预测控制-ppt课件
合集下载
模型预测控制ppt
令
02 动态矩阵控制
动态矩阵控制以优化确定控制策略,在优化过程中, 同时考虑输出跟踪期望值和控制量变化来选择最优化准
则。往往不希望控制增量 Δ u 变化过于剧烈,这一因
素在优化性能指标中加入软约束予以考虑。
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
01预测控制概述
工业过程的特点 多变量高维度复杂系统难以建立精确的数学模型 工业过程的结构、参数以及环境具有不确定性、时变性、 非线性、强耦合,最优控制难以实现
预测控制产生
基于模型的控制,但对模型要求不高 采用滚动优化策略,以局部优化取代全局优化 利用实测信息反馈校正,增强控制的鲁棒性
限时域优化策略。优化过程不是一次离线进行,而是在线反
复进行优化计算,滚动实施,从而使模型失配、时变、干扰 等引起的不确定性能及时得到弥补,提高系统的控制效果。
02滚动优化
03反馈校正
模型失配
实际被控过程存在非线性、时变性、不确定性等原因,使基于模型的预测不可能准确地与实 际被控过程相符
反馈校正
从图中可以看出: 第一根曲线是模型失配时的输出 曲线,其快速性较差,超调量小;
第二根曲线是模型未失配时的输 出曲线,其快速性较好,但超调量 略大。
这验证了预测控制对于模型精度 要求不高的优势,即使模型失配, 也能取得不错的控制效果,
05
总结
总结
模型预测控制
预测控制:不仅利用当前和过去的偏差值,而且还利用预测模 型来预测过程未来的偏差值。以滚动优化确定当前的最优控制 策略,使未来一段时间内被控变量与期望值偏差最小
增大P: 系统的快速性变差,稳定性增强; 减小P: 快速性变好,稳定性变差。
智能预测控制讲稿南开大学PPT课件
第二章 模型预测控制基础理论
2.1 模型预测控制的结构及典型算法 2.1.1 模型预测控制系统的结构
模型预测控制(MPC)系统大致包括四部分: ① 预测模型:以各种不同的预测模型为基础; ② 滚动优化:采用在线滚动优化指标; ③ 反馈校正:对预测误差在线校正; ④ 参考轨迹:对设定值给出一个柔化的轨迹。
第一章 绪论
1.2 预测控制发展与早期研究 1.2.2 预测控制的早期研究 理论分析:稳定性分析、鲁棒性分析。 算法的改进与推广:简化算法、多变量系统、模型及目标函数改进。 工程应用:石油、化工、冶金、造纸、水泥、锅炉、窑炉等过程工业, 出现了多种运行于集散式控制系统上的商业化模型预测控制软件包。 1.3 现代预测控制
预测控制与其它先进控制方法结合。
自适应预测控制;
鲁棒预测控制; 多变量解耦预测控制; 非线性系统预测控制; 模糊预测控制; 神经网络预测控制; 多速率采样预测控制; 多模型切换预测控制; 有约束预测控制; 预测函数控制。
第一章 绪论
参考书目 [1] 席裕庚,预测控制,国防工业出版社。 [2] 舒迪前,预测控制理论及应用,机械工业出版社。 [3] 王伟,广义预测控制理论及应用,科学出版社。 [4] 诸静等,智能预测控制理论及其应用,浙江大学出版社。 [5] 钱积新等,预测控制,化工出版社。 [6] D W Clarke et.al, Generalized predictive control, Part I & II,
•解耦控制 •精确线性化 •鲁棒控制 •变结构控制 •自适应控制 •极点配置控制 •逆模型控制 •模型预测控制
•模糊控制 •神经网络控制 •基于规则的控制
--专家控制系统 •学习控制
模型预测控制课件
• 从基本思想看,预测控制优于PID控制
PPT学习交流
8
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
PPT学习交流
9
第二节 预测控制的基本原理 一.预测模型(内部模型)
• 预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} • 预测模型形式
• 参数模型:如微分方程、差分方程 • 非参数模型:如脉冲响应、阶跃响应
• Adersa(法) : HIECON
• Invensys : Predictive Control Ltd : Connoisseur
• DOT(英) : STAR
PPT学习交流
6
第一节 预测控制的发展
预测控制的特点 • 建模方便,对模型要求不高 • 滚动的优化策略,具有较好的动态控制效果 • 简单实用的反馈校正,有利于提高控制系统的鲁
5
第一节 预测控制的发展
预测控制有关公司及产品
• SetPoint : IDCOM
• DMC
: DMC
• AspenTech : SetPoint Inc : SMC- IDCOM
DMC Corp : DMCplus
• Profimatics: PCT
PPT学习交流
8
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
PPT学习交流
9
第二节 预测控制的基本原理 一.预测模型(内部模型)
• 预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} • 预测模型形式
• 参数模型:如微分方程、差分方程 • 非参数模型:如脉冲响应、阶跃响应
• Adersa(法) : HIECON
• Invensys : Predictive Control Ltd : Connoisseur
• DOT(英) : STAR
PPT学习交流
6
第一节 预测控制的发展
预测控制的特点 • 建模方便,对模型要求不高 • 滚动的优化策略,具有较好的动态控制效果 • 简单实用的反馈校正,有利于提高控制系统的鲁
5
第一节 预测控制的发展
预测控制有关公司及产品
• SetPoint : IDCOM
• DMC
: DMC
• AspenTech : SetPoint Inc : SMC- IDCOM
DMC Corp : DMCplus
• Profimatics: PCT
现代控制工程第10章预测控制PPT课件
由极值必要条件容易求得最优解为
U M (k ) F(WP (k ) YP0 (k ))
F ( AT QA R) 1 AT Q
7
10.2 .2 滚动优化
实际控制时只将作用于系统:
u(k) u(k, k) 1 0 ... 0U M (k)
d T (WP (k ) YP0 (k ))
d T 1 0 ... 0( AT QA R)1 AT Q
g
P1
gP2
...
gN
...
0
P(N 1)
23
10.5 模型算法控制
2.参考轨迹
T
yr (k ) yr (k 1) ...... yr (k P)
yr (k i) i y(k ) (1 i )c
i 1,2,, P
c是输出设定值。c y(k ) 对应镇定问题,否则对应跟踪问题。 对闭环系统的动态特性和鲁棒性都有关键作用。 越小,参考轨迹到达设定点越快。
11
10.3 动态矩阵控制的工程设计
(3)误差权矩阵Q:误差权矩阵表示了对k时刻起未来
不同时刻逼近的重视程度。
1)等权选择 q1 q2 ... q P 2)只考虑后面几项误差的影响
q1 q2 ... qi 0
qi1 qi2 ... q P q
3)对于具有纯时滞或非最小相位系统
当 ai 是阶跃响应中纯时滞或反向部分采样值;qi 0
17
10.4 炼油厂加氢裂化装置的动态矩阵控制
3.预测模型
由监控计算机对每一控制量产生伪随机双电平序列测试信
号进行测试,得到被控量的阶跃响应,构造动态矩阵。
4.滚动优化目标函数
约束条件为 Cu c
min J (k ) 1 uT Hu g T u
模型预测控制 PPT课件
现代典型过程对象的控制系统层次图
Unit1 为 传 统 结构 Unit2 为 MPC 结构
模型预测控制的基本特点
预测控制算法的核心内容:
建立内部模型 确定参考轨迹 设计控制算法 实行在线优化
预测控制算法的三要素为:
预测模型 滚动优化 反馈校正
模型预测控制的三要素
预测模型
对未来一段时间内的输出进行预测
工业自动化工具的发展(仪表)
年代 1950
1960
工业发展状况
仪表技术
化工、钢铁、纺织、造纸等,规 气动仪表,标准信号:20~100kPa
模较小;电子管时代
采用真空电子管;自动平衡型
记录仪
半导体技术;石油化工;计算机; 电动仪表,标准信号:0~10mA
大型电站;过程工业大型化
仪表控制室;模拟流程图;DDC
反馈校正
y (k+j|k)= ym(k+j|k) +e(k+j|k) e (k+j|k)= y (k|k) - ym (k|k)
反馈校正
2 3 y
u
4
yˆ(k 1) ym (k
e(k 1) yˆ(k
1
k k+1
t/T
1─k时刻的预测输出ym(k)
2─k+1时刻实际输出y (k+1)
3─预测误差e(k+1)
预测模型形式
➢ 参数模型:如微分方程、差分方程、状态方程、 传递函数等
➢ 非参数模型:如脉冲响应、阶跃响应、模糊模型、 智能模型等
预测模型
基于模型的预测示意图(P=M)
过去
未来
3
y
4
1u2ຫໍສະໝຸດ k 时刻1—控制策略Ⅰ 2—控制策略Ⅱ 3—对应于控制 策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
课件--模型预测控制
h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) jy(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
YP (k) Ym (k) βe(k)
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第四节 动态矩阵控制(DMC) 一. 预测模型
DMC的预测模型
渐近稳定线性被控对象的单位阶跃响应曲线
和给定值的偏差来确定当前的控制输入 预测控制:不仅利用当前的和过去的偏差值,
而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小 从基本思想看,预测控制优于PID控制
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
第二节 预测控制的基本原理 一.预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} 预测模型形式 参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
浙大工业过程控制11预测控制原理-PPT精品文档20页
课件
8
滚动优化(续)
过去
当前
设定值 轨迹
y(k-j)
未来
y (k+j| k)
预测时域
u (k+j| k)
u(k-j)
k-j
30.11.2019
控制时域
k
k+m
课件
k+p
9
反馈校正
每到一个新的采样时刻,都要通过实际 测到的输出信息对基于模型的预测输出进行 修正,然后再进行新的优化。不断根据系统 的实际输出对预测输出值作出修正使滚动优 化不但基于模型,而且利用了反馈信息,构 成闭环优化。
y f (k 1)
u(k)
Ysp (k) ,
ysp
(k
p)
Yf (k ) ,
y
f
(k
p )
U(k) u(k m1)
30.11.2019
课件
16
DMC 优化目标(续)
则目标函数为
J ( k ) ( Y s ( k p ) Y f( k ) T ( Y ) s ( k p ) Y f( k ) ) U T ( k ) U ( k )
y 0 ( k i|k ) y 0 ( k i|k 1 ) d ( k i|k )
• 输出预测误差:
d ( k i|k ) d ( k |k ) y m ( k ) y 0 ( k |k 1 )
• 校正后的输出预测值:
i
yf(ki) aj u(kij)y0(ki|k)(*) j 1
N
y(k)hju(k j) j1
阶跃响应模型(要求系统为开环稳定对象)
《基于模型预测控制》PPT课件
(3-3)
式中y(k)为当前时刻k的测量值。
yP (k j) ym (k j) j[y(k) ym (k)]
(3) 设定值与参考轨迹 假定设定值为yd。通常取式(3-1)的一阶指数变化形式,则有
j=1,2……p (4). 最优控制作用 设优化控制的目标函数为
yr (k j) j y(k) (1 j ) yd
N的选择显然与采样周期有关,对于给定的过程,采样周期短,则N会相应的增大。 通常可选N =20~60为宜。 ※ 输出预估时域长度P的选择 通常P越大,预测控制的鲁棒性就越强。但相应的计算量和存储量也增大。一般,P选 择等于过程单位阶跃响应达到其稳态值所需过渡时间的一半所需的采样次数。 ※控制时域长度M的选择
近年来已在化工、炼油、石油化工、冶金等企业中得到成功应用,已有商品化软件 出售。DMC算法包含预测模型、在线反馈校正、滚动优化等几部分。
10.3.3.广义预测控制
广义预测控制(Generalized Predictive Control 简称GPC)考虑过程随机噪音, 采 用易于在线辨识并能描述不稳定过程的CARMA受控自回归滑动平均模型和CARIMA受控 自回归积分滑动平均模型。
工业过程的多输入——多输出的高维 复杂系统难于建立精确的数学模型, 工业过程模型结构、参数和环境都有 大量不确定性;
工业过程都存在着非线性,只是程度 不同而已;
工业过程都存在着各种各样的约束, 而过程的最佳操作点往往在约束的边 界上等。
70年代以来,针对工业过程特点寻找 各种对模型精度要求低,控制综合质 量好,在线计算方便的优化控制算法。 预测控制是在这样的背景下发展起来 的一类新型计算机优化控制算法。
由于预测控制对于复杂工业过程的适应性,在国外许多企业得到广泛应用,取得显著 经济效益,国内亦有试点,逐步推广应用。它在工业过程有着广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预测时域
u (k+j| k)
u(k-j)
k-j
04.05.2020
控制时域
k
k+m
.
k+p
31
反馈校正
❖ 每到一个新的采样时刻,都要通过实际测到 的输出信息对基于模型的预测输出进行修正, 然后再进行新的优化。
❖ 不断根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利用了 反馈信息,构成闭环优化。
04.05.2020
.
16
滤波、预测与控制
❖ 预测:
▪ 已知信号的过去测量值: y(k), y(k-1), ……,y(k-n) ▪ 求解未来时刻期望值:y(k+1|k) , y(k+2|k) , ……
y(k)
预估器
y(k+d|k)
▪ 预估器:y(k+1|k)= b1y(k)+b2y(k-1)+……+any(k-n) y(k+2|k)= b1y (k+1|k) +b2y(k)+……+any(k-n+1) …….
常用预测模型
脉冲响应模型(要求系统为开环稳定对象)
N
y(k) gju(k j)
j1
阶跃响应模型(要求系统为开环稳定对象)
N1
y(k) aju(kj)aNu(kN) j1
u (k) u (k) u (k 1 )
04.05.2020
.
27
输出预测
利用预测模型得到输出预测ym(k+j|k) ym(k+j|k)=f[u(k-i),y(k-i)] i =1,2,3,……..j
高预测精度。
通过滚动优化和反馈校正弥补模型精度不高的 不足,抑制扰动,提高鲁棒性。
04.05.2020
.
14
滤波、预测与控制
❖ 3个相关概念:
▪ 滤波:已知信号的过去测量值,求当前时刻的真值或期望值。 ▪ 预测:已知信号的过去和当前时刻测量值,求未来若干步的期望
值。
▪ 控制:已知系统输入信号的过去测量值和输出信号的过去与当前
▪ 也利用未来预测值: y(k+1|k), y(k+2|k), ……, ▪ 优点:利用预测的变化趋势,超前调节
04.05.2020
.
20
预测控制的基本原理
r(k)
+_
d(k)
u(k)
y(k)
在线优化
受控过程
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
04.05.2020
.
21
预测模型
04.05.2020
.
6
预测控制的产生背景
❖ 现代控制理论的不足:
▪ 依赖精确模型 ▪ 适合多变量控制,但算法复杂 ▪ 实现困难:计算量大、鲁棒性差…..
❖ 工程实际:
▪ 对象越来越复杂,难以建模 ▪ 不确定因素多 ▪ ……
04.05.2020
.
7
预测控制的产生背景
❖ 工业过程对控制的要求
▪ 高质量的控制性能 ▪ 对模型要求不高 ▪ 强鲁棒性 ▪ 实现方便 ▪ 便于处理约束条件
控制科学与工程学科研究生学位课程
预测控制
Predictive Control
宋执环 浙江大学控制科学与工程学系
课程主要内容
预测控制概论 相关课程基础 模型算法控制-MAC 动态矩阵控制-DMC 广义预测控制-GPC 基于状态空间模型的预测控制 其它预测控制算法 预测控制研究现状与工业应用
04.05.2020
.
29
滚动优化(P=M)
滚动优化示意图
yr
y
k时刻优化 2
1 3
u
k+1时刻优化
2
yr
1
y
3
u
k k+1
04.05.2020
.
1─参考轨迹yr (虚线) 2─最优预测输出y(实线)
3─最优控制作用u
t/T
30
滚动优化(P>M)
过去
y(k-j)
当前
设定值 轨迹
未来
y (k+j| k)
04.05.2020
.
32
反馈校正
y(k+j|k)= ym(k+j|k) +e(k+j|k)
模型预测值 预测误差
e(k+j|k)= y (k|k) - y(k+j|k)
04.05.2020
.
33
误差校正示意图
2 3 y u k k+1
04.05.2020
反馈校正
yˆ(k1)ym(k1)e(k1) e(k1)y(k1)ym(k1)
间的一种折中(滚动优化+反馈校正); ❖ 预测控制是目前过程控制中处理多变量约束控制问
题的最有效方法之一; ❖ 预测控制中的典型代表:MAC、DMC和GPC;
▪ MAC:提供了一种先进控制技术的简单实现方式。 ▪ DMC:专门针对多变量约束系统提出的一种控制方法
,真正体现了预测控制的思想和优点。 ▪ GPC:提供了一种自适应预测控制框架,但并不适用于
多变量约束系统。
04.05.2020
.
12
预测控制的三要素
❖ 预测控制算法的核心内容:
▪ 建立内部模型、确定参考轨迹、设计控制算法、在线优化
❖ 预测控制算法的三要素为:
▪ 预测模型 ▪ 滚动优化 ▪ 反馈校正
04.05.2020
.
13
预测控制的三要素
❖ 预测模型:对未来一段时间内的输出进行预测; ❖ 滚动优化:滚动进行有限时域在线优化; ❖ 反馈校正:通过预测误差反馈,修正预测模型,提
04.05.2020
.
5
预测控制的产生背景
❖ 理论背景:
▪ 状态空间理论 ▪ 最优控制理论 ▪ 多变量控制理论 ▪ 应用:航空、机电等 ▪ ……
现代控制理论
(理论体系、方法、指标…..)
❖ 应用背景:
▪ 工业生产规模不断扩大 ▪ 对生产过程要求不断提高:质量、性能、安全…… ▪ 复杂性:非线性、不确定性、时变性、耦合、时滞……
时刻测量值,求能够社系统按期望轨迹运行的的当前时刻输入信 号值。
04.05.2020
.
15
滤波、预测与控制
❖ 滤波:
▪ 已知信号的过去测量值:y(k-1), y(k-2),……,y(k-n) ▪ 求解当前时刻期望值:y(k|k)
y(k-n)
滤波器
y(k|k)
▪ 滤波器:y(k|k)= a1y(k-1)+a2y(k-2)+……+any(k-n)
04.05.2020
.
18
预测控制
❖ 经典控制:
▪ 仅利用当前及过去测量值: u(k-1), ……,u(k-m), y(k), y(k-1), ……,y(k-n)
▪ 缺点:被动调节
r(k) +
控制器 u(k) 被控系统
y(k)
反馈
04.05.2020
.
19
预测控制
❖ 预测控制:
▪ 不仅利用当前及过去测量值: u(k-1), ……,u(k-m), y(k), y(k-1), ……,y(k-n)
04.05.2020
.
8
预测控制的产生背景
❖ 控制理论与工程应用之间存在矛盾:
精确建模
(现代控制理论)
不确定性
(实际工业过程)
04.05.2020
.
9
预测控制的产生背景
❖ 理论途径:理论 工程应用
▪ 自适应控制:在线调整控制器参数,以适应被控对象的变化。
▪ 鲁棒控制:在设计控制器时考虑对象的不确定性,使得控制系统在被控对象
4 1
t/T 1─k时刻的预测输出 2─k+1时刻实际输出 3─预测误差 4─k+1时刻校正后的预测输出
.
34
y(k-j)
u(k-j) k-j
04.05.2020
反馈校正
y(k) e (k)
y (k+j| k)
ym(k )
ym (k+j| k-1)
u (k+j )
yˆ(k1)ym(k1)e(k1) e(k1)e(k)y(k)ym(k)
❖ 预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和 未来输入{ u(k + j - 1) | j =1, …, M} ,预测系统未来 响应{ y(k + j) | j =1, …, P} 。
❖ 预测模型形式
参数模型:如微分方程、差分方程、状态方程、传递函数等 非参数模型:如脉冲响应、阶跃响应、模糊模型、智能模型
k
.
k+P
35
预测控制的特点
❖ 建模方便,不需要深入了解过程内部机理 ❖ 非最小化描述的离散卷积和模型,有利于提高
系统的鲁棒性 ❖ 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 ❖ 滚动的优化策略,较好的动态控制效果 ❖ 简单实用的模型校正方法,鲁棒性较强
04.05.2020
04.05.2020
.
25
常用预测模型
由于
( z I A ) ( Iz 1 A 2 A z 2 z 3 ) I
即 (z I A ) 1 z 1 I z 2 A z 3 A 2
因而 G (z)CAj1zjBhjzj
j1
j1
其中
hj CAj1B
04.05.2020
u (k+j| k)
u(k-j)
k-j
04.05.2020
控制时域
k
k+m
.
k+p
31
反馈校正
❖ 每到一个新的采样时刻,都要通过实际测到 的输出信息对基于模型的预测输出进行修正, 然后再进行新的优化。
❖ 不断根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利用了 反馈信息,构成闭环优化。
04.05.2020
.
16
滤波、预测与控制
❖ 预测:
▪ 已知信号的过去测量值: y(k), y(k-1), ……,y(k-n) ▪ 求解未来时刻期望值:y(k+1|k) , y(k+2|k) , ……
y(k)
预估器
y(k+d|k)
▪ 预估器:y(k+1|k)= b1y(k)+b2y(k-1)+……+any(k-n) y(k+2|k)= b1y (k+1|k) +b2y(k)+……+any(k-n+1) …….
常用预测模型
脉冲响应模型(要求系统为开环稳定对象)
N
y(k) gju(k j)
j1
阶跃响应模型(要求系统为开环稳定对象)
N1
y(k) aju(kj)aNu(kN) j1
u (k) u (k) u (k 1 )
04.05.2020
.
27
输出预测
利用预测模型得到输出预测ym(k+j|k) ym(k+j|k)=f[u(k-i),y(k-i)] i =1,2,3,……..j
高预测精度。
通过滚动优化和反馈校正弥补模型精度不高的 不足,抑制扰动,提高鲁棒性。
04.05.2020
.
14
滤波、预测与控制
❖ 3个相关概念:
▪ 滤波:已知信号的过去测量值,求当前时刻的真值或期望值。 ▪ 预测:已知信号的过去和当前时刻测量值,求未来若干步的期望
值。
▪ 控制:已知系统输入信号的过去测量值和输出信号的过去与当前
▪ 也利用未来预测值: y(k+1|k), y(k+2|k), ……, ▪ 优点:利用预测的变化趋势,超前调节
04.05.2020
.
20
预测控制的基本原理
r(k)
+_
d(k)
u(k)
y(k)
在线优化
受控过程
+ ym(k+j| k)
+
反馈校正
预测模型
y(k|k)
_ +
04.05.2020
.
21
预测模型
04.05.2020
.
6
预测控制的产生背景
❖ 现代控制理论的不足:
▪ 依赖精确模型 ▪ 适合多变量控制,但算法复杂 ▪ 实现困难:计算量大、鲁棒性差…..
❖ 工程实际:
▪ 对象越来越复杂,难以建模 ▪ 不确定因素多 ▪ ……
04.05.2020
.
7
预测控制的产生背景
❖ 工业过程对控制的要求
▪ 高质量的控制性能 ▪ 对模型要求不高 ▪ 强鲁棒性 ▪ 实现方便 ▪ 便于处理约束条件
控制科学与工程学科研究生学位课程
预测控制
Predictive Control
宋执环 浙江大学控制科学与工程学系
课程主要内容
预测控制概论 相关课程基础 模型算法控制-MAC 动态矩阵控制-DMC 广义预测控制-GPC 基于状态空间模型的预测控制 其它预测控制算法 预测控制研究现状与工业应用
04.05.2020
.
29
滚动优化(P=M)
滚动优化示意图
yr
y
k时刻优化 2
1 3
u
k+1时刻优化
2
yr
1
y
3
u
k k+1
04.05.2020
.
1─参考轨迹yr (虚线) 2─最优预测输出y(实线)
3─最优控制作用u
t/T
30
滚动优化(P>M)
过去
y(k-j)
当前
设定值 轨迹
未来
y (k+j| k)
04.05.2020
.
32
反馈校正
y(k+j|k)= ym(k+j|k) +e(k+j|k)
模型预测值 预测误差
e(k+j|k)= y (k|k) - y(k+j|k)
04.05.2020
.
33
误差校正示意图
2 3 y u k k+1
04.05.2020
反馈校正
yˆ(k1)ym(k1)e(k1) e(k1)y(k1)ym(k1)
间的一种折中(滚动优化+反馈校正); ❖ 预测控制是目前过程控制中处理多变量约束控制问
题的最有效方法之一; ❖ 预测控制中的典型代表:MAC、DMC和GPC;
▪ MAC:提供了一种先进控制技术的简单实现方式。 ▪ DMC:专门针对多变量约束系统提出的一种控制方法
,真正体现了预测控制的思想和优点。 ▪ GPC:提供了一种自适应预测控制框架,但并不适用于
多变量约束系统。
04.05.2020
.
12
预测控制的三要素
❖ 预测控制算法的核心内容:
▪ 建立内部模型、确定参考轨迹、设计控制算法、在线优化
❖ 预测控制算法的三要素为:
▪ 预测模型 ▪ 滚动优化 ▪ 反馈校正
04.05.2020
.
13
预测控制的三要素
❖ 预测模型:对未来一段时间内的输出进行预测; ❖ 滚动优化:滚动进行有限时域在线优化; ❖ 反馈校正:通过预测误差反馈,修正预测模型,提
04.05.2020
.
5
预测控制的产生背景
❖ 理论背景:
▪ 状态空间理论 ▪ 最优控制理论 ▪ 多变量控制理论 ▪ 应用:航空、机电等 ▪ ……
现代控制理论
(理论体系、方法、指标…..)
❖ 应用背景:
▪ 工业生产规模不断扩大 ▪ 对生产过程要求不断提高:质量、性能、安全…… ▪ 复杂性:非线性、不确定性、时变性、耦合、时滞……
时刻测量值,求能够社系统按期望轨迹运行的的当前时刻输入信 号值。
04.05.2020
.
15
滤波、预测与控制
❖ 滤波:
▪ 已知信号的过去测量值:y(k-1), y(k-2),……,y(k-n) ▪ 求解当前时刻期望值:y(k|k)
y(k-n)
滤波器
y(k|k)
▪ 滤波器:y(k|k)= a1y(k-1)+a2y(k-2)+……+any(k-n)
04.05.2020
.
18
预测控制
❖ 经典控制:
▪ 仅利用当前及过去测量值: u(k-1), ……,u(k-m), y(k), y(k-1), ……,y(k-n)
▪ 缺点:被动调节
r(k) +
控制器 u(k) 被控系统
y(k)
反馈
04.05.2020
.
19
预测控制
❖ 预测控制:
▪ 不仅利用当前及过去测量值: u(k-1), ……,u(k-m), y(k), y(k-1), ……,y(k-n)
04.05.2020
.
8
预测控制的产生背景
❖ 控制理论与工程应用之间存在矛盾:
精确建模
(现代控制理论)
不确定性
(实际工业过程)
04.05.2020
.
9
预测控制的产生背景
❖ 理论途径:理论 工程应用
▪ 自适应控制:在线调整控制器参数,以适应被控对象的变化。
▪ 鲁棒控制:在设计控制器时考虑对象的不确定性,使得控制系统在被控对象
4 1
t/T 1─k时刻的预测输出 2─k+1时刻实际输出 3─预测误差 4─k+1时刻校正后的预测输出
.
34
y(k-j)
u(k-j) k-j
04.05.2020
反馈校正
y(k) e (k)
y (k+j| k)
ym(k )
ym (k+j| k-1)
u (k+j )
yˆ(k1)ym(k1)e(k1) e(k1)e(k)y(k)ym(k)
❖ 预测模型的功能
根据被控对象的历史信息{ u(k - j), y(k -j) | j≥1 }和 未来输入{ u(k + j - 1) | j =1, …, M} ,预测系统未来 响应{ y(k + j) | j =1, …, P} 。
❖ 预测模型形式
参数模型:如微分方程、差分方程、状态方程、传递函数等 非参数模型:如脉冲响应、阶跃响应、模糊模型、智能模型
k
.
k+P
35
预测控制的特点
❖ 建模方便,不需要深入了解过程内部机理 ❖ 非最小化描述的离散卷积和模型,有利于提高
系统的鲁棒性 ❖ 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 ❖ 滚动的优化策略,较好的动态控制效果 ❖ 简单实用的模型校正方法,鲁棒性较强
04.05.2020
04.05.2020
.
25
常用预测模型
由于
( z I A ) ( Iz 1 A 2 A z 2 z 3 ) I
即 (z I A ) 1 z 1 I z 2 A z 3 A 2
因而 G (z)CAj1zjBhjzj
j1
j1
其中
hj CAj1B
04.05.2020