半导体器件物理(第七章)施敏第二版课件

合集下载

(施敏)半导体器件物理(详尽版)ppt

(施敏)半导体器件物理(详尽版)ppt

江西科技师范大学
半导体器件物理 如图,晶面ACC’A’在 坐标轴上的 截距为1,1,∞, 其倒数为1,1,0, 此平面用密勒指数表示 为(110), 此晶面的晶向(晶列指 数)即为[110];
晶面ABB’A’用密勒指 数表示为( 100 );
晶面D’AC用密勒指数 表示为( 111 )。
江西科技师范大学
禁带比较窄,常 温下,部分价带 电子被激发到空 的导带,形成有 少数电子填充的 导带和留有少数 空穴的价带,都 能带电
3~6eV
能带被电 子部分占 满,在电 场作用下 这些电子 可以导电
禁带很 宽,价 带电子 常温下 不能被 激发到 空的导 带
硅1.12eV
锗0.67 eV
砷化镓 1.42 eV 江西科技师范大学
半导体器件物理
第 章 半导体特性
1.1 半导体的晶格结构 1.2 半导体的导电性 1.3 半导体中的电子状态和能带
1
1.4 半导体中的杂质与缺陷
1.5 载流子的运动 1.6 非平衡载流子 1.7 习题
江西科技师范大学
半导体器件物理
● —— 本章重点
半导体材料的晶格结构 电子和空穴的概念 半导体的电性能和导电机理 载流子的漂移运动和扩散运动
半导体器件物理
共有化运动
由于晶体中原子的周期性 排列而使电子不再为单个 原子所有的现象,称为电 子共有化。
半导体中的电子是在周期性排列 且固定不动的大量原子核的势场 和其他大量电子的平均势场中运动。 这个平均势场也是周期性变化的, 且周期与晶格周期相同。
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动; 但内层电子的轨道交叠较 少,共有化程度弱些,外 层电子轨道交叠较多,共 有化程度强些。

半导体物理与器件ppt课件

半导体物理与器件ppt课件

2.23
h h K为波数=2π/λ, λ为波长。 2mE 15 P
2.3薛定谔波动方程的应用

2.3.2无限深势阱(变为驻波方程) 与时间无关的波动方程为:
2 x 2m 2 E V x x 0 2 x
2.13
由于E有限,所以区域I和III 中:
课程主要内容
固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章

1
绪论

什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
分别求解与时间无关的波动方程、与时间有关的波 动方程可得自由空间中电子的波动方程为:
j j x, t A exp x 2mE Et B exp x 2mE Et




2.22
说明自由空间中的粒子运动表现为行波。 沿方向+x运动的粒子: x, t A exp j kx t
18
2.3薛定谔波动方程的应用

无限深势阱(前4级能量)
随着能量的增加,在任意给 定坐标值处发现粒子的概率 会渐趋一致
19
2.3薛定谔波动方程的应用

2.3.3阶跃势函数
入射粒子能量小于势垒时也有一定概率穿过势垒 (与经典力学不同)

20
2.3薛定谔波动方程的应用

2.3.3阶跃势函数 Ⅰ区域 21 x 2mE 2 1 x 0 2.39 2

半导体器件物理2精品PPT课件

半导体器件物理2精品PPT课件

线性缓变结:在线性区 N (x) ax
2.1 热平衡PN结
2.1 热平衡PN结
p
EC
EF EV
n
EC EF EV
p
漂移
p
扩散
n
E
扩散 q0
EC
n
EF
Ei
EV 漂移
(a)在接触前分开的P型和N型硅的能带图 图2-3
(b)接触后的能带图
2.1 热平衡PN结
p 型电中性区
边界层
边界层
耗尽区
n 型电中性区
• 由P型半导体和N型半导体实现冶金学接触(原子级接 触)所形成的结构叫做PN结。
• 任何两种物质(绝缘体除外)的冶金学接触都称为结 (junction),有时也叫做接触(contact).
引言
• 由同种物质构成的结叫做同质结(如硅),由不同 种物质构成的结叫做异质结(如硅和锗)。由同种 导电类型的物质构成的结叫做同型结(如P-硅和P型硅、P-硅和P-型锗),由不同种导电类型的物质 构成的结叫做异型结(如P-硅和N-硅、P-硅和N- 锗)。因此PN结有同型同质结、同型异质结、异型 同质结和异型异质结之分。广义地说,金属和半导 体接触也是异质结,不过为了意义更明确,把它们 叫做金属-半导体接触或金属-半导体结(M-S结)。
2.2 加偏压的 P-N 结
2.2 加偏压的 P-N 结
• 2.2.1加偏压的结的能带图
能量 (E )
P
N
W
(a )
q 0 EC EF
(a)热平衡,耗尽层宽 度为 W
W
P
N
V
+
能量
(E )
E Fn
E Fp
(b )

半导体器件物理施敏

半导体器件物理施敏

NMOS晶体管基本结构与电路符号
栅极 源极
导体
绝缘体
栅极
栅极
n
n
p 掺杂半导体衬底
n 型MOS管
漏极
源极
漏极 源极
漏极
衬底 耗尽型电路符号
衬底 增强型电路符号
PMOS晶体管基本结构与电路符号
栅极 源极
导体 绝缘体
栅极
栅极
p
p
n 掺杂半导体衬底
p 型MOS管
漏极
源极
漏极 源极
漏极
衬底
衬底
耗尽型电路符号
二、界面陷阱与氧化层电荷
主要四种电荷类型:界面陷阱电荷、氧化层固定电荷、氧化层陷阱电荷和可动离子 电荷。
金 属
氧化层陷阱电荷
可动离子电荷 Na+K+氧源自层固定电荷SiO2Si
界面陷阱电荷
实际MOS二极管的C-V曲线
平带电压:
VFBmsQf Q Cm oQot
实际MOS二极管的阈值电压:
V T V F B qC A W o N m ψ s(i n V Fv B) 2sq C o A ( N 2 ψ B ) 2 ψ B
理想MOS二极管的C-V曲线
V=Vo+ψs C=CoCj/(Co+Cj) 强反型刚发生时的金属平行板电压— —阈值电压
一旦当强反型发生时,总电容保持在最小值Cmin。
理想MOS二极管的C-V曲线
理想情况下的阈值电压:
V TqC A N W omψ s(in v 2s)qC o A N (2 ψ B )2 ψ B
三种 状态
由p型半导体构成的MOS结构在各种VG下的表面势和空间电荷分布:
表面电势ψs:

半导体物理ppt课件

半导体物理ppt课件

§1.2.4电子在周期场中的运动——能带论
2、电子在周期场中的运动
布洛赫曾经证明,满足式(1-13)的波函数一定具有如下
形式: k x uk (x)ei2 kx
(1-14)
式中k为波矢,uk (x)是一个与晶格同周期的周期性函数, 即:
uk (x) uk (x na)
式中n为整数。
§1.2半导体中的电子状态和能带
§1.2.4电子在周期场中的运动——能带论
2、电子在周期场中的运动 式(1-13)具有式(1-14)形式的解,这一结论称为布洛赫
定理。具有式(1-14)形式的波函数称为布洛赫波函数 晶体中的电子运动服从布洛赫定理:
晶体中的电子是以调幅平面波在晶体中传播。 这个波函数称为布洛赫波函数。
§1.1 晶体结构预备知识,半导体晶体结构 2.几种晶格结构
如果只考虑晶格的周期性,可用固体物理学原胞表示:
简立方原胞:与晶胞相同,含一个原子。

体心立方原胞:为棱长
3 2
a
的简立方,含一个原子。

面心立方原胞:为棱长
2 2
a
的菱立方,由面心立方体对
角线的;两个原子和六个面心原子构成,含一个原子。
§1.2半导体中的电子状态和能带
§1.2.4电子在周期场中的运动——能带论
1、自由电子的运动状态 对于波矢为k的运动状态,自由电子的能
量E,动量p,速度v均有确定的数值。 波矢k可用以描述自由电子的运动状态,
不同的k值标志自由电子的不同状态 自由电子的E和k的关系曲线,呈抛物线
形状。 由于波矢k的连续变化,自由电子的能量
(e)(100)面上的投影
§1.1 晶体结构预备知识,半导体晶体结构 4.闪锌矿型结构

半导体器件物理ppt 共62页

半导体器件物理ppt 共62页


N
A
WE
显示三段掺杂区域的杂质浓度,发射
区的掺杂浓度远比集电区大,基区的
浓度比发射区低,但高于集电区浓度
。图4.3(c)表示耗尽区的电场强度分
E
布情况。图(d)是晶体管的能带图,
它只是将热平衡状态下的p-n结能带
直接延伸,应用到两个相邻的耦合p
+-n结与n-p结。各区域中EF保持水平 。
EC EF
如 图 为 一 p-n-p 双 极 型 晶 体 管 的透视图,其制造过程是以p型半 导体为衬底,利用热扩散的原理 在p型衬底上形成一n型区域,再 在此n型区域上以热扩散形成一高 浓度的p+型区域,接着以金属覆 盖p+、n以及下方的p型区域形成 欧姆接触。
天津工业大学
现代半导体器件物理
双极型晶体管及相关器件 3
双极型晶体管工作在放大模式
IE
发射区
P
V EB
基区
n
IB
集电区
P V BC
IC
输出
图 (a) 为 工 作 在 放 大 模 式 下 的 共 基组态p-n-p型晶体管,即基极被输 入与输出电路所共用,图(b)与图(c) 表示偏压状态下空间电荷密度与电场
强度分布的情形,与热平衡状态下比
较,射基结的耗尽区宽度变窄,而集 基结耗尽区变宽。图(d)是晶体管工 作在放大模式下的能带图,射基结为 正向偏压,因此空穴由p+发射区注 入基区,而电子由基区注入发射区。
流往基区的电子电流。
发射区 (P)
}I EP
I En
基区 (n) I BB
}
IB
空穴电流 和空穴流
图 4.5
集电区 (P)
}I CP
IC
ICn

半导体器件物理6施敏

半导体器件物理6施敏

半导体器件的应用领域
电子设备:包括计算机、手机、电视等 通信系统:包括移动通信、卫星通信等 电力系统:包括太阳能电池、风力发电等 医疗设备:包括医疗影像系统、医疗机器人等 军事领域:包括雷达、导弹等
03
施敏的生平与贡献
施敏的生平简介
施敏的出生背景
施敏的教育经历
施敏的学术成就
施敏的社会影响
施敏在半导体器件物理领域的贡献
施敏对半导体器 件物理理论的贡 献
施敏对半导体器 件物理领域的影 响力
施敏的学术贡献 对半导体器件物 理领域的影响
对半导体器件物理领域的展望和未来发展方向的探 讨
新材料和新技术的 引入将推动半导体 器件物理领域的进 步
人工智能和大数据 将在半导体器件物 理领域发挥重要作 用
未来半导体器件将 更加智能化和自适 应
半导体器件的基本原理
半导体材料特性:介绍半导体材料的导电特性、能带结构等基本知识。
半导体器件的基本结构:介绍半导体器件的基本结构和工作原理, 包括PN结、二极管、晶体管等。 半导体器件的工作原理:详细介绍半导体器件的工作原理,包括电流、 电压、电容等物理量的变化和相互作用。 半导体器件的特性参数:介绍半导体器件的特性参数,如伏安特性、 频率特性、噪声系数等,以及这些参数对器件性能的影响。
06
半导体器件物理的 应用领域
微电子学领域的应用
集成电路:将大量电子元件集成在一块芯片上,实现电子设备的微型化和高效化
晶体管:用于放大、开关、稳压等作用,是现代电子设备的基本元件
二极管:用于整流、检波、稳压等,是数字和模拟电路中的重要元件 集成电路在微电子学领域的应用:将大量电子元件集成在一块芯片上,实现电子设备的微 型化和高效化

半导体物理课件

半导体物理课件
32
考虑一维情况,根据波函数和薛定谔方程,可 以求得:
v = hk /m0
E = h2k2/2m0
根据上述方程可以看出:对于自由电子能量和 运动状态之间呈抛物线变化关系;即自由电子 的能量可以是0至无限大间的任何值。
33
1.晶体中的薛定谔方程及其解的形式
晶体中电子遵守的薛定谔方程 布洛赫定理及布洛赫波
布洛赫波函数中的波矢k与自由电子波函数 中的一样,描述晶体中电子的共有化运动状 态。
37
2.布里渊区与能带
求解晶体中电子的薛定谔方程,可得如 图1-10(a)所示的E(k)~k关系。
K = n/2a (n = 0, ±1, ±2, …)时能量出 现不连续。
简约布里渊区(图1-10(c))
38
由于k是分立的,所以布里渊区中的能级 是准连续的。
每个能带最多可以容纳2N个电子。
42
三维晶格布里渊区的做法(略) 参见教材P15-P16
43
1.2.3导体、半导体、绝缘体的能带
44
45
46
47
三者的主要区别: 禁带宽度和导带填充程度
金属导带半满 半导体禁带宽度在1eV左右 绝缘体禁带宽且导带空
规律 领会“结构决定性质” 处理方法 单电子近似——能带论
4
单电子近似 假设每个电子是在周期性排列且固定不
动的原子核势场及其它电子的平均势场 中运动。该势场具有与晶格同周期的周 期性势场。
5
1.1 半导体的晶格结构和结合性质
预备知识 晶体(crystal) 由周期排列的原子构成的物体 重要的半导体晶体 单质:硅、锗 化合物:砷化镓、碳化硅、氮化镓
沿磁场方向做匀速运动,速度
v|| vcos

半导体器件物理之半导体材料省公共课一等奖全国赛课获奖课件

半导体器件物理之半导体材料省公共课一等奖全国赛课获奖课件

本性质,总体性质上表现出各向同性。
1.1
第10页
半导体材料制备
从熔体中制备
Czochralski(提拉法):利用子晶生长
Growth from melt:
晶体
Slice boule into wafers:
Zone refining:
外延生长 Epitaxial growth:
晶体
Vapor phase Epitaxy MBE Liquid-phase epitaxy
k
-3/a -
/a 0 /a 2/a 3/a
2/a 扩展区方案
/a 0 /a k
简约区方案
一维近自由电子模型能带和带隙 第23页
紧束缚近似 LCAO-Linear combination of atomic orbitals
能够用强定域化原子波函数线性组合来构建Bloch函数。
紧束缚近似表明:假如晶格间距a比较大原子,相互之间离得比较 远,则每个原子能级含有N重简并,而当a减小时,波函数重合造成 能带。
直接和间接禁带
1.3
Ge, Si和GaAs能带结构。
第27页
带隙温度依赖
大多数半导体能隙随温度升 高而降低。
Ge Si GaAs 0K:0.743, 1.17, 1.519 eV 室温: 0.66, 1.12, 1.42 eV
Eg(T)=Eg(0) - T2/(T+)
Ge, Si和GaAs能隙随温度
CVD、PVD方法(非晶薄膜):
1.1
第11页
§1.2 晶体结构--单晶半导体材料
晶体中原子周期性排列称为晶格,整个晶格能够用单胞来描述, 重复单胞能够形成整个晶格。
三种立方晶体单胞

《半导体器件物理》课件

《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性

半导体器件物理(第七章) 施敏 第二版

半导体器件物理(第七章) 施敏 第二版

VD
饱和区
I Dsat
I
P
1 3
VG Vbi VP
2 3
VG Vbi VP
3
/
2
VDsat VP VG Vbi
gm
ZnqNDa
L
1
VG Vbi VP
击穿区
击穿电压: VB=VD+|VG|
MESFET增强型模式
阈值电压:VT Vbi VP
I Dsat
Zn S
2aL
VG VT
肖特基势垒电流电压特性
在热电子发射情况下,金属半导 体接触的电流电压表示为
J
JS
exp
qV kT
1
JS
A*T 2
exp
qBn
kT
A*称为有 效理查逊 常数
少数载流子电流密度
JP
J
P
0
exp(
qV kT
)
1
J P0
qDp ni 2 LP ND
通常,少数载流子电流比多数载 流子电流少数个数量级。
线性区 饱和区
I
Z L
nCi VG
VT
VD
VDsat VG VT
I
Zn S2Ld1 d0 d NhomakorabeaVG
VT
2
对高速工作状态而言,载流子速度 达到饱和,此时饱和区电流、跨导 和截止频率:
Isat Zvsqns ZvsCi (VG VT )
gm ZvsCi
fT
gm
2C总电容
vs
2 L
CP ZCi
7.2.3 电流电压特性
电流电压方程式
I
IP
VD VP
2 3

半导体器件物理 课件

半导体器件物理 课件

2
16
4、本征载流子浓度
E EC E Ei n ni N C exp i p pi NV exp V kT kT Eg EC EV ni pi N C NV exp N C NV exp kT kT Eg 2 2 AT exp n p i i kT
Si
Si
Si Si Si
Si
Si
Si Si Si
Si p
Si Si
Si
Si
Si Si Si
Si Si
B Si
Si
Si
+
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si Si
B Si Si
+
Si
Si
Si
p
Si
施主杂质 EC
受主杂质
+
-
EC
+
+
+
+
EC
0.016~0.065eV
0.04~0.05eV
EV
dN(x)/dx|x=xj = C
突变结近似--dN(x)/dx|x=xj =|C| ○单边突变结—对于突变结,若p区掺杂浓度远高于n区掺杂浓度,或反之。 即:NA>>ND,用p+n表示;ND>>NA,用pn+表示。 ★理论上通常将pn结按突变结或线性缓变结近似处理。
线性缓变结
突变结变结近似
27
三、pn结基本物理特性
简并半导体
23
Part Ⅱ Bipolar Devices

物理半导体器件物理PPT课件

物理半导体器件物理PPT课件

部分 插图为串联的电容器
C / Co
1.0
10Hz
0.8
102 Hz
Si SiO2
0.6
NA d
1.451016 200nm
cm3103
Hz
104 Hz 105 Hz
20 10
0
10
20
V /V
(b) C V图的频率效应
图 5.7
第15页/共71页
MOS二极管
例2:一理想MOS二极管的NA=1017cm-3且d=5nm,试计算其C-V曲线中的 最小电容值.SiO2的相对介电常数为3.9。
Co V
Co d Cj
VT
Cmin
0
V /V
(a) 高频MOS C-V图,虚线显示其近似
部分 插图为串联的电容器
对于n型衬底,只需变更相对应符号与标志后(如将Qp换成Qn),得图到5.7 类似的表达式.与p型衬底相比:
(1)电容-电压特性具有相同的外观,彼此成镜面对称, (2) p型衬底的 VT > 0, n型衬底的VT < 0 .
当 np = NA 时,开始产生强反型; 当 np > NA 时,处于强反型。
EC Ei
Qm
EF
发生强反型后:
V 0 EF
EV
0
V 0
(1) 反型层的宽度 xi ≈ 1nm ~ 10nm,且xi<<W(;b) 耗尽时EF
(2) 随V的增加,能带稍微增加弯曲程度,np急剧
增大,而W不再增大,达到最大值;
(a) M(aO)SM二O极S二管极的管透的视透图视图
(b)) MMOOSS二二极极管管的的剖剖面图面图
当金属板相对于欧姆接图图触55. .为11 正偏压时,V>0; 当金属板相对于欧姆接触为负偏压时,V<0.

半导体器件物理 施敏 第二版页PPT文档

半导体器件物理 施敏 第二版页PPT文档
第4章 PN结
4.1 基本工艺步骤 4.2 热平衡状态 4.3 耗尽层 4.4 耗尽层势垒电容 4.5 电流-电压特性 4.6 电荷储存与暂态响应 4.7 结击穿 4.8 异质结
本章主题
电特性和物理特性上p-n结的形成 在偏压下,结耗尽层的特性 电流在p-n结的输运,产生及复合对其的影响 p-n结的电荷储存对其暂态响应的影响 发生在p-n结的雪崩倍增及其对最大反向电压
变容器
许多电路应用p-n结在反向偏压电压变 化特性,达此目的的p-n结称为变容器
反向偏压势垒电容
C J V b i V R ( n当 V RV b i时 , C J V R n )
其中对线性缓变结n=1/3,突变结n=1/2 ,超突变结 n>1/2 电压灵敏度:超突变结>突变结>线性缓变结
VR p+
n
超突变结m=-3/2 线性缓变结m=1 突变结m=0
三种结的杂质分布
耗尽区宽度和反向偏压的关系 w (VR)1/(m+2)
CJ W S VR 1( / m2)
4.5 电流电压特性
理想电流电压特性基于如下假设
1 耗尽区为突变边界,边界之外为电中性 2 在边界的载流子浓度和静电电势有关 3 小注入情况,(在中性区边界,多数载 流子因加上偏压改变的量可忽略) 4 在耗尽区内无产生和复合电流,空穴电 子为常数
继续扩散。
在平衡态,扩散=漂移, BJ =常数
p
-- ++ -- ++
n
电荷和电势分布满足Poisson方程: BJ
ddx22 ss,sq(NDNApn)
内建电势
内建电势概念
在热平衡时p型和n型中性区的总静电势差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2.3 电流电压特性
I IPVVDP 32VDVVGPVbi3/232VGVPVbi3/2
IPZn2q2NSLD2a3,VPq2NDSa2
电流电压方程式
ID
IP VP
1
VG Vbi VP
1/ 2
VD
gm
I D VG
VD
IP 2VP 2
VP VG Vbi
VD
线性区
I Dsat
I
P
1
A qnN D A
MESFET耗尽 区宽度变化
L
与输出特性
qnN DZ (a W )
沟道电阻
VDsat q2NDSa2Vbi,VG0
饱和电压
VDsat q2NDSa2 VbiVG
在此漏极电压时,漏极和源极被夹断, 此时漏极电流称为饱和电流IDsat 。
加入VG使得栅极接触被反偏,当VG 增大至一特定值时,耗尽区将触到 半绝缘衬底,此时VD为饱和电压。
q(BnBp)Eg
内建电势:
VbiBnVn
电荷、电场分布 S
qND
0
W
X
➢与单边突变结p+-n结类似
E W
0 X
-Em
相关公式1
E(x)
qND
S
Wx
Em
qND
S
x
Em
qNDW
S
相关公式2
Vbi
V
EmW 2
qNDW 2
2S
W 2S Vbi V
qND
QSC qNDW 2qS ND ( Vbi V )
3
VG Vbi VP
2 3
V
G
V VP
bi
3/2
V Dsat V P V G V bi
gm
Z n qN
L
Da
1
VG Vbi VP
饱和区
VT VbiVP
IDsat
ZnS
2aL
VG VT
2
击穿区
击穿电压: VB=VD+|VG|
MESFET增强型模式
阈值电压:gmZanLSVGVT
7.1 金属-半导体接触
7.1.1 基本特性
金属与n型,理想情况,势垒高度为金属 功函数与电子亲和力之差:
qBnqmqx
金属与p型,势垒高度为:
qB pE gqmqx➢金属Leabharlann n半导体接触能带图(Wn>Ws)
(a)接触前 (b)间隙很大 (c)紧密接触 (d)忽略间隙
对已知半导体与任一金属而言, 在n型和p型衬底上势垒高度和恰好 为半导体的禁带宽度公式如下
线性区 VDsatVGVT
饱和区 I2Ld1Zdn0SdVGVT2
IsaZt sqvsnZsCiv(VGVT)
对高速工作状态而言,载流子速度 达到饱和,此时饱和区电流、跨导 和截止频率:
gm ZvsCi
fT
2
gm
C总电容
2
vs
L
CP ZCi
No Image
作业:
P243 1、7、9 比较MOSFET和MESFET两种器件? 比较PN结二极管和肖特基势垒二极管两种器件?
7.1.3 欧姆接触
当一金属半导体的接触电阻相对于半导 体主体或串联电阻可以忽略不计,就叫 做欧姆电阻
欧姆电阻的一个指标为特定接触电阻
RC
J V
1 v0
低掺杂浓度 的金半
RC
k expq(Bn)
qA*T kT
高掺杂浓 度的金半
RC
~
exp
C
2
Bn
N D
exp
4
m n S Bn
N D
7.2 金半场效应晶体管
7.2.1 器件结构
MESFET具有三个金属半导体接触,
一个肖特基接触作为栅极以及两个当作源 极与漏极的欧姆接触,主要器件参数包含 栅极长度L,栅极宽度Z以及外延层厚度a, 大部分MESFET是用n型Ⅲ-Ⅴ族化合物半 导体制成。
7.2.2 工作原理
RL L
不同偏压下,
相关公式3
C Q SC S
V W
1 C2
2 (V bi V )
q S N D
ND
2
q S
1
d
(1
/
C
2
)
/
dV
7.1.2 肖特基势垒
肖特基势垒指一具有大的势垒
高度(也就是,Bn或BpkT)
以及掺杂浓度比导带或价带上态密 度低的金属半导体接触,其电流主 要由多数载流子完成。
热电子发射过程的电流输运
肖特基势垒电流电压特性
在热电子发射情况下,金属半导 体接触的电流电压表示为
J
J S exp
qV kT
1
JS
A * T 2 exp
q Bn kT
A*称为有 效理查逊 常数
少数载流子电流密度
JP
J
P
0
exp
(
qV kT
)
1
J P0
qD p ni 2 LP N D
通常,少数载流子电流比多数载 流子电流少数个数量级。
ND
(x)xd
x
qNDd12
2S
VT
Bn
EC q
VP
传统MODFET结构
7.3.1 MODFET的基本原理
MODFET为异质结构的场效应器件
相 关 公 式
IZCVVV n i G T D 增强型MODFET
L 的能带图
7.3.2 电流-电压特性
MODFET的电流-电压特性可利用类似 MOSFET的渐变沟道近似法来求得。
第7章 MESFET及相关器件
7.1 金属-半导体接触 7.2 金半场效应晶体管(MESFET) 7.3 调制掺杂效应晶体管
本章主题
整流性金半接触及电流电压特性 欧姆性金半接触及特定接触电阻 MESFET及其高频表现 MODFET及二维电子气 MOSFET、MESFET、MODFET比较
跨导:
两 种 模 式 特 性 比 较
fT2gCmG2ZZsvsLs/W/W2vsL
7.2.4 高频性能
截止频率:MESFET无法再将输入信号 放大的频率。
要增加截止频率必须缩小栅极长度和使 用高速度的半导体。
不同种类半导体中,电子漂移速度与电场关系图
7.3 调制掺杂场效应晶体管
q
VP S
d 0
相关文档
最新文档