级数学第二十四章弧、弦、圆心角、圆周角之间的关系人教实验版【本讲教育信息】一、教学内容:弧、弦、圆心角、圆周角之间的关系 1. 圆心角、圆周角的概念. 2. 弧、弦、圆心角之间的关系. 3. 圆周角定理及推论.二、知识要点:1. 弧、弦、圆心角(1)我们把顶点在圆心的角叫做圆心角. (2)弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.如图所示,(1)若∠AOB =∠COD ,则︵AB =︵CD ,AB =CD ;(2)若︵AB =︵CD ,则∠AOB =∠COD ,AB =CD ;(3)若AB =CD ,则∠AOB =∠COD ,︵AB =︵CD.OABCD2. 圆周角(1)顶点在圆上,并且两边与圆都相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.③②①(3)推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.三、重点难点:本节重点是圆心角、弦、弧之间的相等关系及圆周角定理. 难点是从圆的旋转不变性出发,得到圆心角、弦、弧之间的相等关系以及圆周角定理的证明.【典型例题】例1. 在⊙O 中,如图所示,∠AOB =∠DOC ,试说明:(1)︵DB =︵AC ; (2)BD =AC.B分析:(1)∵∠DOC =∠AOB ,∴︵DC +︵BC =︵AB +︵BC ,∴︵BD =︵AC. (2)∵在同圆或等圆中,相等的弧所对的弦相等,∴BD =AC.解:(1)∵∠DOC =∠AOB ,∴︵DC =︵AB , ∴︵DC +︵BC =︵AB +︵BC ,即︵BD =︵AC.(2)由(1)得︵BD =︵AC ,∴BD =AC.例2. 如图所示,C 是︵AB 的中点,与∠ADC 相等的角的个数是( ) A. 7个 B. 3个 C. 2个 D. 1个分析:由同弧或等弧所对的圆周角相等知,∠ADC =∠ABC =∠CAB =∠CDB ,故与∠ADC 相等的角共有3个.解:B评析:同弧或等弧所对的圆周角相等常用来证明两角相等;或进行角的转换,将一个圆周角转换为同弧所对的其他圆周角,从而达到题目中的要求.例3. 如图所示,BC 为半圆O 的直径,G 是半圆上异于B 、C 的点,A 是︵BG 的中点,AD ⊥BC 于点D ,BG 交AD 于点E ,请说明AE =BE.分析:在圆中,有关直径的问题常常需要添加辅助线,以便利用直径所对的圆周角是直角的性质,因此,欲说明AE 与BE 相等,可转化为说明∠BAD =∠ABE ,圆周角∠ABE 所对的弧为︵AG ,连结AB 、AC 即可解决问题.C解:连结AB 、AC. ∵︵AB =︵AG ,∴∠ABE =∠ACB. 又∵AD ⊥BC ,∴∠ABD +∠BAE =90°.∵BC 为直径,∴∠BAC =90°,∴∠ABD +∠BCA =90°, ∴∠BCA =∠BAE. ∴∠BAE =∠ABG , ∴AE =BE.例4. 如图所示,在⊙O 中,∠AOC =150°,求∠ABC 、∠ADC 、∠EBC 的度数,并判断∠ABC 和∠ADC 、∠EBC 和∠ADC 的度数关系.分析:解题的关键是分清同弧所对的圆心角和圆周角,如劣弧AC 所对的圆心角是∠AOC ,所对的圆周角是∠ABC ,优弧ABC 所对的圆心角是大于平角的∠α,所对的圆周角是∠ADC.解:∵∠AOC =150°,∴∠ABC =12∠AOC =75°.∵∠α=360°-∠AOC =360°-150°=210°,∴∠ADC =12∠α=105°,∠EBC =180°-∠ABC =180°-75°=105°.∵∠ABC +∠ADC =75°+105°=180°,∠EBC =∠ADC =105°, ∴∠ABC 和∠ADC 互补,∠EBC 和∠ADC 相等. 评析:理解圆周角的概念,分清同弧所对的圆心角和圆周角是熟练运用圆周角性质解题的前提.例5. 如图所示,AB 、CD 是⊙O 的弦,∠A =∠C. 求证:AB =CD.分析:此题的证明方法很多,由于AB 和CD 在圆中,且为弦,可证明AB 和CD 所对的圆心角相等或弧相等,也可直接或间接利用全等证明AB 和CD 相等. 等等.解法一:如图(1)所示,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F.∴AB =2AE ,CD =2CF ,∠AEO =∠CFO =90°. 又∵∠A =∠C ,OA =OC , ∴△AOE ≌△COF ,∴AE =CF. ∴AB =CD.(1)解法二:如图(2)所示,连结OB 、OD.∵OA =OB =OC =OD ,∴∠A =∠B ,∠C =∠D. ∵∠A =∠C ,∴∠B =∠D. ∴△OAB ≌△OCD ,∴AB =CD.(2)(3)解法三:如图(3)所示,连结AC. ∵OA =OC ,∴∠1=∠3.又∵∠BAO =∠DCO ,∴∠2=∠4. ∴︵BC =︵AD.∴︵BC +︵BD =︵AD +︵BD ,即︵AB =︵CD , ∴AB =CD.例6. AB 、BC 、CA 是⊙O 的三条弦,O 到AB 的距离OE 等于12AB ,求∠C 的度数.分析:∠C 可能为一个钝角,也可能为一个锐角,要分类画图、分析和解答.BB m解:如图(1)所示,连结AO 、BO.因为OE ⊥AB ,所以EB =AE =12AB.又OE =12AB ,所以EB =OE =AE.所以∠EBO =∠EOB =∠EOA =∠EAO =45°.所以∠C =12∠AOB =12(∠AOE +∠EOB )=12×90°=45°.如图(2)所示,由(1)得∠AOB =90°,所以优弧A m B 所对的圆心角是270°,所以∠C =135°.即∠C 的度数为45°或135°.评析:图(1)中,△ABC 为锐角三角形,圆心在△ABC 内部;图(2)中,△ABC 为钝角三角形,圆心O 在△ABC 外部,两种情形都符合题意,所以本题应有两解.【方法总结】1. 圆不仅是轴对称图形和中心对称图形,实际上,圆绕圆心旋转任意一个角度α,都能与原来的图形重合,这样就把圆和其他的中心对称图形区别开来,即圆不仅是中心对称图形,而且还突破了中心对称图形旋转180°后才能与原来图形重合的局限性,得出圆所特有的性质:圆绕圆心旋转任意一个角度,都能与原来的图形重合,这叫做圆的旋转不变性. 利用这一性质可以推出圆的一些其他性质.2. 在利用圆心角、弧、弦的关系定理解题时,我们应注意:①作圆心到弦的垂线是圆中一种常见的作辅助线的方法;②由圆心到弦的垂线、弧、圆心角的相等来证明弦相等是证明线段相等的一条重要途径.3. 圆周角定理及其推论在证明和计算中应用非常广泛,它是证明角相等、线(弦)相等、弧相等的重要依据,尤其是其推论为在圆中确定直角、构成垂直关系创造了条件,它是圆中的一个很重要的性质,要熟练掌握. 同时它也是证明弦为直径的常用方法,若图中有直径,往往构造直径所对的圆周角形成直角,这也是圆中重要的辅助线.【预习导学案】(点和圆的位置关系)一、预习前知1. 圆可以看作是到__________的距离等于__________的点的集合,也就是说圆上的点到圆心的距离都等于__________.2. 圆的内部可以看作是到__________的距离小于半径的点的集合.3. 圆的外部可以看作是到__________的距离大于半径的点的集合.二、预习导学1. ⊙O 的半径r =5cm ,圆心O 到直线的距离OD =3cm . 点A 、B 、C 在直线l 上,若AD =23cm ,BD =4cm ,CD =5cm . 则点A 在⊙O__________,点B 在⊙O__________,点C 在⊙O__________.2. 下列条件中,可以画一个圆,并且只可以画一个圆的条件是( ) A. 已知圆心 B. 已知半径 C. 已知三点 D. 过直线上两点和直线外一点3. 三角形外接圆的圆心是( ) A. 三内角平分线的交点 B. 三边垂直平分线的交点 C. 三中线的交点 D. 三高线的交点4. 用反证法证明:“在△ABC 中,至少有两个内角是锐角”时,第一步假设__________成立.反思:(1)点和圆有哪些位置关系?(2)经过不在同一直线上的三点画圆的时候,如何确定圆心?(3)反证法的基本思路和一般步骤是怎样的?【模拟试题】(答题时间:50分钟)一、选择题1. 一条弦分圆周为5∶7,这条弦所对的两个圆周角分别为( )A. 150°,210°B. 75°,105°C. 60°,120°D. 120°,240°2. 已知AC 为⊙O 的直径,弦AB =10cm ,∠BAC =30°,那么⊙O 的半径为( )A. 5cmB. 52cmC. 1033cmD. 2033cm3. 如图所示,⊙O 的弦AB 、CD 相交于点E ,已知∠ECB =60°,∠AED =65°,那么,ADE的度数为( )A. 40°B. 45°C. 55°D. 65°*4. 如图所示,劣弧︵AE 所对的圆心角为40°,则∠B +∠D 等于( ) A. 320° B. 160° C. 300° D. 260°D5. 如图所示,AB 为⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( ) A. 75° B. 72° C. 70° D. 65°6. 如图所示,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数为( ) A. 80° B. 100° C. 120°D. 130°**7. 已知⊙O 的半径为6cm ,⊙O 的一条弦AB 的长为63cm ,则弦AB 所对的圆周角是( ) A. 30° B. 60° C. 30°或150° D. 60°或120°二、填空题1. 如图所示,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA ,CE ⊥OB ,CD =CE ,则AC 与CB 弧长的大小关系是__________.2. 如图所示,点A 、B 、C 、E 都在圆周上,AE 平分∠BAC 交BC 于点D ,则图中相等的圆周角是__________.3. 如图所示,AB 是⊙O 的直径,︵BC =︵BD ,∠A =30°,则∠BOD =__________.AB4. 如图所示,已知⊙O 的半径为2,圆周角∠ABC =30°,则弦AC 的长是__________.5. 如图所示,AB 是半圆O 的直径,∠BAC =40°,D 是︵AC 上任意一点,那么∠D 的度数是__________.A**6. 如图所示,A 、B 、C 、D 、E 是⊙O 上顺次五点,且AB =BC =CD ,如果∠BAD =50°,那么∠AED =__________.B三、解答题1. 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E 、F. (1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?︵AB 与︵CD 的大小关系?为什么?∠AOB 与∠COD 呢?BD2. 如图所示,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD =CE ,BE 与CE 的大小有什么关系?为什么?*3. 如图所示,AB 为⊙O 的直径,AC 为弦,P 为AC 延长线上一点,且AC =PC. PB 的延长线交⊙O 于D. 求证:AC =DC.P*4. 如图所示,已知A 、B 、C 、F 、G 是⊙O 上的五点,AF 交BC 于点D ,AG 交BC 于点E ,且BD =CE ,∠1=∠2. 求证:AB =AC.试题答案一、选择题1. B2. C3. C4. B5. A6. D7. D二、填空题 1. 相等2. ∠ABC =∠AEC ,∠ACB =∠AEB ,∠BAE =∠CAE =∠BCE =∠CBE3. 60°4. 25. 130°6. 75°三、解答题1.(1)如果∠AOB =∠COD ,那么OE =OF ,理由是:因为∠AOB =∠COD ,所以AB =CD. 因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD ,所以AE =CF. 又因为OA =OC ,所以R t △OAE≌R t △OCF. 所以OE =OF. (2)如果OE =OF ,那么AB =CD ,︵AB =︵CD ,∠AOB =∠COD ,理由是:因为OA =OC ,OE =OF ,所以R t △OAE ≌R t △OCF. 所以AE =CF ,又因为OE ⊥AB ,OF ⊥CD ,所以AE =12AB ,CF =12CD. 所以AB =2AE ,CD =2CF. 所以AB =CD. 所以︵AB =︵CD ,∠AOB =∠COD.2. BE =CE. 理由:∵AB 、DE 为⊙O 的两条相交的直径,∴∠AOD =∠BOE ,∴BE =AD ,又∵AD =CE ,∴BE =CE.3. 连结AD ,∵AB 是⊙O 的直径,∴∠ADP =90°,∵AC =CP ,∴CD =12AP. ∴CD =AC =12AP.∴AC =DC.4.∵∠1=∠2,∴⌒BF =⌒CG ,∴BF =CG ,⌒BG =⌒CF ,∴∠FBC =∠GCE. 又BD =CE ,∴△BFD ≌△CGE (SAS ),∴∠F =∠G. ∴⌒AB =⌒AC ,∴AB =AC.。

圆心角、弦、弧、圆周角之间的推导

圆心角、弦、弧、圆周角之间的推导

圆心角、弦、弧、圆周角之间的关系是几何学中常见的概念。

在此文档中,我们将推导这些概念之间的关系,并解释它们在圆的几何中的重要性。

首先,让我们定义这些概念:•圆心角:圆心角指的是以圆心为顶点的角。

•弦:弦是连接圆上两点的线段。

•弧:弧是圆上两点之间的曲线部分。

•圆周角:圆周角是以圆上两条弧为两边的角。

接下来,我们将探讨这些概念之间的关系。

1.弧和圆心角的关系:当我们考虑一个圆上的弧时,圆心角是与该弧相对应的角度,两者是一一对应关系。

换句话说,一个弧唯一对应一个圆心角,一个圆心角也唯一对应一个弧。

例如,如果给定一个半径为r的圆,圆心角为θ度,那么对应的弧长可以通过以下公式计算:弧长= (θ/360) × 2πr。

2.弦、弧和圆心角的关系:在圆上,如果一个弦和圆心角相等,那么它所对应的弧的长度也是相等的。

这表明弦、弧和圆心角之间存在着等量关系。

换句话说,如果两个弦所对应的圆心角相等,那么它们所对应的弧的长度也是相等的。

这个关系可以通过圆心角的定义进行证明。

由于圆心角是以圆心为顶点的角,所以它们的两条边与圆上的两条弦相等,因此对应的弧长也相等。

3.圆周角和圆心角的关系:圆周角是以圆上两条弧为两边的角。

当一个圆周角的两个角点分别在圆上的两条弧的端点时,这两条弧所对应的圆心角恰好等于圆周角的大小。

这个关系可以通过对圆心角和圆周角的定义进行证明。

圆周角的两个角点分别位于圆上的两条弧的端点,因此对应的圆周角的大小就等于这两个圆心角之和。

通过上述推导,我们可以看出圆心角、弦、弧和圆周角之间的关系密切相关。

它们在圆的几何中起到重要的作用,帮助我们研究和解决各种与圆相关的问题。

这些概念的理解不仅对于数学学习具有重要意义,而且在实际应用中也有广泛的应用,例如建筑、工程和物理学等领域。

总结起来,圆心角、弦、弧和圆周角之间的关系可以通过定义和几何推导来解释。

这些概念在圆的几何中相互关联,为我们理解和研究圆提供了重要的工具和观点。

圆弧、弦、圆周角的关系

圆弧、弦、圆周角的关系

课题:弧、弦、圆心角【学习目标】1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.【学习重点】探索圆心角、弧、弦之间关系定理并利用其解决相关问题.【学习难点】圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.情景导入生成问题1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?解:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.自学互研生成能力知识模块一圆心角的定义【自主探究】阅读教材P83~P84思考,完成下面的内容:举例讲解:图中的∠AOB,∠COD,∠AOD,∠BOC这几个角的顶点有什么共同特点?顶点都在圆心上,两边都与圆相交.归纳:圆心角是指顶点在圆心,两边都与圆相交的角.圆心角的特征:①顶点是圆心;②角的两边与圆相交.范例:如图,下列各角是圆心角的是(B)A.∠ABC B.∠AOB C.∠OAB D.∠OBC知识模块二圆心角、弧、弦之间的关系定理【自主探究】阅读教材P 84思考及例3内容,完成下面的内容:如图,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么? 根据旋转的性质,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置时,∠AOB =∠A′OB′,射线OA 与OA′重合,OB 与OB′重合.而同圆的半径相等,OA =OA′,OB =OB′,∴点A 与A′重合,B 与B′重合.AB 与A′B′重合.AB ︵与A ′B ′︵重合.∴AB ︵=A ′B ′︵.归纳:(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;(2)在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等;(3)在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等.【合作探究】典例:判断题,下列说法正确吗?为什么?(1)如图所示:因为∠AOB =∠A′OB′,所以AB ︵=A ′B ′︵.(2)在⊙O 和⊙O′中,如果弦AB =A′B′,那么AB ︵=A ′B ′︵.解:(1)、(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.范例:已知:如图所示,AD =BC.求证:AB =CD.证明:∵AD =BC ,∴AD ︵=BC ︵.∵AC ︵=AC ︵,∴AC ︵+AD ︵=AC ︵+BC ︵.∴DC ︵=AB ︵.∴AB =CD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
圆的基本性质
考点一、圆的相关概念 (1)圆的定义
圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

固定的端点O 叫做圆心,线段OA 叫做半径。

(2)圆的几何表示
以点O 为圆心的圆记作“⊙O ”,读作“圆O ”
考点二、弦、弧等与圆有关的定义
(1)弦:连接圆上任意两点的线段叫做弦。

(如图中的AC )
(2)直径:经过圆心的弦叫做直径。

(如图中的AB )直径等于半径的2倍。

(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧
弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A ,B
为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
考点三、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:
过圆心
直径 平分弦
知二推三 平分弦所对的优弧 平分弦所对的劣弧
考点四、圆的对称性 (1)圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

(2)圆的中心对称性
圆是以圆心为对称中心的中心对称图形。

2
考点五、弧、弦、弦心距、圆心角之间的关系定理
(1)圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角。

(2)弦心距:从圆心到弦的距离叫做弦心距。

(3)弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相 等,那么它们所对应的其余各组量都分别相等。

题型一:垂径定理(连结半径形成直角三角形,利用勾股定理求线段长度)
【例1】如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径。

分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.
题型二:利用弧、弦、弦心距、圆心角之间的关系(连接半径证明三角形全等)
【例2】如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N • 在⊙O 上。

(1)求证:AM =BN ;
(2)若C 、D 分别为OA 、OB 中点,则AM MN NB ==成立吗?
B
A
3
【巩固训练】
1. 下列说法:①直径是弦;②弦是直径;③过圆内一点有无数多条弦,这些弦都相等;④直径是圆中最长的弦,其中正确的有( B ) A .1个
B .2个
C .3个
D .4个
2. 已知P 为⊙O 内一点,过P 点的最长的弦有( A )
A .1条
B .无数条
C .1条或无数条
D .以上答案均不对 3. 下列说法中正确的是( D )
A .长度相等的弧是等弧
B .弦是直径
C .过圆心的直线是直径
D .两个半径相等的圆是等圆 4. 在⊙O 中,AB 、CD 是两条相等的弦,则下列说法中错误的是( A )
A .A
B 、CD 所对的弧一定相等; B .AB 、CD 所对的圆心角一定相等;
C .△AOB 和△CO
D 能完全重合;
D .点O 到AB 、CD 的距离一定相等。

5. 如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( C ) A .CE=DE B .BC BD = C .AC>AD D .∠BAC=∠BAD
6. 如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( D ) A .4 B .6 C .7 D .8
7. 如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( B ) A .AB ⊥CD B .PO=PD C .AD BD = D .∠AOB=2∠AOD
8. 如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB=10cm ,CD=6cm , 则AC 的长为( D )
A .0.5cm
B .1cm
C .1.5cm
D .2cm
9. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE= 3 。

10. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC= 8 。

11. 一点和⊙O 上的最近点距离为4cm ,最远距离为10cm ,则这个圆的半径是 3或7 c m 。

12. 已知⊙O 的半径为5cm ,AB 和CD 是⊙O 的弦,AB ∥CD ,AB=6cm ,CD=8cm ,求AB 与CD
之间的距离是 1或7 c m 。

(第5题)
(第6题)
C
(第7题)
B
A (第9题)
B
A
(第10题)
(第8题)。

相关文档
最新文档