高考数学真题分类汇编专题10:平面解析几何(基础题)
精选新版2020高考数学专题训练《平面解析几何初步》完整版考核题(含答案)
2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4(2001全国文2)二、填空题2.一直线倾斜角的正切值为43,且过点()1,2P ,则直线方程为_____________。
3.过点(1,2)P 且与直线2100x y +-=垂直的直线方程为_____4.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于________.解析:∵直线y =ax -2和y =(a +2)x +1互相垂直,∴a ·(a +2)=-1,∴a =-1.5.若直线l :y =kx -1与直线x +y -1=0的交点位于第一象限,则实数k 的取值范围是 ________.解析:解法一:由⎩⎪⎨⎪⎧ y =kx -1x +y -1=0,得⎩⎪⎨⎪⎧ x =2k +1y =k -1k +1.由题意知⎩⎪⎨⎪⎧ 2k +1>0k -1k +1>0,∴k >1.解法二:直线l 过定点(0,-1),由数形结合知k >1.6.已知圆心角为120°的扇形AOB 的半径为1,C 为弧AB 的中点,点D ,E 分别在半径OA ,OB 上.若CD 2+CE 2+DE 2=269,则OD +OE 的最大值是________.7.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α= ▲ .8.直线(1)2x m y m ++=-与28mx y +=-垂直,则m =___▲___.9.已知04,k <<直线1:2280l kx y k --+=和直线222:2440l x k y k +--=与两坐标轴;围成一个 四边形,则使得这个四边形面积最小的k 值为10.已知圆C l :22(1)(1)1x y ++-=,圆C 2与圆C 1关于直线x -y -l =0对称,则圆C 2的方程为 .11.如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD ,设梯形部件ABCD 的面积为y 平方米.(I)按下列要求写出函数关系式:①设2CD x =(米),将y 表示成x 的函数关系式;②设()BOC rad θ∠=,将y 表示成θ的函数关系式(II)求梯形部件ABCD 面积y 的最大值.12.在平面直角坐标系xOy 中,设过原点的直线l 与圆C :22(3)(1)4x y -+-=交于M 、N 两点,若MN ≥l 的斜率k 的取值范围是______.13.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是_________14. 设点A 在x 轴上,点B 在y 轴上,线段AB 中点M(2,−1),则线段AB 长为_________15.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于16.在平面直角坐标系xOy 中,已知点M (0,3),直线l : x +y -4=0,点N (x ,y )是圆C :x 2+y 2-2x -1=0上的动点,MA ⊥l ,NB ⊥l ,垂足分别为A 、B ,则线段AB 的最大值为 ▲ .17.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点关于点(1,2)P 成中心对称,则直线AB 的方程为 .18.经过圆x 2+y 2+2x =0的圆心,且与直线x +y =0垂直的直线l 的方程是 ▲ .19.已知圆 C 与直线 0x y -= 及 40x y --= 都相切,且圆心在直线 0x y += 上,则圆C 的方程为___▲___.三、解答题20.选修4-4:坐标系与参数方程在极坐标系中,求圆4sin ρθ=上的点到直线cos 4πρθ⎛⎫+= ⎪⎝⎭将直线的极坐标方程cos 4πρθ⎛⎫+= ⎪⎝⎭21. (本小题满分16分) 已知函数()ln f x a b x =-(,a b R ∈),其图像在x e =处的切线方程为0x ey e -+=.函数()(0)k g x k x =>,()()1f x h x x =-. (Ⅰ)求实数a 、b 的值;(Ⅱ)以函数()g x 图像上一点为圆心,2为半径作圆C ,若圆C 上存在两个不同的点到原点O 的距离为1,求k 的取值范围;(Ⅲ)求最大的正整数k ,对于任意的(1,)p ∈+∞,存在实数m 、n 满足0m n p<<<,使得()()()h p h m g n ==.22.(本题满分14分)已知圆心()(1,2)0,1C ,且经过点(Ⅰ)写出圆C 的标准方程;(Ⅱ)过点(2,1)P -作圆C 的切线,求切线的方程及切线的长.23.已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为 求(1)a 的值; (2)求过点(3,5)并与圆C 相切的切线方程.24.(本小题满分14分)设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=,求该圆的方程.25. 已知圆C 经过P (4,– 2),Q (– 1,3)两点,且在y 轴上截得的线段长为径小于5.(1)求直线PQ 与圆C 的方程.(2)若直线l ∥PQ ,且l 与圆C 交于点A 、B ,90AOB ∠=︒,求直线l 的方程.26.根据下列条件求圆的方程:(1)经过坐标原点和点P (1,1),并且圆心在直线2x +3y +1=0上;(2)已知一圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.27.求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程.28.已知圆22:(1)(2)25C x y -+-=及直线:(21)(1)74()l m x m y m m R +++=+∈(1)求证:不论m 取何值,直线l 与圆C 恒相交;(2)求直线l 被圆C 截得的现场的最小值及此时的直线方程29.已知对直线l 上任意一点(,)x y ,点(42,3)x y x y ++也在直线l 上,求直线l 的方程。
江苏省宿迁市高考数学真题分类汇编专题10:平面解析几何(基础题)
江苏省宿迁市高考数学真题分类汇编专题 10:平面解析几何(基础题)姓名:________班级:________成绩:________一、 平面解析几何 (共 25 题;共 39 分)1. (2 分) 已知抛物线型拱桥的顶点距离水面 2 米时,测量水面宽为 8 米,当水面上升 1 米后,水面的宽度 是( )A . 1米B . 2米C.2 米D.4 米2. (2 分) 椭圆 的纵坐标是( )=1 的焦点为 F1 , 点 P 在椭圆上,如果线段 PF1 的中点 M 在 y 轴上,那么点 MA. B. C. D.3. (2 分) 已知双曲线 ﹣ =1(a>b>0),直线 l:y=x+t 交双曲线于 A、B 两点,△OAB 的面积为 S(O 为原点),则函数 S=f(t)的奇偶性为( )A . 奇函数B . 偶函数C . 不是奇函数也不是偶函数D . 奇偶性与 a,b 有关第1页共8页4. (2 分) 如图,F1、F2 是双曲线 - =1(a>0,b>0)的左、右焦点,过 F1 的直线 l 与 C 的左、右 2 个分支分别交于点 A、B.若△ABF2 为等边三角形,则双曲线的离心率为( )A.4 B.C. D.5. (2 分) (2018 高二上·成都月考) 设椭圆的左、右焦点分别为 、 ,是 上的点,,,则 的离心率为( ).A. B. C.D. 6. (2 分) 已知椭圆 A. B. C.的左焦点为,则()第2页共8页D.7. ( 2 分 ) (2018 高 一 下 · 汪 清 期 末 ) 在,则的面积为( )中,角的对边分别为,若A.B. C.D.8. (2 分) (2016 高二上·黑龙江期中) 设 F1 , F2 是双曲线 ﹣y2=1 的两个焦点,点 P 在双曲线上,且•=0,则||•||的值等于( )A.2B.2 C.4 D.8 9. (2 分) 已知△ABC 的三边分别为 4,5,6,则△ABC 的面积为( )A.B.C.D.10. (2 分) (2017 高二下·曲周期末) 若曲线两点,则的值为( )第3页共8页( 为参数)与曲线相交于 ,A. B. C. D.11. (2 分) (2015 高二下·乐安期中) 已知抛物线 y2=﹣4 x 的焦点到双曲线 的一条渐近线的距离为 ,则该双曲线的离心率为( )A. B. C.=l(a>0,b>0)D. 12. (2 分) 已知椭圆的对称轴是坐标轴,离心率为 , 长轴长为 12,则椭圆方程为( )A.或B.C.或D.或13. (2 分) 已知抛物线 轴,则双曲线的离心率为( )与双曲线有相同的焦点 F,点 A 是两曲线的交点,且 AF⊥xA.第4页共8页B. C.D.14. (1 分) (2016 高二上·江北期中) 已知点 P(x,y)在圆 x2+y2=1 上运动,则的最大值为________.15. (1 分) (2017 高二上·佳木斯月考) 已知点的动点,当最小时, 点坐标是________., 是抛物线的焦点, 是抛物线上16.(1 分)(2018 高二上·齐齐哈尔期中) 已知双曲线 的焦距等于 ,则 ________.的一个焦点是,椭圆17. (1 分) (2017 高二下·仙桃期末) 设圆 x2+y2=2 的切线 l 与轴的正半轴、轴的正半轴分别交于点 A、B, 当|AB|取最小值时,切线 l 的方程为________.18. (1 分) (2017 高二下·正阳开学考) 已知抛物线 y=﹣x2+3 上存在关于直线 x+y=0 对称的相异两点 A、B, 则|AB|=________.19. (2 分) 动点 M 与定点 F(5,0)的距离和它到直线 x= 的距离的比为 ,则点 M 的轨迹方程为________ 20. (1 分) 如果 x2+y2﹣2x+y+k=0 是圆的方程,则实数 k 的取值范围是________.21. (1 分) (2018 高二上·泸县期末) 已知圆上到直线数)的距离为 的点有且仅有 个,则直线 斜率的取值范围是________.(是实22. (1 分) (2018 高三上·龙泉驿月考) 、 分别为双曲线行于 轴的单位向量,则的最小值为________.左、右支上的点,设 是平23. (1 分) 与直线 2x+y+1=0 的距离为 的直线方程为________24. (1 分) (2018·河北模拟) 已知抛物线的焦点为 ,准线为 ,直线 与抛物线 相切于点 ,记点 到直线 的距离为 ,点 到直线 的距离为 ,则第5页共8页的最大值为________.25. (1 分) (2019 高二下·上海月考) 直线 点 到直线 和直线 的距离之和的最小值是________.和直线,抛物线上一动第6页共8页参考答案一、 平面解析几何 (共 25 题;共 39 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、 13-1、14-1、 15-1、 16-1、第7页共8页17-1、 18-1、 19-1、 20-1、 21-1、 22-1、 23-1、 24-1、 25-1、第8页共8页。
2019真题汇编-平面解析几何(答案解析版)
专题 平面解析几何1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A .2 B .3 C .4 D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .3.【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C的离心率为A BC .2D【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=,故选A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.4.【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A BC .D .【答案】A【解析】由2,a b c ====,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则P P b y x a =⋅==112224PFO P S OF y ∴=⋅==△,故选A . 【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.5.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b2C .a =2bD .3a =4b【答案】B【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 6.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .② C .①②D .①②③【答案】C 【解析】由221x y x y+=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可取的整数有0,−1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,−1),(1,0),(1,1), (−1,0),(−1,1),共6个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=四边形,很明显“心形”区域的面积大于2ABCD S 四边形,即“心形”区域的面积大于3,说法③错误.故选C.【名师点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题、解决问题的能力考查,渗透“美育思想”.将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.7.【2019年高考天津卷理数】已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||A B O F =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.8.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.9.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.10.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.11.【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 12.【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB=,120F B F B ⋅=,则C 的离心率为____________.【答案】2【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120F B F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=2c e a ====.【名师点睛】本题结合平面向量考查双曲线的渐近线和离心率,渗透了逻辑推理、直观想象和数学运算素养,采取几何法,利用数形结合思想解题.解答本题时,通过向量关系得到1F A AB =和1OA F A ⊥,从而可以得到1AOB AOF ∠=∠,再结合双曲线的渐近线可得21,BOF AOF ∠=∠进而得到2160,BOF AOF BOA ∠=∠=∠=从而由t a n 63ba=︒. 13.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.14.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x '=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 15.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)3728y x =-;(2【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.16.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. (2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.17.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2)3或【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.19.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||ON OF=(O为原点),且OP MN⊥,求直线PB的斜率.【答案】(1)22154x y+=;(2)5或5-.【解析】(1)设椭圆的半焦距为c,依题意,24,5cba==,又222a b c=+,可得a=2,b=1c=.所以,椭圆的方程为22154x y+=.(2)由题意,设()()()0,,0P P p MP x y x M x≠,.设直线PB的斜率为()0k k≠,又()0,2B,则直线PB的方程为2y kx=+,与椭圆方程联立222,1,54y kxx y=+⎧⎪⎨+=⎪⎩整理得()2245200k x kx++=,可得22045Pkxk=-+,代入2y kx=+得2281045Pkyk-=+,进而直线OP的斜率24510Ppy kx k-=-.在2y kx=+中,令0y=,得2Mxk=-.由题意得()0,1N-,所以直线MN的斜率为2k-.由OP MN⊥,得2451102k kk-⎛⎫⋅-=-⎪-⎝⎭,化简得2245k=,从而5k=±所以,直线PB或.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力. 21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1,此时G (2,0).【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得 ()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t -=-,得()21,0Q t -. 由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,1221222134324S m S m m m m =-=-=+++++….当m =时,12S S取得最小值1G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
高考数学压轴专题新备战高考《平面解析几何》分类汇编附答案解析
【高中数学】高考数学《平面解析几何》练习题一、选择题1.已知曲线C 的方程为22121x y m m+=-,现给出下列两个命题:p :102m <<是曲线C 为双曲线的充要条件,q :12m > 是曲线C 为椭圆的充要条件,则下列命题中真命题的是( )A .()()p q ⌝∧⌝B .()p q ⌝∧C .()p q ∧⌝D .p q ∧【答案】C 【解析】 【分析】根据充分必要条件及双曲线和椭圆定义,分别判定命题p 与命题q 的真假,进而判断出复合命题的真假. 【详解】若曲线C 为双曲线,则()210m m -< ,可解得102m << 若102m <<,则()210m m -<,所以命题p 为真命题 若曲线C 为椭圆,则12m >且m≠1,所以命题q 为假命题 因而()p q ∧⌝为真命题 所以选C 【点睛】本题考查了椭圆与双曲线的标准方程,充分必要条件的判定,属于基础题.2.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵233AF BF AB +=,∴2323AB mn≥,∴213mn AB≤,在△AFB中,由余弦定理得22222()2cos22m n AB m n mn ABAFBmn mn+-+--∠==212213222AB mn mn mnmn mn--=≥=-∴∠AFB的最大值为23π.故选:D【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.3.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于4π;④方程()223221)60(x y x y xy+=<表示的曲线C在第二象限和第四象限其中正确结论的序号是( )A.①③B.②④C.①②③D.②③④【答案】B【解析】【分析】利用基本不等式得224x y+≤,可判断②;224x y+=和()3222216x y x y+=联立解得222x y==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.4.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别为12,F F ,其右支上存在一点M ,使得210MF MF ⋅=u u u u r u u u r,直线:0l bx ay +=,若直线2//MF l 则双曲线C 的离心率为( ) A .2 B .2C .5D .5【答案】C 【解析】 【分析】易得且1MF l ⊥,从而l 是线段1MF 的垂直平分线求出直线1MF 的方程与渐近线方程联立求出交点坐标,进而求得M 坐标,根据勾股定理即可求解离心率. 【详解】由120MF MF ⋅=u u u u v u u u u v可得12MF MF ⊥易知直线:0l bx ay +=为双曲线的一条渐近线,可知l 的方程为by x a=-,且1MF l ⊥,从而l 是线段1MF 的垂直平分线,且直线1MF 的方程为()ay x c b=+设1MF ,与l 相交于点(),N x y .由 ()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩得2a x c aby c ⎧=-⎪⎪⎨⎪=⎪⎩即2,a ab N c c ⎛⎫-⎪⎝⎭,又()1,0F c -,由中点坐标公式,得222,.a ab M c c c ⎛⎫- ⎪⎝⎭由双曲线性质可得122MF MF a -=①,由12MF MF ⊥得222124MF MF c +=②,①②联立,可得2122MF MF b ⋅=所以点M 的纵坐标为2b c ,所以22b ab c c =即2b a =所以e == 故选:C 【点睛】本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.5.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B两点,且AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】 【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点. 设()()0,0,,,0A B m n m >.由AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.6.已知抛物线24y x =上有三点,,A B C ,,,AB BC CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为( )A .14,19⎛⎫⎪⎝⎭B .14,09⎛⎫ ⎪⎝⎭C .14,027⎛⎫⎪⎝⎭ D .14,127⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】设()()()112233,,,,,A x y B x y C x y ,进而用坐标表示斜率即可解得各点的纵坐标,进一步可求横坐标,利用重心坐标公式即可得解. 【详解】设()()()112233,,,,,,A x y B x y C x y 则1212221212124344AB y y y y k y y x x y y --====-+-,得1243y y +=, 同理234263y y +==,31422y y +==--,三式相加得1230y y y ++=, 故与前三式联立,得211231241,2,,3349y y y y x =-==-==,22214y x ==,233449y x ==,则12314327x x x ++=.故所求重心的坐标为14,027⎛⎫⎪⎝⎭,故选C. 【点睛】本题主要考查了解析几何中常用的数学方法,集合问题坐标化,进而转化为代数运算,对学生的能力有一定的要求,属于中档题.7.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5【答案】A 【解析】 【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232ce a ==; ②若24c x =,则2532a x x x =-=,得222ce a==; ③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.8.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,1223F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.9.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4, 则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .10.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b =所以双曲线的渐近线方程为23b y x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.11.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A .14B .12C .22D 3【答案】C 【解析】由题意可得,抛物线24x y =的焦点(0,1)F ,准线方程为1y =-.过点P 作PM 垂直于准线,M 为垂足,则由抛物线的定义可得PF PM =,则sin PF PM PAM PAPA==∠,PAM ∠为锐角.∴当PAM ∠最小时,PF PA 最小,则当PA 和抛物线相切时,PFPA最小.设切点)P a ,由214y x =的导数为12y x '=,则PA 的斜率为12⋅==. ∴1a =,则(2,1)P .∴2PM =,PA =∴sin PM PAM PA∠==故选C .点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化, 这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.12.已知双曲线2219x y m-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .34y x =? B .43y x =±C .3y x =±D .4y x =±【答案】B 【解析】根据题意,双曲线的方程为2219x y m-=,则其焦点在x 轴上,直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0, 则有925m +=, 解可得,16m =,则双曲线的方程为:221916x y -=,其渐近线方程为:43y x =±, 故选B.13.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A .6B .8C .10D .12【答案】C 【解析】 【分析】先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值. 【详解】由已知()2,0A ,()0,2B - 则222222AB =+=,又点M 到直线的最大距离为44285211+-+=+,所以最大面积为12252102⨯⨯=. 故选:C. 【点睛】本题考查圆上一点到直线的最大距离问题,是基础题.14.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫±⎪⎪⎝⎭B .135322,77⎛⎫±⎪⎪⎝⎭C .3217,3⎛⎫±⎪⎝⎭D.(45,±【答案】B 【解析】 【分析】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥,根据双曲线的定义得出15a =,再得出由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>,与双曲线()222713664x y --=联立,即可得出点P 坐标. 【详解】设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22221x y x a a b-=≥由于船P 到B 台和到A 台的距离差为30海里,故15a =,又=17c ,故8b =故由船P 到B 台和到A 台的距离差所确定的双曲线为()2211522564x y x -=>联立()()()222227121366411522564x y x x y x ⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135,77P ⎛⎫± ⎪ ⎪⎝⎭ 故选:B 【点睛】本题主要考查了双曲线的应用,属于中档题.15.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( ) A .18 B .30C .32D .36【答案】C 【解析】 【分析】 【详解】由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k-. 直线AB 的方程为y=k (x ﹣1), 联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0, 从而242A B x x k+=+,A B x x =1 由弦长公式得|AB|=244k+, 以1k-换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32. 故选C16.已知双曲线222:41(0)x C y a a -=>2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A .1B .2C .3D .4【答案】B 【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得,双曲线的右顶点为(,0)a ,渐近线方程为12y x a=±,即20x ay ±=.=234a =,∴双曲线的方程为224413x y -=,∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合, ∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F 到直线1l 的距离22416243d ⨯+==+.故选B .点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.17.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( ) A .32B .223C .22D .63【答案】B 【解析】 【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率. 【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =,11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=, 因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.18.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:221169x y +=,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ). A .20 B .18C .16D .以上均有可能【答案】C 【解析】 【分析】根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案. 【详解】依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16故选:C . 【点睛】本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.19.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2a C 2aD .22a 【答案】D 【解析】 【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD ∴==,即F 在侧面11CDD C 2. 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.20.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a 27+==2PQ PF =,从而11PFPQ FQ 27+==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a 27∴+==2PQ PF =,11PF PQ FQ 27∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,7为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
2022年全国高考数学真题及模拟题汇编:平面解析几何(附答案解析)
2022年全国高考数学真题及模拟题汇编:平面解析几何一.选择题(共12小题)1.(2021秋•房山区期末)圆心为(﹣2,3)且与y轴相切的圆的方程为()A.(x﹣2)2+(y+3)2=9B.(x+2)2+(y﹣3)2=9C.(x﹣2)2+(y+3)2=4D.(x+2)2+(y﹣3)2=42.(2021秋•成都期末)设直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0.若l1⊥l2,则a 的值为()A.0或1B.0或﹣1C.1D.﹣13.(2021秋•唐山期末)圆C1:x2+y2﹣4x+2y﹣4=0与圆C2:x2+y2+4x﹣4y+4=0的位置关系为()A.内切B.相交C.外切D.外离4.(2021秋•白云区期末)已知圆C的方程为x2+y2+2x﹣4y﹣4=0,则圆心C的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣2,4)D.(2,﹣4)5.(2021秋•河南月考)已知A(﹣1,2),B(3,5),则与直线AB平行且距离为2的直线方程为()A.3x﹣4y+21=0B.3x﹣4y﹣1=0C.3x﹣4y+21=0或3x﹣4y+1=0D.3x﹣4y﹣21=0或3x﹣4y﹣1=06.(2021秋•嫩江市期末)已知直线l1:(a﹣2)x+ay+2=0,l2:x+(a﹣2)y+a=0,则“a =﹣1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2021秋•平房区校级期末)若直线l:y=kx﹣3与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.B.C.D.8.(2021秋•河东区期末)已知抛物线y2=4x的焦点为F,P为抛物线上一点,过点P向准线作垂线,垂足为Q,若∠FPQ=60°,则|PF|=()A.1B.2C.3D.49.(2021秋•海淀区期末)若双曲线﹣=1(a>0,b>0)的一条渐近线经过点(,1),则双曲线的离心率为()A.B.C.D.210.(2021秋•重庆月考)已知椭圆的一个焦点坐标为(2,0),则m=()A.1B.2C.5D.911.(2021秋•榆林期末)已知直线l:mx﹣3y﹣4m+9=0与圆C:x2+y2=100相交于A、B 两点,则|AB|的最小值为()A.5B.5C.10D.1012.(2021秋•重庆月考)已知椭圆的左、右焦点分别为F1、F2,上顶点为A,抛物线E的顶点为坐标原点,焦点为F2,若直线F1A与抛物线E交于P,Q两点,且|P A|+|QA|=4a,则椭圆C的离心率为()A.B.C.D.二.填空题(共4小题)13.(2021秋•宜春期末)已知直线的倾斜角α=30°,且过点A(4,3),则该直线的方程为.14.(2021秋•滨海新区校级期末)在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为.15.(2021秋•南岗区校级期末)已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=上,则这个等边三角形的边长为.16.(2021秋•工农区校级期末)已知F1,F2为双曲线C:(a>0,b>0)的左、右焦点,双曲线的离心率为2,点P在双曲线C的右支上,且PF1的中点N在圆O:x2+y2=c2上,其中c为双曲线的半焦距,则sin∠F1PF2=.三.解答题(共6小题)17.(2021秋•房山区期末)在平面直角坐标系中,△ABC三个顶点坐标分别为A(2,﹣2)、B(6,6)、C(0,6).(Ⅰ)设线段AB的中点为M,求中线CM所在直线的方程;(Ⅱ)求边AB上的高所在直线的方程.18.(2021秋•房山区期末)已知圆M:x2+y2﹣2x=0与圆N:x2+y2﹣8x+a=0外切.(Ⅰ)求实数a的值;(Ⅱ)若直线x﹣y﹣2=0与圆M交于A,B两点,求弦AB的长.19.(2021秋•重庆月考)已知双曲线的一条渐近线斜率为,且双曲线C经过点M(2,1).(1)求双曲线C的方程;(2)斜率为的直线l与双曲线C交于异于M的不同两点A、B,直线MA、MB的斜率分别为k1、k2,若k1+k2=1,求直线l的方程.20.(2021秋•西固区校级期末)已知两定点A(﹣2,0),B(1,0),若动点P满足条件|P A|=2|PB|.(1)求动点P的轨迹C的方程;(2)求直线l:y=x被轨迹C所截得的线段长.21.(2021秋•让胡路区校级期末)以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.已知椭圆C的长轴长是短轴长的倍,且经过点,椭圆C的“准圆”的一条弦AB所在的直线与椭圆C交于M、N两点.(1)求椭圆C的标准方程及其“准圆”的方程;(2)当时,证明:弦AB的长为定值.22.(2021秋•1月份月考)如图所示,已知抛物线C:y2=2x,过点A(2,0)的直线l与抛物线C有两个交点,若抛物线C上存在不同的两点M,N关于直线l对称,记MN的中点为T.(1)求点T的轨迹方程;(2)求S△AMT的最大值.2022年全国高考数学真题及模拟题汇编:平面解析几何参考答案与试题解析一.选择题(共12小题)1.(2021秋•房山区期末)圆心为(﹣2,3)且与y轴相切的圆的方程为()A.(x﹣2)2+(y+3)2=9B.(x+2)2+(y﹣3)2=9C.(x﹣2)2+(y+3)2=4D.(x+2)2+(y﹣3)2=4【考点】直线与圆的位置关系.【专题】计算题;对应思想;综合法;直线与圆;数学运算.【分析】由所求圆与y轴相切可得,圆心P到y轴的距离等于半径,根据P点坐标求出P到y轴的距离,得到圆的半径,由圆心坐标和半径写出圆的标准方程即可.【解答】解:点(﹣2,3)到y轴的距离为2,所以圆的半径为2,所以圆心为(﹣2,3)且与y轴相切的圆的方程为(x+2)2+(y﹣3)2=4.故选:D.【点评】此题考查了圆的标准方程,要求学生会根据圆心坐标和半径写出圆的标准方程.由圆与y轴相切,根据P点横坐标的绝对值求出P到y轴的距离得到圆的半径是解本题的关键.2.(2021秋•成都期末)设直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0.若l1⊥l2,则a 的值为()A.0或1B.0或﹣1C.1D.﹣1【考点】直线的一般式方程与直线的垂直关系.【专题】方程思想;定义法;直线与圆;数学运算.【分析】利用直线与直线垂直的性质直接求解.【解答】解:∵直线l1:ax+(a﹣2)y+1=0,l2:x+ay﹣3=0,l1⊥l2,∴a×1+(a﹣2)×a=0,解得a=0或a=1.故选:A.【点评】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,是基础题.3.(2021秋•唐山期末)圆C1:x2+y2﹣4x+2y﹣4=0与圆C2:x2+y2+4x﹣4y+4=0的位置关系为()A.内切B.相交C.外切D.外离【考点】圆与圆的位置关系及其判定.【专题】转化思想;综合法;直线与圆;数学运算.【分析】求出两个圆的圆心与半径,通过圆心距与半径的关系判断选项即可.【解答】解:圆C1:x2+y2﹣4x+2y﹣4=0,即(x﹣2)²+(y+1)²=9的圆心(2,﹣1),半径为3;圆C2:x2+y2+4x﹣4y+4=0,即(x+2)²+(y﹣2)²=4的圆心(﹣2,2),半径为2;圆心距为=5,因为5=3+2,所以两个圆的位置关系是外切,故选:C.【点评】本题考查圆的位置关系的判断,求解圆的圆心与半径,两个圆的圆心距与半径的关系是解题的关键,属于基础题.4.(2021秋•白云区期末)已知圆C的方程为x2+y2+2x﹣4y﹣4=0,则圆心C的坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣2,4)D.(2,﹣4)【考点】圆的一般方程.【专题】转化思想;转化法;直线与圆;数学运算.【分析】根据已知条件,将圆的一般式方程转化为标准方程,即可求解.【解答】解:∵圆C的方程为x2+y2+2x﹣4y﹣4=0,∴(x+1)2+(y﹣2)2=9,∴圆心C的坐标为(﹣1,2).故选:A.【点评】本题主要考查圆心的求解,属于基础题.5.(2021秋•河南月考)已知A(﹣1,2),B(3,5),则与直线AB平行且距离为2的直线方程为()A.3x﹣4y+21=0B.3x﹣4y﹣1=0C.3x﹣4y+21=0或3x﹣4y+1=0D.3x﹣4y﹣21=0或3x﹣4y﹣1=0【考点】两条平行直线间的距离.【专题】转化思想;综合法;直线与圆;逻辑推理;数学运算.【分析】直接利用平行线间的距离公式的应用求出结果.【解答】解:已知A(﹣1,2),B(3,5),所以直线AB的斜率k=,所以直线AB的方程为,整理得3x﹣4y+11=0,设与直线AB平行的直线方程为3x﹣4y+c=0,利用平行线间的距离公式:,解得c=1或21.故直线的方程为3x﹣4y+21=0或3x﹣4y+1=0.故选:C.【点评】本题考查的知识要点:平行线间的距离公式,主要考查学生的运算能力和数学思维能力,属于基础题.6.(2021秋•嫩江市期末)已知直线l1:(a﹣2)x+ay+2=0,l2:x+(a﹣2)y+a=0,则“a =﹣1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件;直线的一般式方程与直线的垂直关系.【专题】转化思想;综合法;简易逻辑;逻辑推理;数学运算.【分析】直接利用直线垂直的充要条件的应用和充分条件和必要条件的应用求出结果.【解答】解:当a=﹣1时,则直线l1:﹣3x﹣y+2=0,直线l2:x﹣3y﹣1=0,则l1⊥l2,当l1⊥l2时,则(a﹣2)+a(a﹣2)=0,整理得a2﹣a﹣2=0,解得a=﹣1或2,故“a=﹣1”是“l1⊥l2”的充分不必要条件;故选:A.【点评】本题考查的知识要点:直线垂直的充要条件,充分条件和必要条件,主要考查学生的运算能力和数学思维能力,属于基础题.7.(2021秋•平房区校级期末)若直线l:y=kx﹣3与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.B.C.D.【考点】直线的图象特征与倾斜角、斜率的关系.【专题】转化思想;综合法;直线与圆;数学运算.【分析】联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,根据交点在第一象限得到横纵坐标都大于0,联立得到关于k的不等式组,求出不等式组的解集即可得到k的范围,然后根据直线的倾斜角的正切值等于斜率k,根据正切函数图象得到倾斜角的范围.【解答】解:联立两直线方程得:,将①代入②得:x=③,把③代入①,求得y=,所以两直线的交点坐标为(,),因为两直线的交点在第一象限,所以得到>0,且>0,解得:k>1,设直线l的倾斜角为θ,则tanθ>1,所以θ∈(,).故选:C.【点评】本题主要考查根据两直线的方程求出交点的坐标,掌握象限点坐标的特点,掌握直线倾斜角与直线斜率的关系,是一道综合题.8.(2021秋•河东区期末)已知抛物线y2=4x的焦点为F,P为抛物线上一点,过点P向准线作垂线,垂足为Q,若∠FPQ=60°,则|PF|=()A.1B.2C.3D.4【考点】抛物线的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】根据题意作出简图,可得△FPQ为等边三角形,在Rt△QNF中求解可得|QF|=4,从而得解.【解答】解:根据题意作出简图,如图所示:根据抛物线的定义可知|PF|=|PQ|,结合∠FPQ=60°,可得△FPQ为等边三角形,所以∠PQF=∠QFN﹣60°,在RtΔQNF中,因为|NF|=2,所以|QF|=4,所以|PF|=4.故选:D.【点评】本题考查了抛物线的定义及其简单几何性质,属于基础题.9.(2021秋•海淀区期末)若双曲线﹣=1(a>0,b>0)的一条渐近线经过点(,1),则双曲线的离心率为()A.B.C.D.2【考点】双曲线的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;逻辑推理;数学运算.【分析】求出渐近线方程,代入点的坐标,推出a,b关系,然后求解离心率即可.【解答】解:因为双曲线﹣=1(a>0,b>0)的一条渐近线经过点(,1),所以渐近线y=x经过点(,1),所以,从而e==.故选:A.【点评】本题考查双曲线的性质,考查运算求解能力.是基础题.10.(2021秋•重庆月考)已知椭圆的一个焦点坐标为(2,0),则m=()A.1B.2C.5D.9【考点】椭圆的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;逻辑推理;数学运算.【分析】利用椭圆方程求解a,结合焦点坐标,列出方程求解m即可.【解答】解:椭圆,可知a=,b=,因为椭圆的一个焦点坐标为(2,0),所以=2,解得m=1.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题.11.(2021秋•榆林期末)已知直线l:mx﹣3y﹣4m+9=0与圆C:x2+y2=100相交于A、B 两点,则|AB|的最小值为()A.5B.5C.10D.10【考点】直线与圆的位置关系.【专题】计算题;转化思想;综合法;直线与圆;数学运算.【分析】求出直线恒过定点D,定点D在圆内,故当弦AB与CD垂直时,弦|AB|长度最小.【解答】解:依题意,直线mx﹣3y﹣4m+9=0恒过定点D(4,3),∵D在圆C内部,故弦|AB|长度的最小时,直线AB与直线CD垂直,又|CD|==5,此时|AB|=2=10.故选:D.【点评】本题考查了直线恒过定点的求法,考查了圆的弦长问题.考查逻辑思维能力和计算能力,本题属于中档题.12.(2021秋•重庆月考)已知椭圆的左、右焦点分别为F1、F2,上顶点为A,抛物线E的顶点为坐标原点,焦点为F2,若直线F1A与抛物线E交于P,Q两点,且|P A|+|QA|=4a,则椭圆C的离心率为()A.B.C.D.【考点】椭圆的性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】由题设可得抛物线E为y2=4cx,直线F1A为x=y﹣c,联立方程应用韦达定理,弦长公式求,由=,求,结合|P A|+|QA|=|PQ|+2|P A|=4a,得到•+﹣2a=4a,化简可求离心率.【解答】解:由题设知:A(0,b),F1(﹣c,0),F2(c,0),且抛物线方程为y2=4cx,直线F1A为x=y﹣c,联立抛物线方程有y2=,整理得by2﹣4c2y+4bc2=0,则Δ=16c2(c2﹣b2)≥0,即c≥b,令P(x1,y1),Q(x2,y2)且y2>y1>0,则y2+y1=,y2y1=4c2,所以y1=,=•=•,令d=,如图可知=,即=,可得d=y1﹣a,所以d=﹣a,又|P A|+|QA|=|PQ|+2d=4a,所以•+﹣2a=4a,整理得2c2=3b2,又b2=a2﹣c2,所以3a2=5c2,所以e==,故选:C.【点评】本题考查椭圆的离心率问题,属中档题.二.填空题(共4小题)13.(2021秋•宜春期末)已知直线的倾斜角α=30°,且过点A(4,3),则该直线的方程为x﹣3y+9﹣4=0.【考点】直线的点斜式方程.【专题】方程思想;定义法;直线与圆;数学运算.【分析】根据直线的倾斜角求出斜率,再根据点斜式写出直线方程,化为一般式方程.【解答】解:直线的倾斜角α=30°,所以直线的斜率为k=tan30°=,又因为直线过点A(4,3),所以直线的方程为y﹣3=(x﹣4),x﹣3y+9﹣4=0.故答案为:x﹣3y+9﹣4=0.【点评】本题考查了直线方程的应用问题,是基础题.14.(2021秋•滨海新区校级期末)在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为12.【考点】直线与圆的位置关系.【专题】计算题;整体思想;演绎法;直线与圆;逻辑推理;数学运算.【分析】首先将圆的方程配成标准式,即可得到圆心坐标与半径,从而可得点E(0,1)在圆内,即可得到过点E的最长弦、最短弦弦长,即可求出四边形的面积.【解答】解:圆M:x2+y2﹣4x﹣4y﹣1=0,即(x﹣2)2+(y﹣2)2=9,圆心M(2,2),半径r=3,点E(0,1),则(0﹣2)2+(1﹣2)2=5<9,所以点E(0,1)在圆内,所以过点E(0,1)的最长弦|AC|=2r=6,又,所以最短弦,所以.故答案为:12.【点评】本题主要考查直线与圆的位置关系,圆中四边形的面积问题等知识,属于基础题.15.(2021秋•南岗区校级期末)已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=上,则这个等边三角形的边长为6.【考点】抛物线的性质.【专题】整体思想;综合法;圆锥曲线的定义、性质与方程;逻辑推理;数学运算.【分析】由抛物线的对称性及等边三角形的性质可得另外两点关于x轴对称,即横坐标相同,设三角形的边长,可得顶点O到底边AB的距离,即A,B的横坐标,代入抛物线的方程可得其纵坐标,可得三角形的边长.【解答】解:由抛物线的对称性可得另两个顶点关于x轴对称,设A,B两点,△OAB 为等边三角形,设边长为2a,则O到AB的距离为a,即A的横坐标为a,代入抛物线y2=的方程可得y A2=•a,所以|y A|=,由题意可得2=2a,解得a=3,所以三角形的边长2a=6,故答案为:6.【点评】本题考查抛物线的对称性的性质的应用及等边三角形的性质的应用,属于基础题.16.(2021秋•工农区校级期末)已知F1,F2为双曲线C:(a>0,b>0)的左、右焦点,双曲线的离心率为2,点P在双曲线C的右支上,且PF1的中点N在圆O:x2+y2=c2上,其中c为双曲线的半焦距,则sin∠F1PF2=.【考点】双曲线的性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】由题意可得在△F1PF2中,|PF1|=6a,|PF2|=|F1F2|=4a,利用sin∠F1PF2=即可求解.【解答】解:如图,由题意可得|OF1|=|ON|=c,因为O为F1F2的中点,所以|ON|=|PF2|,所以|PF2|=2c,|PF1|=2a+2c,∵双曲线C:(a>0,b>0)的离心率为2,∴c=2a,故在△F1PF2中,|PF1|=6a,|PF2|=|F1F2|=4a,∵PF1的中点N,∴F2N⊥PF1,∴∠PNF2=90°∴sin∠F1PF2===.故答案为:.【点评】本题考查圆与双曲线的综合、三角形中位线定理,考查数形结合的解题思想方法,考查双曲线定义的应用,是中档题.三.解答题(共6小题)17.(2021秋•房山区期末)在平面直角坐标系中,△ABC三个顶点坐标分别为A(2,﹣2)、B(6,6)、C(0,6).(Ⅰ)设线段AB的中点为M,求中线CM所在直线的方程;(Ⅱ)求边AB上的高所在直线的方程.【考点】直线的一般式方程与直线的性质.【专题】转化思想;综合法;直线与圆;数学运算.【分析】(Ⅰ)先求出线段AB的中点为M的坐标,再利用两点式求出中线CM所在直线的方程.(Ⅱ)先求出AB的斜率,可得AB边上的高所在直线的斜率,再利用点斜式求出边AB 上的高所在直线的方程.【解答】解:(Ⅰ)∵△ABC三个顶点坐标分别为A(2,﹣2),B(6,6),C(0,6),∴线段AB的中点为M(4,2),求中线CM所在直线的方程为:=,即x+y﹣6=0,(Ⅱ)由于直线AB的斜率为:=2,故边AB上的高所在直线的斜率为﹣,故边AB上的高所在直线的方程为y﹣6=﹣(x﹣0),即x+2y﹣12=0.【点评】本题主要考查中点公式、斜率公式、两直线垂直的性质,用点斜式、两点式求直线的方程,属于基础题.18.(2021秋•房山区期末)已知圆M:x2+y2﹣2x=0与圆N:x2+y2﹣8x+a=0外切.(Ⅰ)求实数a的值;(Ⅱ)若直线x﹣y﹣2=0与圆M交于A,B两点,求弦AB的长.【考点】直线与圆的位置关系.【专题】方程思想;转化法;直线与圆;数学运算.【分析】(Ⅰ)由圆的方程求得圆心坐标与半径,再由圆心距等于半径和列式求解a值;(Ⅱ)求出M到直线的距离,再由垂径定理求弦长.【解答】解:(Ⅰ)由圆M:x2+y2﹣2x=0,得(x﹣1)2+y2=1,则M(1,0),半径r1=1,由圆N:x2+y2﹣8x+a=0,得(x﹣4)2+y2=16﹣a,则N(4,0),半径.∵两圆外切,∴|4﹣1|=1+,即a=12;(Ⅱ)M(1,0)到直线x﹣y﹣2=0的距离d=,∴弦AB的长为.【点评】本题考查直线与圆、圆与圆位置关系的应用,考查运算求解能力,是基础题.19.(2021秋•重庆月考)已知双曲线的一条渐近线斜率为,且双曲线C经过点M(2,1).(1)求双曲线C的方程;(2)斜率为的直线l与双曲线C交于异于M的不同两点A、B,直线MA、MB的斜率分别为k1、k2,若k1+k2=1,求直线l的方程.【考点】双曲线的性质.【专题】计算题;整体思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】(1)根据条件列出关于a,b的方程组,求解a,b可得双曲线方程;(2)设出直线l的方程并与双曲线方程联立,由韦达定理结合条件可求直线方程.【解答】解:(1)由题意可得,,∴,(2)设,A(x1,y1),B(x2,y2),联立,因为直线l与双曲线C交于异于M的不同两点A、B,所以Δ=16t2+16(t2+1)>0,x1+x2=﹣4t,,因为k1+k2=1,所以,整理得,解得t=1,所以直线.【点评】本题考查了双曲线的方程,直线与双曲线的位置关系,属于基础题.20.(2021秋•西固区校级期末)已知两定点A(﹣2,0),B(1,0),若动点P满足条件|P A|=2|PB|.(1)求动点P的轨迹C的方程;(2)求直线l:y=x被轨迹C所截得的线段长.【考点】轨迹方程.【专题】计算题;转化思想;综合法;直线与圆;数学运算.【分析】(1)设P点的坐标为(x,y),用坐标表示|P A|、|PB|,代入等式|P A|=2|PB|,整理即得点P的轨迹方程;(2)求出圆心到直线的距离,利用垂径定理可求弦长.【解答】解:(1)已知两定点A(﹣2,0),B(1,0),由动点P满足|P A|=2|PB|,设P 点的坐标为(x,y),则(x+2)2+y2=4[(x﹣1)2+y2],即(x﹣2)2+y2=4;(2)由(1)知轨迹C为圆,圆心为(2,0),半径r=2,圆心到直线l:y=x的距离d==,由垂径定理可得弦长为2,所以直线l:y=x被轨迹C所截得的线段长为2.【点评】本题考查轨迹方程的求法与弦长的求法,属中档题.21.(2021秋•让胡路区校级期末)以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.已知椭圆C的长轴长是短轴长的倍,且经过点,椭圆C的“准圆”的一条弦AB所在的直线与椭圆C交于M、N两点.(1)求椭圆C的标准方程及其“准圆”的方程;(2)当时,证明:弦AB的长为定值.【考点】椭圆的标准方程;直线与椭圆的综合.【专题】方程思想;消元法;圆锥曲线的定义、性质与方程;数学运算.【分析】(1)由题意解得a,b,则可写出椭圆的方程,进而可得椭圆C的“准圆”方程.(2)分两种情况:①当弦AB⊥x轴时,设得,进而可得原点O到弦AB的距离d,进而可得|AB|.②当弦AB不垂直于x轴时,设直线AB的方程为y=kx+m,M(x1,y1)、N(x2,y2),联立直线AB与椭圆的方程,结合韦达定理可得x1+x2,x1x2,y1y2,由得,再求出原点O到弦AB的距离d,即可得出答案.【解答】解:(1)由题意解得a=2,所以椭圆的标准方程为椭圆C的“准圆”方程为x2+y2=6.(2)证明:①当弦AB⊥x轴时,交点M、N关于x轴对称,又,则OM⊥ON,可设得,此时原点O到弦AB的距离,因此.②当弦AB不垂直于x轴时,设直线AB的方程为y=kx+m,且与椭圆C的交点M(x1,y1)、N(x2,y2),联列方程组,代入消元得:(2k2+1)x2+4kmx+2m2﹣4=0,Δ=32k2﹣8m2+16=8(4k2﹣m2+2)>0,由,可得,由得x1x2+y1y2=0,即,所以,此时Δ>0成立,则原点O到弦AB的距离,则,综上得,因此弦AB的长为定值.【点评】本题考查直线与椭圆的相交的问题,解题中需要一定的计算能力,属于中档题.22.(2021秋•1月份月考)如图所示,已知抛物线C:y2=2x,过点A(2,0)的直线l与抛物线C有两个交点,若抛物线C上存在不同的两点M,N关于直线l对称,记MN的中点为T.(1)求点T的轨迹方程;(2)求S△AMT的最大值.【考点】直线与抛物线的综合.【专题】转化思想;综合法;圆锥曲线中的最值与范围问题;直观想象;数学运算.【分析】(1)设直线l:y=k(x﹣2),T(x,y),M(x1,y1),N(x2,y2),将M,N的坐标代入抛物线方程得到y=﹣k,再代入直线方程化简即可;(2)联立直线MN的方程和抛物线方程,将△ANM在面积表示出来,再利用S△AMT=S求解即可.△AMN【解答】解:(1)由题意可得直线l的斜率存在且不为0,设直线l:y=k(x﹣2),T(x,y),M(x1,y1),N(x2,y2),由可得:(y1+y2)(y1﹣y2)=2(x1﹣x2),所以====﹣,所以y=﹣k,代入直线方程得:x=1,又当x=1时,由y2=2x得y=,∵T在抛物线开口方向内,∴﹣<y<,∴点T的轨迹方程为:x=1(﹣<y<);(2)由(1)可知直线MN:y=﹣x﹣k+,由,可得:y2+2ky+2k2﹣2=0,∵直线MN与抛物线交于M,N两点,∴Δ=﹣4k2+8>0,解得:k,y1+y2=﹣2k,y1y2=2k2﹣2,∴|y1﹣y2|==,|MN|=,又因为|AT|=,∴S△AMT=S△AMN=|MN||AT|==,令t=k2,y=﹣t3+3t+2(t∈(0,2)),∴y'=﹣3t2+3,令y'=0,得t=1(负根舍去),当t∈(0,1)时,y随t增大而增大,当t∈(1,2)时,y随t增大而减小,∴当t=1时,y取最大值4,∴k=±1时,(S△AMT)max=1.【点评】本题考查了直线和抛物线相交所产生的问题及最值问题、转化思想等,属于中档题.。
高考数学专题平面解析几何(含答案)
直线与圆1.(2013山东(理))过点()3,1作圆()2211x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=【答案】A2.(2013辽宁(理))已知点()()()30,0,0,,,.ABC ,O A b B a a∆若为直角三角形则必有( )A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭D .3310b a b a a-+--= 【答案】C3.(2013新课标Ⅱ(理))已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC分割为面积相等的两部分,则b 的取值范围是 ( )A .(0,1)B .21(1,)22-( C) 21(1,]23-D . 11[,)32【答案】B4.【2012天津理8】设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞ (C )]222,222[+- (D )),222[]222,(+∞+⋃--∞ 【答案】D5.【2012江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .【答案】43。
6.(2011安徽15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线 【答案】①③⑤ 【解析】①正确,设122y x =+,当x 是整数时,y 是无理数,(x ,y )必不是整点.②不正确,设k =2,b =-2,则直线y =2(1)x -过整点(1,0).③正确,直线l 经过无穷多个整点,则直线l 必然经过两个不同整点,显然成立;反之成立,设直线l 经过两个整点111(,)P x y ,222(,)P x y ,则l 的方程为211211()()()()x x y y y y x x --=--,令x =121()x k x x +-(k Z ∈),则x ∈Z ,且y =211()k y y y -+也是整数,故l 经过无穷多个整点.④不正确,由③知直线l 经过无穷多个整点的充要条件是直线经过两个不同的整点,设为111(,)P x y ,222(,)P x y ,则l 的方程为211211()()()()x x y y y y x x --=--,∵直线方程为y kx b =+的形式,∴12x x ≠,∴y =2112212121y y y x y x x x x x x --+--,∴k ,b ∈Q ,反之不成立,如1134y x =+,则334x y =-,若y ∈Z ,则334x y =-∉Z ,即k ,b ∈Q ,得不到y kx b =+经过无穷个整点.⑤正确,直线y =2(1)x -只过整点(1,0).7.【2012全国21】已知抛物线C :y=(x+1)2与圆M :(x-1)2+(12y -)2=r2(r >0)有一个公共点,且在A 处两曲线的切线为同一直线l.(Ⅰ)求r ;(Ⅱ)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离.【答案】8.(2011山东22)已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆=62,其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得62ODE ODG OEG S S S ∆∆∆===?若存在,判断△DEG 的形状;若不存在,请说明理由.【解析】(I )解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y +=①又因为6,2OPQ S ∆=所以116||||.2x y ⋅=②;由①、②得116||,|| 1.2x y == 此时222212123,2,x x y y +=+=(2)当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知m 0≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=, 其中22223612(23)(2)0,k m k m ∆=-+->即2232k m +>…………(*)又212122263(2),,2323km m x x x x k k-+=-=++ 所以22222121222632||1()41,23k m PQ k x x x x k k+-=+⋅+-=+⋅+ 因为点O 到直线l 的距离为2||1,m d k =+所以1||2OPQ S PQ d ∆=⋅ 2222212632||12231k m m k k k +-=+⋅⋅++2226||3223m k m k +-=+,又6,2OPQ S ∆=整理得22322,k m +=且符合(*)式,此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+=综上所述,222212123;2,x x y y +=+=结论成立。
2019高考数学真题(文)分类汇编-平面解析几何含答案解析
平面解析几何专题1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=O P O F ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==,c∴a=12a =,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.11.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 12.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(11;(2)4b =,a 的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P . 所以4b =,a的取值范围为)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t ktk k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点). (1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得2222a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭. 由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值1+G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
安徽省宿州市高考数学真题分类汇编专题10:平面解析几何(基础题)
安徽省宿州市高考数学真题分类汇编专题10:平面解析几何(基础题)姓名:________ 班级:________ 成绩:________一、平面解析几何 (共25题;共39分)1. (2分) (2018高二下·长春开学考) 已知直线与抛物线:相交于,两点,若线段的中点为,则直线的方程为()A .B .C .D .2. (2分)光线被曲线反射,等效于被曲线在反射点处的切线反射.已知光线从椭圆的一个焦点出发,被椭圆反射后要回到椭圆的另一个焦点;光线从双曲线的一个焦点出发被双曲线反射后的反射光线等效于从另一个焦点发出;如题10图,椭圆C:与双曲线有公共焦点,现一光线从它们的左焦点出发,在椭圆与双曲线间连续反射,则光线经过次反射后回到左焦点所经过的路径长为()A . k(a+m)B . 2k(a+m)C . k(a-m)D . 2k(a-m)3. (2分) (2017高二上·佳木斯月考) 已知为双曲线的左、右焦点,点在上,,则()A .B .C .D .4. (2分)已知抛物线y2=8x的准线与双曲线=1相交于A,B两点,点F为抛物线的焦点,△ABF为直角三角形,则双曲线的离心率为()A . 3B . 2C .D .5. (2分) (2018高二上·成都月考) 设椭圆的左、右焦点分别为、,是上的点,,,则的离心率为().A .B .C .D .6. (2分)若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为()A .C .D .7. (2分)(2020·日照模拟) 如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是()A . 2.55尺B . 4.55尺C . 5.55尺D . 6.55尺8. (2分) (2017高二上·哈尔滨月考) 以双曲线(a>0,b>0)的左焦点F为圆心,作半径为b 的圆F,则圆F与双曲线的渐近线()A . 相交B . 相离C . 相切D . 不确定9. (2分)(2017·长沙模拟) 已知在中,是边上的点,且,,,则的值为()B .C .D .10. (2分) (2016高二下·天津期末) 设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A . 1﹣ln2B .C . 1+ln2D .11. (2分)双曲线(a>0,b>0)的左右焦点分别为F1 , F2 , P为双曲线上任一点,已知||·||的最小值为m.当≤m≤时,其中c=,则双曲线的离心率e的取值范围是()A .B .C .D .12. (2分) (2018高二上·浙江月考) 已知方程表示焦点在轴上的椭圆,则的取值范围是()A . 或B .C .D . 或13. (2分) (2018高二上·辽源期末) 双曲线的渐近线方程是()A .B .C .D .14. (1分)(2018·南宁模拟) 已知圆:与轴负半轴的交点为,为直线上一点,过作圆的切线,切点为,若,则的最大值为________.15. (1分)(2017·商丘模拟) 已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C 交于A,B两点,若 =0,则k=________.16. (1分) (2018高二下·溧水期末) 若抛物线的焦点到双曲线C:的渐近线距离等于,则双曲线C的离心率为________.17. (1分) (2016高二上·扬州期中) 已知直线l:y= x+4,动圆O:x2+y2=r2(1<r<2),菱形ABCD 的一个内角为60°,顶点A,B在直线l上,顶点C,D在圆O上.当r变化时,菱形ABCD的面积S的取值范围是________.18. (1分)椭圆x2+4y2=16被直线y= x+1截得的弦长为________.19. (2分) (2016高三上·上海模拟) 已知双曲线的中心在坐标原点,一个焦点为F(10,0),两条渐近线的方程为y=± ,则该双曲线的标准方程为________.20. (1分)圆x2+y2﹣4x=0的圆心坐标和半径分别________.21. (1分) (2019高二上·怀仁期中) 已知圆C过点(1,0),且圆心在x轴的正半轴上,直线:被该圆所截得的弦长为,则圆C的标准方程为________.22. (1分) (2016高二下·浦东期末) 设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是________.23. (1分)(2018·河南模拟) 已知抛物线,斜率为的直线交抛物线于,两点.若以线段为直径的圆与抛物线的准线切于点,则点到直线的距离为________24. (1分)(2019·浙江模拟) 如图,过椭圆的左、右焦点F1 , F2分别作斜率为的直线交椭圆C上半部分于A,B两点,记△AOF1 ,△BOF2的面积分别为S1 , S2 ,若S1:S2=7:5,则椭圆C 离心率为________.25. (1分) (2017高二上·河南月考) 已知是双曲线的左焦点,是双曲线右支上一点,点的坐标为,则的周长最小时,点到直线的距离为________.参考答案一、平面解析几何 (共25题;共39分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、。
高考数学真题专题分类汇编专题十 平面解析几何(教师版)
专题十平面解析几何真题卷题号考点考向2023新课标1卷5 椭圆的性质已知椭圆离心率求参6 直线与圆的位置关系求过圆外一点作圆的两条切线所成角16 双曲线的性质求双曲线的离心率22 抛物线的方程、直线与抛物线的位置关系求轨迹方程、四边形的周长的最值问题(求弦长)2023新课标2卷5 直线与椭圆的位置关系直线与椭圆相交时的面积问题10 抛物线的方程与性质求抛物线的方程、焦点弦问题15 直线与圆的位置关系直线与圆相交的弦长问题21 双曲线的方程、直线与双曲线的位置关系求双曲线的标准方程、求动点的轨迹2022新高考1卷11 抛物线的标准方程、性质抛物线的性质、直线与抛物线的位置关系14 圆与圆的位置关系求两圆的公切线方程16 直线与椭圆位置关系椭圆的定义的应用、求椭圆中的弦长21 双曲线的标准方程、直线与双曲线位置关系求双曲线的标准方程、交线的斜率,三角形的面积2022新高考2卷3 直线的倾斜角与斜率求直线的斜率10 抛物线的定义与性质、直线与抛物线位置关系求交线的斜率、抛物线定义与性质的应用15 直线与圆的位置关系求直线方程、已知直线与圆的位置关系求参16 直线与椭圆的位置关系求与椭圆相交的直线方程21 双曲线的标准方程、直线与双曲线的位置关系求双曲线的标准方程、求点的轨迹方程、判断直线的位置关系2021新高考1卷 5 椭圆的定义求椭圆上的点到两焦点距离积的最值11 直线与圆的位置关系 求点到直线的距离、直线与圆相切的位置关系中的最值问题14 抛物线的定义与性质 求抛物线的准线方程 21 双曲线的标准方程、直线与双曲线的位置关系 求点的轨迹方程、直线与双曲线位置关系中的定值问题(斜率之和为定值)2021新高考2卷3 抛物线的性质、点到直线的距离求抛物线焦点坐标11直线与圆的位置关系判断直线与圆的位置关系13 双曲线的性质求双曲线的渐近线方程 20 椭圆的标准方程、直线与椭圆的位置关系求椭圆的标准方程、求椭圆的弦与圆相切时的弦长 2020新高考1卷9圆锥曲线的方程与性质 由参数范围判断圆锥曲线的类型及相关性质13 直线与抛物线的位置关系 求抛物线的弦长 22 椭圆的标准方程、直线与椭圆的位置关系求椭圆的方程、直线与椭圆位置关系中的定点问题 2020新高考2卷10圆锥曲线的方程与性质 由参数范围判断圆锥曲线的类型及相关性质14直线与抛物线的位置关系求抛物线的弦长【2023年真题】1.(2023·新课标I 卷 第5题)设椭圆2212:1(1)x C y a a +=>,222:14x C y +=的离心率分别为1e ,2.e 若21e =,则a =( ) A.B.C.D.【答案】A 【解析】 【分析】本题考查椭圆中离心率有关的计算,整体难度不大,利用关系建立方程求解即可. 【解答】解:易得,1e =,2e =12=,解得a =故选.A 2. (2023·新课标I 卷 第6题)过点(02)−与圆22410x y x +−−=相切的两条直线的夹角为α则sin α=( )A. 1B.C.D.【答案】B 【解析】 【分析】本题主要考查直线与圆的位置关系,二倍角公式,属于基础题. 利用切线构造直角三角形,由三角函数定义求出sin 2α,cos2α,再利用二倍角正弦公式即可求解.【解答】解:22(2)5x y −+=,故圆心(2,0)B ,记(0,2)A −,设切点为M ,.N,,故,,,sin 2sin cos 22ααα==B 3 (2023·新课标II 卷 第5题)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB 面积是2F AB 面积的2倍,则m =( )A.23B.C. D.23【答案】C 【解析】 【分析】本题考查直线与椭圆的位置关系,分别求出两焦点到直线的距离,建立关系求解,为中档题. 【解答】解:1F 到AB 的距离1d ,2F 到AB 距离2d,1d =2d =122F AB F AB S S =,m ∴−, 又 直线与椭圆相交,消y 可得2246330x mx m ++−=,0∆>,24m ∴<,m ∴.C 4. (2023·新课标II 卷 第10题)(多选)设O 为坐标原点,直线1)y x −过抛物线2:2(0)C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则( ) A. 2p =B. 8||3MN =C. 以MN 为直径的圆与l 相切D. OMN 为等腰三角形【答案】AC 【解析】 【分析】本题考查了直线与抛物线位置关系的综合应用,属于中档题.利用直线过抛物线焦点,得出抛物线方程,再结合抛物线性质,可逐项判断. 【解答】解:因为1)y x −过抛物线22y px =的焦点,则焦点(1,0)F ,2p =,A 选项正确;抛物线24y x =,MN 的倾斜角23πα=,224163sin 34p MNα===,B 选项错误;以MN 为直径的圆一定与准线相切,C 选项正确;联立,解得,设1(3M N ,OM =ON =,163MN =,所以OMN 不是等腰三角形,D 选项错误; 故选:.AC5. (2023·新课标I 卷 第16题)已知双曲线2222:1(0,0)x y C a b a b−=>>的左右焦点分别为12,F F ,点A在C 上,点B 在y 轴上,11F A F B ⊥ ,222=-3F A F B,则C 的离心率为__________.【解析】 【分析】主要考查了双曲线的定义以及性质、余弦定理,向量共线的充要条件等.属于一般题. 根据向量的关系设参数t 得到||AB ,2||F B ,1||F B 的关系,勾股定理得到1||4F A t = 由双曲线的定义得到t a =,在12F AF 中用余弦定理得到a 与c 的关系. 【解答】解:222=-3F A F B,设22||2,||3(0)F A t F B t t ==>,||5.AB t ∴= 由对称性知21||||3.F B F B t ==又11F A F B ⊥,故1||4F A t =,4cos .5A =由双曲线的定义知,,故.t a =在12F AF 中,22216444cos 2425a a c A a a +−==⋅⋅解得:29()5c a =,故C6. (2023·新课标II 卷 第15题)已知直线10x my −+=与22:(1)4C x y −+= 交于A 、B 两点,写出满足“ABC 面积为85”的m 的一个值__________ 【答案】1(2答案不唯一) 【解析】 【分析】本题考查了直线与圆的位置关系,属于中档题. 设圆心到直线的距离为d ,根据ABC 面积为85,求得d 的值,再根据点到直线的距离公式建立方程,即可求出m 的值. 【解答】解:由题知22:(1)4C x y −+= 的圆心为(1,0),半径为2, 设圆心到直线的距离为d,则||AB ,于是,118||225ABC S AB d d =⋅=×= ,得2165d =或245d =, 若取2165d =,则d ==,解得1122m m ==−或, 若取245d =,则d ==22m m ==−或, 故答案为:1(2答案不唯一). 7. (2023·新课标I 卷 第22题)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点的距离,记动点P 的轨迹为.W(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于【答案】解:(1)设点P 的坐标为(,)x y ,由题意得,整理,得214y x =+, 故W 的方程为:21.4y x =+ (2)设矩形的三个顶点,,在轨迹W 上,且a b c <<,1AB BC k k =−, 令0AB k a b m =+=<,0BC k b c n =+=>,则1mn =−, 设矩形的周长为C ,由对称性不妨设||||m n …,1c a n m n n−=−=+,则当且仅当时等号成立),令221()()(1),0,f x x x x x =++> 则令()0,f x ′=得x =当x >时,()0f x ′>;当0x <<时,()0f x ′<, 所以,所以12C =C …当且仅当n m ==).等号不能同时成立,所以C >【解析】本题考查轨迹方程的求解,直线与圆锥曲线的位置关系,弦长的求解,利用导数求最值,属于压轴题.(1)设出点P 的坐标,由距离公式即可求解;(2)由轨迹方程设出三点坐标,由对称性结合弦长公式表示出矩形的周长,利用导数求最值即可求解.8. (2023·新课标II 卷 第21题)已知双曲线C 的中心为坐标原点,左焦点为(−(1)求C 的方程:(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)−的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.【答案】解:(1)由题意可得c =,cea==,则2a =,4b,故C 的方程为221.416x y −=(2)设直线:4MN x my =−,00(,)P x y ,11(,)M x y ,22(,)N x y由(1)知12(2,0)(2,0)A A −,则111:(2)2y MA y x x =++,222:(2)2y NA y x x =−− 联立得:012121220121222(6)6()6(*)2(2)2x y my my y y y y x my y my y y −⋅−−++==+−⋅−, 将4x my =−代入221416x y −=得22(41)32480m y my −−+=, 则0∆>,且248041m <−,得11.22m −<< 则有1223241m y y m +=−,1224841y y m =−; 代入(*)式可得2222022022248192621446(41)41413482482(41)241m my x m y m m m m x m y m y m −+−−+−−−===−+−−−−, 解得01x =−,故点P 在定直线1x =−上.【解析】本题考查双曲线的标准方程、双曲线的离心率、双曲线的定直线问题,计算量较大,属于较难题.(1)根据题意得出a ,b 的值,即可求出结果;(2)先设出直线:4MN x my =−,00(,)P x y ,11(,)M x y ,22(,)N x y ,,可得到1MA ,2NA ,联立可得(*)式.再将将4x my =−代入双曲线方程,由韦达定理可得12y y +,12.y y 再结合(*)式,即可得定直线.即可证明点P 在定直线上.【2022年真题】9.(2022·新高考II 卷 第3题)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1DD ,1CC ,1BB ,1AA 是举,1OD ,1DC ,1CB ,1BA 是相等的步,相邻桁的举步之比分别为110.5DD OD =,111CC k DC =,121BBk CB =,131AA k BA =,已知1k ,2k ,3k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A. 0.75B. 0.8C. 0.85D. 0.9【答案】D 【解析】 【分析】本题考查等差数列、直线的斜率与倾斜角的关系,比例的性质,属于中档题. 【解答】解:设11111OD DC CB BA ====,则11CC k =,12BB k =,13AA k =′ 由题意得310.2k k =+,320.1k k =+,且111111110.725DD CC BB AA OD DC CB BA +++=+++, 解得30.9.k =10.(2022·新高考I 卷 第11题)(多选)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B −的直线交C 于P ,Q 两点,则( ) A. C 的准线为1y =− B. 直线AB 与C 相切C.D. 2||||||BP BQ BA ⋅>【答案】BCD 【解析】 【分析】本题考查了抛物线的方程,性质,直线与抛物线的位置关系,属较难题. 先求出抛物线的方程,然后再对选项ABCD 一一进行分析判断即可得. 【解答】解:点(1,1)A 在抛物线2:2(0)C x py p =>上, 即212:p C x y =⇒=,所以准线为14y =−,所以A 错; 直线:21AB y x =−代入2x y =, 得:22210(1)01x x x x −+=⇒−=⇒=,0∆=, 所以AB 与C 相切,故B 正确. 由题知直线PQ 的斜率一定存在,则可设直线:1PQ y kx =−,11(,)P x y ,22(,)Q x y ,则22110y kx x kx y x=− ⇒−+== ,2402k k ∆=−>⇒<−或2k >, 此时12121x x k x x += = ,222212121212221212()221y y x x x x x x k y y x x +=+=+−=− == ,||||OP OQ ⋅==,故C 正确;12|||||0||0|BP BQ x x ⋅−−22212(1)||(1)5||k x x k BA =+=+>=,故D 正确.11.(2022·新高考II 卷 第10题)(多选)已知O 为坐标原点,过抛物线2:2(0)C y px p =>的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A. 直线AB的斜率为 B. ||||OB OF =C. ||4||AB OF >D. 180OAM OBM ∠+∠<°【答案】ACD 【解析】 【分析】本题考查了抛物线的定义和性质,属于中档题。
十年真题(2010_2019)高考数学真题分类汇编专题10平面解析几何选择填空题文(含解析)
∪[4,+∞) 【解答】解:假设椭圆的焦点在 x 轴上,则 0<m<3 时,
C.(0,1]∪[4,+∞) D.(0, ]
设椭圆的方程为:
(a>b>0),设 A(﹣a,0),B(a,0),M(x,y),y>0,
则 a2﹣x2
,
∠MAB=α,∠MBA=β,∠AMB=γ,tanα
,tanβ
,
则 tanγ = tan[π ﹣ ( α+β ) ] = ﹣ tan ( α+β )
,
∴e
.
故选:D. 2.【2019 年新课标 1 文科 12】已知椭圆 C 的焦点为 F1(﹣1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则 C 的方程为( )
A. y2=1
B.
1
C.
1
D.
1
【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|, 又|AB|=|BF1|,∴|BF1|=3|BF2|,
∴△APF 的面积 S 丨 AP 丨×丨 PF 丨 ,
3
同理当 y<0 时,则△APF 的面积 S , 故选:D.
5.【2017 年新课标 1 文科 12】设 A,B 是椭圆 C:
1 长轴的两个端点,若 C 上存在点 M 满足∠AMB
=120°,则 m 的取值范围是(
)
A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞)
1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,
点 A 的坐标是(1,3),则△APF 的面积为(
)
A.
B.
C.
D.
【解答】解:由双曲线 C:x2
高考数学压轴专题孝感备战高考《平面解析几何》基础测试题及答案
【高中数学】数学高考《平面解析几何》复习资料一、选择题1.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离4a d c==, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A .⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】C【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =.因为点M 在椭圆C 内部,所以2221m m +<,解得m ⎛∈ ⎝⎭. 故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.3.若双曲线上存在四点,使得以这四点为顶点的四边形是菱形,则该双曲线的离心率的取值范围是( )A .B .C .)+∞D .)+∞【答案】C 【解析】 【分析】根据题意,双曲线与直线y x =±相交且有四个交点,由此得1ba>.结合双曲线的基本量的平方关系和离心率的定义,化简整理即得该双曲线的离心率的取值范围. 【详解】解:不妨设该双曲线方程为22221(0,0)x y a b a b-=>>,由双曲线的对称性质可知,该四边形为正方形, 所以直线y x =与双曲线有交点, 所以其渐近线与x 轴的夹角大于45︒,即1ba>.离心率e =所以该双曲线的离心率的取值范围是(2,)+∞. 故选:C . 【点睛】本题考查双曲线的离心率取值范围以及双曲线的标准方程和简单几何性质等知识,属于基础题.4.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )A .16B .10C .12D .8【答案】C 【解析】 【分析】根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=︒,所以||||2612AF BF ==⨯=.【详解】解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1||||||2AD AF AB ==,所以30ABD ∠=︒.因为F 到准线的距离为6, 所以||||2612AF BF ==⨯=. 故选:C .【点睛】本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.5.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, 233AF BF +=, 则∠AFB 的最大值为( )A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤,在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn ABAFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.6.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B两点,且AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】 【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点.设()()0,0,,,0A B m n m >. 由5AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.7.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5【答案】A 【解析】 【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232ce a==; ②若24c x =,则2532a x x x =-=,得222ce a==; ③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.8.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线9.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .5B .3C .3D .5【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .10.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B ,两点,OAB ∆,则双曲线的离心率为( )A B C D 【答案】D 【解析】 【分析】令x c =,代入双曲线方程可得2by a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值. 【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2by a=±=±OAB V 的面积为21223b c a ⋅⋅= 3b a ⇒=可得3c e a ==== 本题正确选项:D 【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.11.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .13【答案】A 【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c=-即2223ac =,从而22223c e a ==,则椭圆的离心率c e a ===, 故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.13.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==,Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.14.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H ,直线2p y =-与C 交于A ,B 两点,若||AH =||AF =( ) A .3 B .83C .2D .4【答案】C 【解析】 【分析】注意到直线32py x =-过点H ,利用||||AM AH =tan 3,AHM ∠=43||AH =,可得||2AM =,再利用抛物线的定义即可得到答案.【详解】连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.易知直 线32p y x =-过点H ,tan 3,3AHM AHM π∠=∠=,则||3,||AM AH =又43||3AH =, 所以||2AM =,由抛物线的定义可得||AF =||2AM =.故选:C. 【点睛】本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.15.已知椭圆2221(1)x y a a+=>的左、右焦点分别为1F ,2F ,A 是椭圆在第一象限上的一个动点,圆C 与1F A 的延长线,12F F 的延长线以及线段2AF 都相切,且()3,0M 为其中一个切点.则椭圆的离心率为( ) A 3B .223C .22D 6 【答案】B 【解析】 【分析】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等和椭圆的定义,解方程得出3a =,求出c ,进而可得离心率. 【详解】设圆C 与1F A 的延长线相切于点N ,与2AF 相切于点T ,由切线长相等,得AN AT =, 11F N F M =,22F T F M =,1(,0)F c -,2(,0)F c ,由椭圆的定义可得,122AF AF a +=,()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+- 222(3)a F M a c =-=--,则26a =,即3a =,又1b =,所以2222c a b =-=,因此椭圆的离心率为223c e a ==. 故选:B.【点睛】本题主要考查求椭圆的离心率,熟记椭圆的定义,以及椭圆的简单性质即可,属于常考题型.16.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( )A .-1B .0C .1D .2【答案】A【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出. 详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+, 解得1a =-,舍去.综上可得:1a =-.故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题17.已知(cos ,sin )P αα,(cos ,sin )Q ββ,则||PQ 的最大值为( )A .2B .2C .4D .22【答案】B【解析】【分析】 由两点的距离公式表示PQ ,再运用两角差的余弦公式化简,利用余弦函数的值域求得最值.【详解】∵(cos ,sin )P αα,(cos ,sin )Q ββ, ∴22||(cos cos )(sin sin )PQ αβαβ=-+- 2222cos cos 2cos cos sin sin 2sin sin αβαβαβαβ=+-++-()()()2222cos sin cos sin 2cos cos sin sin ααββαβαβ=+++-+22cos()αβ=--.∵cos()[1,1]αβ-∈-,∴||[0,2]PQ ∈.故选B .【点睛】本题综合考查两点的距离公式、同角三角函数的平方关系、两角差的余弦公式和余弦的值域,属于中档题.18.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( )A .4B .2C .2D .【答案】D【解析】 ()1ln (0,0)a a f x x a b b b+=-->>, 所以()'a f x bx =-,则f ′(1)=-a b 为切线的斜率, 切点为(1,-1a b+), 所以切线方程为y +1a b +=-a b(x -1), 整理得ax +by +1=0.因为切线与圆相切,所以22a b +=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab ,所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2,所以a +b ≤,即a +b 的最大值为. 故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.19.已知P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则“4a =”是“217PF =”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】 【分析】化简得到229PF a =+或292PF a =-,故当4a =时,217PF =或21PF =;当217PF =时,4a =,得到答案.【详解】P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =, 则229PF a =+或292PF a =-,当4a =时,217PF =或21PF =;当217PF =时,4a =.故“4a =”是“217PF =”的必要不充分条件.故选:B .【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.20.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F pF ∠的角平分线上的一点,且F 1M ⊥MP ,则|OM|的取值范围是( )A .(0,)cB .(0,)aC .(,)b aD .(,)c a【答案】A【解析】【分析】【详解】 解:如图,延长PF 2,F 1M ,交与N 点,∵PM 是∠F 1PF 2平分线,且F 1M ⊥MP , ∴|PN|=|PF 1|,M 为F 1F 2中点,连接OM ,∵O 为F 1F 2中点,M 为F 1F 2中点 ∴|OM|=|F 2N|=||PN|﹣|PF 2||=||PF 1|﹣|PF 2|| ∵在椭圆中,设P 点坐标为(x 0,y 0)则|PF 1|=a+ex 0,|PF 2|=a ﹣ex 0,∴||PF 1|﹣|PF 2||=|a+ex 0+a ﹣ex 0|=|2ex 0|=|ex 0| ∵P 点在椭圆上, ∴|x 0|∈(0,a],又∵当|x 0|=a 时,F 1M ⊥MP 不成立,∴|x 0|∈(0,a ) ∴|OM|∈(0,c ).故选A .。
浙江省杭州市高考数学真题分类汇编专题10:平面解析几何(基础题)
浙江省杭州市高考数学真题分类汇编专题10:平面解析几何(基础题)姓名:________ 班级:________ 成绩:________一、平面解析几何 (共25题;共39分)1. (2分) (2018高二上·宁夏期末) 有一抛物线型拱桥,当水面离桥顶2m时,水面宽4m,若当水面下降1m时,则水面宽为()A .B .C . 4.5mD . 9m2. (2分) (2016高二上·临川期中) 椭圆 =1(a>b>0)的左、右焦点分别为F1、F2 , P是椭圆上的一点,l:x=﹣,且PQ⊥l,垂足为Q,若四边形PQF1F2为平行四边形,则椭圆的离心率的取值范围是()A . (,1)B . (0,)C . (0,)D . (,1)3. (2分) (2017高二上·牡丹江月考) 已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于A , B两点,若恰好将线段AB三等分,则()A .B .C .D .4. (2分)已知点P是双曲线右支上一点,分别是双曲线的左、右焦点,I为的内心,若成立,则双曲线的离心率为()A . 4B .C . 2D .5. (2分) (2017高二上·石家庄期末) 设F1、F2为椭圆的两个焦点,M为椭圆上一点,MF1⊥MF2 ,且|MF2|=|MO|(其中点O为椭圆的中心),则该椭圆的离心率为()A . ﹣1B . 2﹣C .D .6. (2分)已知直线l:y=kx与椭圆C:+=1(交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A .B .C .D .7. (2分)在△ABC中,若b=2 ,a=3,且三角形有解,则A的取值范围是()A . 0°<A≤30°B . 0°<A≤45°C . 0°<A≤60° 或120°≤A<180°D . 0°<A≤60°8. (2分) (2017高二上·牡丹江月考) 设经过点的等轴双曲线的焦点为,此双曲线上一点满足,则的面积为()A .B .C .D .9. (2分)已知△ABC的三边分别为4,5,6,则△ABC的面积为()A .B .C .D .10. (2分) (2018高一下·六安期末) 已知点,若动点的坐标满足,则的最小值为()A .B . 2C .D .11. (2分)(2013·福建理) 双曲线的顶点到渐近线的距离等于()A .B .C .D .12. (2分) (2018高三上·沧州期末) 已知点在以坐标原点为中心,坐标轴为对称轴,离心率为的椭圆上.若过点作长轴的垂线恰好过椭圆的一个焦点,与椭圆的另一交点为 .若的面积为12(为椭圆的另一焦点),则椭圆的方程为()A .B .C . 或D . 或13. (2分)(2017·来宾模拟) 若双曲线 =1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A .B .C .D .14. (1分) (2016高二上·江阴期中) 在平面直角坐标系xoy中,圆M:(x﹣a)2+(y+a﹣3)2=1(a>0),点N为圆M上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的取值范围为________15. (1分) (2017高二下·淄川开学考) 设抛物线y2=4x上一点P到直线x+2=0的距离是6,则点P到抛物线焦点F的距离为________.16. (1分) (2018高二上·沭阳月考) 已知双曲线(a>0)的一条渐近线为x+y=0,则a=________.17. (1分)已知直线l:2x﹣y+1=0与圆(x﹣2)2+y2=r2相切,则r等于________18. (1分) (2018高二上·扶余月考) 椭圆与直线y=1-x交于M,N两点,过原点与线段MN中点所在直线的斜率为则的值是 ________.19. (2分)(2017·江苏模拟) 在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为________.20. (1分)已知圆的方程为x2+y2+2y=0,则其半径和圆心坐标分别是________.21. (1分) (2016高二上·江北期中) 已知点P(x,y)在圆x2+y2=1上运动,则的最大值为________.22. (1分)已知双曲线的一个焦点到其一条渐近线的距离为,则实数的值是________.23. (1分)过点P(1,2)作一直线l,使直线l与点M(2,3)和点N(4,﹣5)的距离相等,则直线l 的方程为________ .24. (1分)(2020·漳州模拟) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.25. (1分) (2016高一下·定州期末) 已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,且点A(5,0)到l的距离为3,则直线l的方程为________.参考答案一、平面解析几何 (共25题;共39分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、。
高考数学《平面解析几何》练习题及答案
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
十年高考真题汇编(北京卷,含解析)之平面解析几何
十年高考真题(2011-2020)(北京卷)专题10平面解析几何本专题考查的知识点为:平面解析几何,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:椭圆及其性质,双曲线及其性质,抛物线及其性质,直线与圆的位置关系,预测明年本考点题目会比较稳定,备考方向以椭圆及其性质,抛物线及其性质为重点较佳.1.【2020年北京卷05】已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.72.【2020年北京卷07】设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l 于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP3.【2019年北京理科04】已知椭圆x2a2+y2b2=1(a>b>0)的离心率为12,则()A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b4.【2013年北京理科06】若双曲线x2a2−y2b2=1的离心率为√3,则其渐近线方程为()A.y=±2x B.y=±√2x C.y=±12x D.y=±√22x5.【2013年北京理科07】直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.43B.2C.83D.16√236.【2020年北京卷13】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.7.【2018年北京理科14】已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.8.【2017年北京理科09】若双曲线x2−y2m=1的离心率为√3,则实数m=.9.【2017年北京理科14】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.10.【2016年北京理科13】双曲线x 2a 2−y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = .11.【2015年北京理科10】已知双曲线x 2a 2−y 2=1(a >0)的一条渐近线为√3x +y =0,则a = . 12.【2014年北京理科11】设双曲线C 经过点(2,2),且与y 24−x 2=1具有相同渐近线,则C 的方程为;渐近线方程为 .13.【2012年北京理科12】在直角坐标系xOy 中.直线l 过抛物线y 2=4x 的焦点F .且与该抛物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60°.则△OAF 的面积为 .14.【2011年北京理科14】曲线C 是平面内与两个定点F 1(﹣1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2. 其中,所有正确结论的序号是 . 15.【2020年北京卷14】已知双曲线C:x 26−y 23=1,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.16.【2020年北京卷20】已知椭圆C:x 2a 2+y 2b 2=1过点A(−2,−1),且a =2b .(Ⅰ)求椭圆C 的方程:(Ⅱ)过点B(−4,0)的直线l 交椭圆C 于点M,N ,直线MA,NA 分别交直线x =−4于点P,Q .求|PB||BQ|的值. 17.【2019年北京理科18】已知抛物线C :x 2=﹣2py 经过点(2,﹣1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =﹣1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.18.【2018年北京理科19】已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.19.【2017年北京理科18】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.20.【2016年北京理科19】已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是椭圆C上一点,直线P A与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.21.【2015年北京理科19】已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线P A交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.22.【2014年北京理科19】已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.23.【2013年北京理科19】已知A,B,C是椭圆W:x24+y2=1上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.24.【2012年北京理科19】已知曲线C:(5﹣m)x2+(m﹣2)y2=8(m∈R)(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.25.【2011年北京理科19】已知椭圆G:x24+y2=1.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B两点.(Ⅰ)求椭圆G的焦点坐标和离心率;(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.1.【2020届北京市陈经纶学校高三上学期数学10月份月考】古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(λ>0,λ≠1)的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足|MA|=2|MB|,则M 点的轨迹围成区域的面积为(). A .πB .2πC .3πD .4π2.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知不过坐标原点O 的直线交抛物线y 2=2px 于A ,B 两点,若直线OA ,AB 的斜率分别为2和6,则直线OB 的斜率为() A .3B .2C .-2D .-33.【北京市平谷区2020届高三第二学期阶段性测试(二模)】若抛物线y 2=2px (p >0)上任意一点到焦点的距离恒大于1,则p 的取值范围是() A .p <1B .p >1C .p <2D .p >24.【2020届北京市顺义牛栏山第一中学西校区高三下学期4月月考】设F 2是双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,过F 2的直线交双曲线的右支于点P ,N ,直线PO 交双曲线C 于另一点M ,若|MF 2|=3|PF 2|,且∠MF 2N =60°,则双曲线C 的离心率为() A .3B .2C .√52D .√725.【北京五中2020届高三(4月份)高考数学模拟】已知正方体ABCD ﹣A 1B 1C 1D 1的棱长是1,点P 在该正方体的棱上.若|P A |+|PC 1|=√5,则点P 的个数为() A .6B .12C .8D .186.【2020届北京市高考适应性测试】已知点A(2,0)、B(0,−2).若点P 在函数y =√x 的图象上,则使得△PAB 的面积为2的点P 的个数为() A .1B .2C .3D .47.【北京一零一中学2019-2020学年度第二学期高三数学统练】已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过点F 1的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,若AB ⃗⃗⃗⃗⃗ ⋅BF 2⃗⃗⃗⃗⃗⃗⃗ =0,且∠F 1AF 2=150∘,则e 2=()A .7−2√3B .7−√3C .7+√3D .7+2√38.【北京市东城区2020届高三第二学期二模】双曲线C :x 2−y 2b 2=1的渐近线与直线x =1交于A ,B 两点,且|AB |=4,那么双曲线C 的离心率为() A .√2B .√3C .2D .√59.【2020届北京市海淀区高三一模】已知双曲线x 2−y 2b 2=1(b >0)的离心率为√5,则b 的值为()A .1B .2C .3D .410.【2020届北京市第十一中学高三一模】已知双曲线x 2a+y 2=1的一条渐近线倾斜角为5π6,则a =()A .3B .−√3C .−√33D .−311.【2020届北京市八一中学高三数学四月份统练】已知抛物线x 2=4y 上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为() A .2B .3C .4D .512.【北京市海淀区2019届高三上学期期末】双曲线x 22−y 22=1的左焦点的坐标为()A .(-2,0)B .(−√2,0)C .(−1,0)D .(−4,0)13.【北京市朝阳区2019届高三第一次综合练习】已知圆C:(x −2)2+y 2=2,直线l:y =kx −2,若直线l 上存在点P ,过点P 引圆的两条切线l 1,l 2,使得l 1⊥l 2,则实数k 的取值范围是() A .[0,2−√3)∪(2+√3,+∞) B .[2−√3,2+√3] C .(−∞,0)D .[0,+∞)14.【北京市第四十四中学2019-2020学年高二下学期诊断性测试】已知椭圆x 25+y 2m =1(m >0)的离心率e=√105,则m 的值为() A .3B .253或3C .√5D .5√153或√1515.【2020届北京四中高三第二学期开学考试】已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2离心率为√33,过F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为4√3,则C 的方程为()A .x 23+y 22=1 B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=116.【北京市一零一中学2018届高三3月月考】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k >0,k ≠1)的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间的距离为2,动点P 满足|PA||PB|=√2,当P 、A 、B 不共线时,三角形PAB 面积的最大值是() A .2√2B .√2C .2√23D .√2317.【2020届北京市西城区高三诊断性考试(二模)】若圆x 2+y 2−4x +2y +a =0与x 轴,y 轴均有公共点,则实数a 的取值范围是() A .(−∞,1]B .(−∞,0]C .[0,+∞)D .[5,+∞)18.【北京市海淀区2020届高三年级第二学期期末练习(二模)】若抛物线y 2=12x 的焦点为F ,点P 在此抛物线上且横坐标为3,则|PF|等于() A .4B .6C .8D .1019.【北京市丰台区2020届高三下学期综合练习(二)(二模)】已知抛物线M :x 2=2py(p >0)的焦点与双曲线N :y 23−x 2=1的一个焦点重合,则p =()A .√2B .2C .2√2D .420.【北京市2020届高考数学预测卷】已知点A(−2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为() A .−43B .−1C .−34D .−1221.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,过C 的左焦点做x 轴的垂线交椭圆于P 、Q 两点,且|PQ|=1.(1)求椭圆C 的标准方程及长轴长;(2)椭圆C 的短轴的上下端点分别为A ,B ,点M(m,12),满足m ≠0,且m ≠±√3,若直线AM ,BM 分别与椭圆C 交于E ,F 两点,且ΔBME 面积是ΔAMF 面积的5倍,求m 的值.22.【北京五中2020届高三(4月份)高考数学模拟】已知点M (x 0,y 0)为椭圆C :x 22+y 2=1上任意一点,直线l :x 0x +2y 0y =2与圆(x ﹣1)2+y 2=6交于A ,B 两点,记线段AB 中点为N ,点F 为椭圆C 的左焦点.(Ⅰ)求椭圆C 的离心率及左焦点F 的坐标; (Ⅱ)证明:|FN |=|AN |.23.【北京市丰台区2020届高三下学期综合练习(二)(二模)】已知椭圆C :x 2a +y 2b =1(a >b >0)经过A(1,0),B(0,b)两点.O 为坐标原点,且△AOB 的面积为√24.过点P(0,1)且斜率为k (k >0)的直线l 与椭圆C 有两个不同的交点M ,N ,且直线AM ,AN 分别与y 轴交于点S ,T . (Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS⃗⃗⃗⃗ =λPO ⃗⃗⃗⃗⃗ ,PT ⃗⃗⃗⃗⃗ =μPO ⃗⃗⃗⃗⃗ ,求λ+μ的取值范围. 24.【2020届北京市第四中学高三第二学期数学统练】设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP⇀=√2NM ⇀.(1)求点P 的轨迹方程;(2)设点Q 在直线x =−3上,且OP⇀⋅PQ ⇀=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 25.如图,已知圆O :x 2+y 2=8交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为√22的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点作直线PF 的垂线交直线x =﹣4于点Q .(1)求椭圆C 的标准方程;(2)当点P 在圆O 上运动时(不与A ,B 重合),判断直线PQ 与圆O 位置关系? 26.【2020届北京市中国人民大学附属中学高三下学期数学统练二】已知椭圆C :x 2a 2+y 2b 2=1(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,√32),P 4(1,√32)中恰有三点在椭圆C 上.(Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.27.【北京市清华大学附属中学2019届高三下学期第三次模拟】已知椭圆C:x 2a 2+y 2b2=1(a >b >0)的离心率为√32,过椭圆的焦点且与长轴垂直的弦长为1.(1)求椭圆C 的方程;(2)设点M 为椭圆上位于第一象限内一动点,A,B 分别为椭圆的左顶点和下顶点,直线MB 与x 轴交于点C ,直线MA 与轴交于点D ,求证:四边形ABCD 的面积为定值.28.【2020届北京市西城区第十五中学高三模拟(一)】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点为F(c,0),左顶点为A ,右顶点B 在直线l:x =2上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上异于A ,B 的点,直线AP 交直线l 于点D ,当点P 运动时,判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.29.【2020届北京市顺义牛栏山第一中学西校区高三下学期4月月考】已知椭圆C:x 2a 2+y 2b 2=1 (a >b >0)经过点(√3,1),离心率为√63.(1)求椭圆C 的方程;(2)过点M(4,0)的直线交椭圆于A 、B 两点,若AM ⃗⃗⃗⃗⃗⃗ =λMB ⃗⃗⃗⃗⃗⃗ ,在线段AB 上取点D ,使AD ⃗⃗⃗⃗⃗ =−λDB ⃗⃗⃗⃗⃗⃗ ,求证:点D 在定直线上.30.【北京市东城区2020届高三第二学期二模】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点坐标为A (0,﹣1),离心率为√32.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线y =k (x ﹣1)(k ≠0)与椭圆C 交于不同的两点P ,Q ,线段PQ 的中点为M ,点B (1,0),求证:点M 不在以AB 为直径的圆上1.【2020年北京卷05】已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【解析】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C在线段OM上时取得等号,故选:A.2.【2020年北京卷07】设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l 于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【答案】B【解析】如图所示:.因为线段FQ 的垂直平分线上的点到F,Q 的距离相等,又点P 在抛物线上,根据定义可知,|PQ |=|PF |,所以线段FQ 的垂直平分线经过点P . 故选:B.3.【2019年北京理科04】已知椭圆x 2a2+y 2b 2=1(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】解:由题意,ca =12,得c 2a 2=14,则a 2−b 2a 2=14,∴4a 2﹣4b 2=a 2,即3a 2=4b 2. 故选:B .4.【2013年北京理科06】若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( ) A .y =±2x B .y =±√2xC .y =±12x D .y =±√22x 【答案】解:由双曲线的离心率√3,可知c =√3a , 又a 2+b 2=c 2,所以b =√2a ,所以双曲线的渐近线方程为:y =±ba x =±√2x . 故选:B .5.【2013年北京理科07】直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A .43B .2C .83D .16√23【答案】解:抛物线x 2=4y 的焦点坐标为(0,1), ∵直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直, ∴直线l 的方程为y =1,由{y =1x 2=4y,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为∫2−2(1−x24)dx=(x−112x3)|−22=83.故选:C.6.【2020年北京卷13】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.【答案】①②③【解析】−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,甲企业在[t 1,t 2]这段时间内,甲的斜率最小,其相反数最大,即在[t 1,t 2]的污水治理能力最强.④错误;在t 2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t 3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确; 故答案为:①②③7.【2018年北京理科14】已知椭圆M :x 2a2+y 2b 2=1(a >b >0),双曲线N :x 2m2−y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 . 【答案】解:椭圆M :x 2a2+y 2b 2=1(a >b >0),双曲线N :x 2m2−y 2n 2=1.若双曲线N 的两条渐近线与椭圆M的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点, 可得椭圆的焦点坐标(c ,0),正六边形的一个顶点(c2,√3c2),可得:c 24a2+3c 24b 2=1,可得14e 2+34(1e2−1)=1,可得e 4﹣8e 2+4=0,e ∈(0,1), 解得e =√3−1.同时,双曲线的渐近线的斜率为√3,即nm =√3,可得:n 2m2=3,即m 2+n 2m 2=4,可得双曲线的离心率为e =√m 2+n 2m 2=2.故答案为:√3−1;2.8.【2017年北京理科09】若双曲线x 2−y 2m=1的离心率为√3,则实数m = .【答案】解:双曲线x 2−y 2m=1(m >0)的离心率为√3,可得:√1+m1=√3,解得m =2. 故答案为:2.9.【2017年北京理科14】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是 .(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.【答案】解:(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p210.【2016年北京理科13】双曲线x2a2−y2b2=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=.【答案】解:∵双曲线的渐近线为正方形OABC的边OA,OC所在的直线,∴渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=±x,即a=b,∵正方形OABC的边长为2,∴OB=2√2,即c=2√2,则a2+b2=c2=8,即2a2=8,则a2=4,a=2,故答案为:211.【2015年北京理科10】已知双曲线x 2a 2−y 2=1(a >0)的一条渐近线为√3x +y =0,则a = .【答案】解:双曲线x 2a−y 2=1的渐近线方程为y =±xa,由题意可得1a=√3,解得a =√33. 故答案为:√33.12.【2014年北京理科11】设双曲线C 经过点(2,2),且与y 24−x 2=1具有相同渐近线,则C 的方程为 ;渐近线方程为 .【答案】解:与y 24−x 2=1具有相同渐近线的双曲线方程可设为y 24−x 2=m ,(m ≠0), ∵双曲线C 经过点(2,2), ∴m =224−22=1−4=−3,即双曲线方程为y 24−x 2=﹣3,即x 23−y 212=1,对应的渐近线方程为y =±2x , 故答案为:x 23−y 212=1,y =±2x .13.【2012年北京理科12】在直角坐标系xOy 中.直线l 过抛物线y 2=4x 的焦点F .且与该抛物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60°.则△OAF 的面积为 . 【答案】解:抛物线y 2=4x 的焦点F 的坐标为(1,0) ∵直线l 过F ,倾斜角为60°∴直线l 的方程为:y =√3(x −1),即x =√33y +1代入抛物线方程,化简可得y2−4√33y−4=0∴y=2√3,或y=−23√3∵A在x轴上方∴△OAF的面积为12×1×2√3=√3故答案为:√314.【2011年北京理科14】曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于12a2.其中,所有正确结论的序号是.【答案】解:对于①,由题意设动点坐标为(x,y),则利用题意及两点间的距离公式的得:√(x+1)2+y2⋅√(x−1)2+y2=a2⇔[(x+1)2+y2]•[(x﹣1)2+y2]=a4(1)将原点代入验证,此方程不过原点,所以①错;对于②,把方程中的x被﹣x代换,y被﹣y代换,方程不变,故此曲线关于原点对称.②正确;对于③,由题意知点P在曲线C上,则△F1PF2的面积S△F1PF2=12|PF1||PF2|sin∠F1PF2=12a2sin∠F1PF2,≤12a2,所以③正确.故答案为:②③.15.【2020年北京卷14】已知双曲线C:x26−y23=1,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.【答案】(3,0)√3【解析】在双曲线C中,a=√6,b=√3,则c=√a2+b2=3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近线方程为y=±√22x,即x±√2y=0,所以,双曲线C的焦点到其渐近线的距离为√12+2=√3.故答案为:(3,0);√3.16.【2020年北京卷20】已知椭圆C:x2a2+y2b2=1过点A(−2,−1),且a=2b.(Ⅰ)求椭圆C的方程:(Ⅱ)过点B(−4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=−4于点P,Q.求|PB||BQ|的值.【答案】(Ⅰ)x 28+y22=1;(Ⅱ)1.【解析】(1)设椭圆方程为:x2a2+y2b2=1(a>b>0),由题意可得:{4a2+1b2=1a=2b,解得:{a2=8b2=2,故椭圆方程为:x 28+y22=1.(2)设M(x1,y1),N(x2,y2),直线MN的方程为:y=k(x+4),与椭圆方程x 28+y22=1联立可得:x2+4k2(x+4)2=8,即:(4k2+1)x2+32k2x+(64k2−8)=0,则:x1+x2=−32k24k+1,x1x2=64k2−84k+1.直线MA的方程为:y+1=y1+1x1+2(x+2),令x=−4可得:y P=−2×y1+1x1+2−1=−2×k(x1+4)+1x1+2−x1+2x1+2=−(2k+1)(x1+4)x1+2,同理可得:y Q=−(2k+1)(x2+4)x2+2.很明显y P y Q<0,且:|PB||PQ|=|y Py Q|,注意到:y P+y Q=−(2k+1)(x1+4x1+2+x2+4x2+2)=−(2k+1)×(x1+4)(x2+2)+(x2+4)(x1+2)(x1+2)(x2+2),而:(x1+4)(x2+2)+(x2+4)(x1+2)=2[x1x2+3(x1+x2)+8]=2[64k2−84k2+1+3×(−32k24k2+1)+8]=2×(64k2−8)+3×(−32k2)+8(4k2+1)4k2+1=0,故y P+y Q=0,y P=−y Q.从而|PB||PQ|=|y Py Q|=1.17.【2019年北京理科18】已知抛物线C:x2=﹣2py经过点(2,﹣1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=﹣1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.【答案】解:(Ⅰ)抛物线C :x 2=﹣2py 经过点(2,﹣1).可得4=2p ,即p =2, 可得抛物线C 的方程为x 2=﹣4y ,准线方程为y =1; (Ⅱ)证明:抛物线x 2=﹣4y 的焦点为F (0,﹣1),设直线方程为y =kx ﹣1,联立抛物线方程,可得x 2+4kx ﹣4=0, 设M (x 1,y 1),N (x 2,y 2), 可得x 1+x 2=﹣4k ,x 1x 2=﹣4, 直线OM 的方程为y =y 1x 1x ,即y =−x14x ,直线ON 的方程为y =y2x 2x ,即y =−x24x ,可得A (4x 1,﹣1),B (4x 2,﹣1),可得AB 的中点的横坐标为2(1x 1+1x 2)=2•−4k−4=2k ,即有AB 为直径的圆心为(2k ,﹣1), 半径为|AB|2=12|4x 1−4x 2|=2•√16k 2+164=2√1+k 2,可得圆的方程为(x ﹣2k )2+(y +1)2=4(1+k 2), 化为x 2﹣4kx +(y +1)2=4, 由x =0,可得y =1或﹣3.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,﹣3).18.【2018年北京理科19】已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. 【答案】解:(Ⅰ)∵抛物线C :y 2=2px 经过点 P (1,2),∴4=2p ,解得p =2, 设过点(0,1)的直线方程为y =kx +1, 设A (x 1,y 1),B (x 2,y 2) 联立方程组可得{y 2=4x y =kx +1,消y 可得k 2x 2+(2k ﹣4)x +1=0,∴△=(2k ﹣4)2﹣4k 2>0,且k ≠0解得k <1,且k ≠0,x 1+x 2=−2k−4k 2,x 1x 2=1k 2,又∵P A 、PB 要与y 轴相交,∴直线l 不能经过点(1,﹣2),即k ≠﹣3, 故直线l 的斜率的取值范围(﹣∞,﹣3)∪(﹣3,0)∪(0,1); (Ⅱ)证明:设点M (0,y M ),N (0,y N ), 则QM →=(0,y M ﹣1),QO →=(0,﹣1)因为QM →=λQO →,所以y M ﹣1=﹣y M ﹣1,故λ=1﹣y M ,同理μ=1﹣y N , 直线P A 的方程为y ﹣2=2−y 11−x 1(x ﹣1)=2−y 11−y 124(x ﹣1)=42+y 1(x ﹣1),令x =0,得y M =2y12+y 1,同理可得y N =2y22+y 2,因为1λ+1μ=11−y M+11−y N=2+y 12−y 1+2+y22−y2=8−2y 1y 2(2−y 1)(2−y 2)=8−2(kx 1+1)(kx 2+1)1−k(x1+x 2)+k2x 1x 2=8−[k 2x 1x 2+k(x 1+x 2)+1]1−k(x 1+x 2)+k 2x 1x 2=8−2(1+4−2kk +1)1−4−2k k+1=4−2×4−2k k 2−4−2k k=2,∴1λ+1μ=2,∴1λ+1μ为定值.19.【2017年北京理科18】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.【答案】解:(1)∵y 2=2px 过点P (1,1), ∴1=2p ,解得p =12,∴y 2=x ,∴焦点坐标为(14,0),准线为x =−14,(2)证明:设过点(0,12)的直线方程为 y =kx +12,M (x 1,y 1),N (x 2,y 2),∴直线OP 为y =x ,直线ON 为:y =y2x 2x ,由题意知A (x 1,x 1),B (x 1,x 1y 2x 2),由{y =kx +12y 2=x ,可得k 2x 2+(k ﹣1)x +14=0, ∴x 1+x 2=1−k k ,x 1x 2=14k∴y 1+x 1y 2x 2=kx 1+12+x 1(kx 2+12)x 2=2kx 1+x 1+x 22x 2=2kx 1+1−k k 22×14k 2x1=2kx 1+(1﹣k )•2x 1=2x 1,∴A 为线段BM 的中点.20.【2016年北京理科19】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |•|BM |为定值. 【答案】解:(Ⅰ)由题意可得e =ca =√32, 又△OAB 的面积为1,可得12ab =1, 且a 2﹣b 2=c 2,解得a =2,b =1,c =√3,可得椭圆C 的方程为x 24+y 2=1; (Ⅱ)证法一:设椭圆上点P (x 0,y 0), 可得x 02+4y 02=4,若P (0,﹣1),可得P A 与y 轴交于点M (0,﹣1),直线PB 与x 轴交于点N (0,0), 可得|AN |•|BM |=4; 直线P A :y =y 0x 0−2(x ﹣2),令x =0,可得y =−2y 0x 0−2,则|BM |=|1+2y 0x 0−2|;直线PB :y =y 0−1x 0x +1,令y =0,可得x =−x 0y 0−1,则|AN |=|2+x 0y 0−1|.可得|AN |•|BM |=|2+x 0y 0−1|•|1+2y 0x 0−2|=|(x 0+2y 0−2)2(x 0−2)(y 0−1)|=|x 02+4y 02+4+4x 0y 0−4x 0−8y 02+x 0y 0−x 0−2y 0|=|8+4x 0y 0−4x 0−8y 02+x 0y 0−x 0−2y 0|=4,即有|AN |•|BM |为定值4.证法二:设P (2cos θ,sin θ),(0≤θ<2π),直线P A :y =sinθ2cosθ−2(x ﹣2),令x =0,可得y =−sinθcosθ−1, 则|BM |=|sinθ+cosθ−11−cosθ|;直线PB :y =sinθ−12cosθx +1,令y =0,可得x =−2cosθsinθ−1, 则|AN |=|2sinθ+2cosθ−21−sinθ|.即有|AN |•|BM |=|2sinθ+2cosθ−21−sinθ|•|sinθ+cosθ−11−cosθ|=2|sin 2θ+cos 2θ+1+2sinθcosθ−2sinθ−2cosθ1+sinθcosθ−sinθ−cosθ|=2|2+2sinθcosθ−2sinθ−2cosθ1+sinθcosθ−sinθ−cosθ|=4.则|AN |•|BM |为定值4.21.【2015年北京理科19】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N ,问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标,若不存在,说明理由.【答案】解:(Ⅰ)由题意得出{b =1ca =√22a 2=b 2+c 2解得:a =√2,b =1,c =1 ∴x 22+y 2=1,∵P (0,1)和点A (m ,n ),﹣1<n <1 ∴P A 的方程为:y ﹣1=n−1mx ,y =0时,x M =m 1−n∴M (m1−n ,0)(II )∵点B 与点A 关于x 轴对称,点A (m ,n )(m ≠0) ∴点B (m ,﹣n )(m ≠0) ∵直线PB 交x 轴于点N , ∴N (m 1+n ,0),∵存在点Q ,使得∠OQM =∠ONQ ,Q (0,y Q ), ∴tan ∠OQM =tan ∠ONQ , ∴y Q x M=x N y Q,即y Q 2=x M •x N ,m22+n 2=1y Q2=m21−n 2=2,∴y Q =±√2,故y 轴上存在点Q ,使得∠OQM =∠ONQ ,Q (0,√2)或Q (0,−√2)22.【2014年北京理科19】已知椭圆C :x 2+2y 2=4, (1)求椭圆C 的离心率(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,求直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论. 【答案】解:(1)由x 2+2y 2=4,得椭圆C 的标准方程为x 24+y 22=1.∴a 2=4,b 2=2,从而c 2=a 2﹣b 2=2. 因此a =2,c =√2. 故椭圆C 的离心率e =c a=√22; (2)直线AB 与圆x 2+y 2=2相切. 证明如下:设点A ,B 的坐标分别为(x 0,y 0),(t ,2),其中x 0≠0. ∵OA ⊥OB ,∴OA →⋅OB →=0,即tx 0+2y 0=0,解得t =−2y 0x 0.当x 0=t 时,y 0=−t 22,代入椭圆C 的方程,得t =±√2. 故直线AB 的方程为x =±√2,圆心O 到直线AB 的距离d =√2. 此时直线AB 与圆x 2+y 2=2相切. 当x 0≠t 时,直线AB 的方程为y −2=y 0−2x 0−t(x −t),即(y 0﹣2)x ﹣(x 0﹣t )y +2x 0﹣ty 0=0. 圆心O 到直线AB 的距离d =000202.又x 02+2y 02=4,t =−2y 0x 0.故d =|2x 0+2y 02x 0|√x 02+y 02+4y 02x 02+4=|4+x 02x 0|√x 04+8x 02+162x 02=√2.此时直线AB 与圆x 2+y 2=2相切.23.【2013年北京理科19】已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点. (Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 【答案】解:(I )∵四边形OABC 为菱形,B 是椭圆的右顶点(2,0)∴直线AC 是BO 的垂直平分线,可得AC 方程为x =1 设A (1,t ),得124+t 2=1,解之得t =√32(舍负) ∴A 的坐标为(1,√32),同理可得C 的坐标为(1,−√32) 因此,|AC |=√3,可得菱形OABC 的面积为S =12|AC |•|BO |=√3; (II )∵四边形OABC 为菱形,∴|OA |=|OC |, 设|OA |=|OC |=r (r >1),得A 、C 两点是圆x 2+y 2=r 2 与椭圆W :x 24+y 2=1的公共点,解之得3x 24=r 2﹣1设A 、C 两点横坐标分别为x 1、x 2,可得A 、C 两点的横坐标满足 x 1=x 2=2√33•√r 2−1,或x 1=2√33•√r 2−1且x 2=−2√33•√r 2−1,①当x 1=x 2=2√33•√r 2−1时,可得若四边形OABC 为菱形,则B 点必定是右顶点(2,0);②若x 1=2√33•2−1且x 2=−2√33•2−1,则x 1+x 2=0,可得AC 的中点必定是原点O ,因此A 、O 、C 共线,可得不存在满足条件的菱形OABC 综上所述,可得当点B 不是W 的顶点时,四边形OABC 不可能为菱形.24.【2012年北京理科19】已知曲线C :(5﹣m )x 2+(m ﹣2)y 2=8(m ∈R ) (1)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(2)设m =4,曲线c 与y 轴的交点为A ,B (点A 位于点B 的上方),直线y =kx +4与曲线c 交于不同的两点M 、N ,直线y =1与直线BM 交于点G .求证:A ,G ,N 三点共线. 【答案】(1)解:原曲线方程可化简得:x 285−m+y 28m−2=1由题意,曲线C 是焦点在x 轴点上的椭圆可得:{ 85−m >8m−285−m >08m−2>0,解得:72<m <5(2)证明:由已知直线代入椭圆方程化简得:(2k 2+1)x 2+16kx +24=0,△=32(2k 2﹣3)>0,解得:k 2>32由韦达定理得:x M +x N =−16k2k 2+1①,x M x N =242k 2+1,②设N (x N ,kx N +4),M (x M ,kx M +4),G (x G ,1),MB 方程为:y =kx M +6x Mx −2,则G(3x M kx M +6,1),∴AG →=(3x MkxM+6,−1),AN →=(x N ,kx N +2), 欲证A ,G ,N 三点共线,只需证AG →,AN →共线 即3x MxM k+6(x N k +2)=−x N 成立,化简得:(3k +k )x M x N =﹣6(x M +x N )将①②代入可得等式成立,则A ,G ,N 三点共线得证. 25.【2011年北京理科19】已知椭圆G :x 24+y 2=1.过点(m ,0)作圆x 2+y 2=1的切线I 交椭圆G 于A ,B 两点.(Ⅰ)求椭圆G 的焦点坐标和离心率;(Ⅱ)将|AB |表示为m 的函数,并求|AB |的最大值. 【答案】解:(I )由题意得a =2,b =1,所以c =√3 ∴椭圆G 的焦点坐标(−√3,0)(√3,0)离心率e =c a=√32. (II )由题意知:|m |≥1,当m =1时,切线l 的方程为x =1,点A (1,√32)点B (1,−√32)此时|AB |=√3;当m =﹣1时,同理可得|AB |=√3;当|m |>1时,设切线l 的方程为:y =k (x ﹣m ),由{y =k(x −m)x 24+y 2=1⇒(1+4k 2)x 2﹣8k 2mx +4k 2m 2﹣4=0, 设A (x 1,y 1),B (x 2,y 2)则x 1+x 2=8k 2m1+4k 2,x 1⋅x 2=4k 2m 2−41+4k 2又由l 与圆x 2+y 2=1相切∴圆心到直线l 的距离等于圆的半径即√1+k2=1⇒m 2=1+k 2k 2,所以|AB |=√(x 1−x 2)2+(y 1−y 2)2=√(1+k 2)[(x 1+x 2)2−4x 1⋅x 2] =√(1+k 2)⋅[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3|m|m 2+3,由于当m =±1时,|AB |=√3,当m ≠±1时,|AB |=4√3|m|m 2+3,此时m ∈(﹣∞,﹣1]∪[1,+∞)又|AB |=4√3|m|m 2+3=4√3|m|+3|m|≤2(当且仅当m =±√3时,|AB |=2),所以,|AB |的最大值为2. 故|AB |的最大值为2.1.【2020届北京市陈经纶学校高三上学期数学10月份月考】古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(λ>0,λ≠1)的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足|MA|=2|MB|,则M 点的轨迹围成区域的面积为(). A .π B .2π C .3π D .4π【答案】D 【解析】以A 为原点,直线AB 为x 轴建立平面直角坐标系,则B(3,0).设M(x,y), 依题意有,√x 2+y 222=2,化简整理得,x 2+y 2−8x +12=0, 即(x −4)2+y 2=4, 则圆的面积为4π. 故选D .2.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知不过坐标原点O 的直线交抛物线y 2=2px 于A ,B 两点,若直线OA ,AB 的斜率分别为2和6,则直线OB 的斜率为() A .3 B .2 C .-2 D .-3【答案】D 【解析】设A(y A22p ,y A ),B(y B22p ,y B ),那么k AB =y A −y By A 2−y B 22p=2py A +y B =6,所以y A +y B=p 3,而k OA =y Ay A22p=2p y A=2,故y A=p ,y B =−23p ,所以x B =29p ,k OB =−3,选D .3.【北京市平谷区2020届高三第二学期阶段性测试(二模)】若抛物线y 2=2px (p >0)上任意一点到焦点的距离恒大于1,则p 的取值范围是() A .p <1 B .p >1 C .p <2 D .p >2【答案】D 【解析】。
高中数学平面解析几何练习题(含解析)
高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
十年真题(2010-2019)高考数学(文)分类汇编专题10 平面解析几何选择填空题(新课标Ⅰ卷)(原卷版)
专题10平面解析几何选择填空题历年考题细目表6填空题2015 双曲线2015年新课标1文科16填空题2010 圆的方程2010年新课标1文科13解答题2019 双曲线2019年新课标1文科21历年高考真题汇编1.【2019年新课标1文科10】双曲线C:1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.D.2.【2019年新课标1文科12】已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.y2=1 B. 1C. 1 D. 13.【2018年新课标1文科04】已知椭圆C:1的一个焦点为(2,0),则C的离心率为()A.B.C.D.4.【2017年新课标1文科05】已知F是双曲线C:21的右焦点,P是C上一点,且PF与轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.5.【2017年新课标1文科12】设A,B是椭圆C:1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)6.【2016年新课标1文科05】直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.7.【2015年新课标1文科05】已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.128.【2014年新课标1文科04】已知双曲线1(a>0)的离心率为2,则实数a=()A.2 B.C.D.19.【2014年新课标1文科10】已知抛物线C:y2=的焦点为F,A(0,y0)是C上一点,AF=|0|,则0=()A.1 B.2 C.4 D.810.【2013年新课标1文科04】已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y B.y C.y=±D.y11.【2013年新课标1文科08】O为坐标原点,F为抛物线C:y2=4的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2 B.2C.2D.412.【2012年新课标1文科04】设F1、F2是椭圆E:1(a>b>0)的左、右焦点,P为直线上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.13.【2012年新课标1文科10】等轴双曲线C的中心在原点,焦点在轴上,C与抛物线y2=16的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.814.【2011年新课标1文科09】已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.4815.【2011年新课标1文科04】椭圆1的离心率为()A.B.C.D.16.【2010年新课标1文科05】中心在原点,焦点在轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.17.【2018年新课标1文科15】直线y=+1与圆2+y2+2y﹣3=0交于A,B两点,则|AB|=.18.【2016年新课标1文科15】设直线y=+2a与圆C:2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.19.【2015年新课标1文科16】已知F是双曲线C:21的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.20.【2010年新课标1文科13】圆心在原点上与直线+y﹣2=0相切的圆的方程为.21.【2019年新课标1文科21】已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线+2=0相切.(1)若A 在直线+y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由. 考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =u u u r u u u r,则该双曲线的离心率为( )AB C D2.双曲线22221(0,0)x y a b a b-=>>的一个焦点为(, 0)F c ,若a 、b 、c 成等比数列,则该双曲线的离率e =( )A B C D 13.已知,A B 为抛物线22(0)x py p =>上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为2π,若过圆心C 作该抛物线准线l 的垂线CD ,垂足为D ,则||CD 的最大值为( )A .2B C .2D .124.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,以OF 为直径的圆与双曲线C 的渐近线交于不同原点O 的A B ,两点,若四边形AOBF 的面积为()2212a b +,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .y x =±D .2y x =±5.已知12F F 、分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点P ,若点P 在以线段12F F 为直径的圆外,则双曲线离心率的取值范围是( )A .(B .)+∞C .()1,2D .()2,+∞6.过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,若|AF|=3,则|BF|=( )A .2B .32C .1D .127.已知F 是抛物线()2:20C y px p =>的焦点,抛物线C 上动点A ,B 满足4AF FB =u u u ru u u r,若A ,B 的准线上的射影分别为M ,N 且MFN ∆的面积为5,则AB =( )A .94B .134C .214D .2548.已知直线1y kx =-与抛物线28x y =相切,则双曲线2221x k y -=的离心率为( )A B CD 9.过点(2,1)P 作直线l 与圆22:240C x y x y a +--+=交于A ,B 两点,若P 为A ,B 中点,则直线l 的方程为( ) A .3y x =-+ B .23y x =- C .23y x =-+D .1y x =-10.设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c=2,213PF F S ∆=,则双曲线的两条渐近线的夹角为( ) A .5π B .4π C .6π D .3π 11.直线:2l x ay +=被圆224x y +=所截得的弦长为23,则直线l 的斜率为( ) A .3B .3-C .3 D .3±12.已知双曲线()2222:10,0x y E a b a b-=>>的右顶点A ,抛物线2:12C y ax =的焦点为F ,若在E 的渐近线上存在点P ,使得PA FP ⊥,则E 的离心率的取值范围是( ) A .()1,2B .231,⎛⎤ ⎥ ⎝⎦C .()2,+∞D .23,3⎡⎫+∞⎪⎢⎪⎣⎭13.已知椭圆C :2214x y +=上的三点A ,B ,C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是ABC ∆的重心,且BMA ∆与CMO ∆的面积之比为32,则直线BC 的斜率为( )A .24-B .14-C .3D .314.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则( )A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线 C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线15.已知抛物线2:4C y x =的焦点F 和准线l ,过点F 的直线交l 于点A ,与抛物线的一个交点为B ,且3FA FB =-u u u v u u u v,则||AB =( )A .23B .43C .323D .16316.已知双曲线C :22221(0,0)x y a b a b-=>>的左焦点为F ,右顶点为A ,以F 为圆心,FA 为半径的圆交C的左支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为( ) A 2B 3C .43D .5317.已知抛物线C :22(0)x py p =>的焦点为F ,抛物线C 的准线与y 轴交于点A ,点()01,M y 在抛物线C 上,05||4y MF =,则tan FAM ∠=( ) A .25 B .52C .54D .4518.已知圆C :22430x y x +-+=,则圆C 关于直线4y x =--的对称圆的方程是( ) A .22(4)(6)1x y +++= B .22(6)(4)1x y +++= C .22(5)(7)1x y +++=D .22(7)(5)1x y +++=19.已知椭圆C :22221x y a b+=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .2 B .12C .3 D .1320.以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( ) A .32-B .31-C .2 D .3 21.已知椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,则过点A ,B 且与直线m :43x =相切的圆的方程为______. 22.已知点(3,3)P -,过点(3,0)M 作直线,与抛物线24y x =相交于A ,B 两点,设直线PA ,PB 的斜率分别为1k ,2k ,则12k k +=____.23.已知圆C :22(1)()16x y a -+-=,若直线20ax y +-=与圆C 相交于A ,B 两点,且CA CB ⊥,则实数a 的值为_______.24.如图是数学家Germinal Dandelin 用证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.25.已知点()2,0A -、()02,B ,若点C 是圆222210x ax y a -++-=上的动点,ABC ∆面积的最小值为3,则a 的值为__________.26.椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,过2F 的直线交椭圆于A ,B两点,1ABF ∆的周长为8,则该椭圆的短轴长为__________.27.在平面直角坐标系xOy 中,已知点A ,F 分别为椭圆C :22221(0)x y a b a b+=>>的右顶点、右焦点,过坐标原点O 的直线交椭圆C 于P ,Q 两点,线段AP 的中点为M ,若Q ,F ,M 三点共线,则椭圆C 的离心率为______.28.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,,与抛物线C 的准线相交于点N ,若:1:2FM MN =,则实数a 的值为______.29.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C的右支于M ,N 两点,且线段AM 的垂直平分线经过点N ,则C 的离心率为_________.30.椭圆T :22221(0)x y a b a b +=>>的两个顶点(,0)A a ,(0,)B b ,过A ,B 分别作AB 的垂线交椭圆T 于D ,C (不同于顶点),若3BC AD =,则椭圆T 的离心率为_____.。
2019年高考数学真题分类汇编专题10:平面解析几何(基础题)
2019年高考数学真题分类汇编 专题10:平面解析几何(基础题)1.(2019•浙江)渐近线方程为0=±y x 的双曲线的离心率是( ) A.22B.1C.2D.2 【答案】 C【考点】双曲线的简单性质【解析】【解答】解:根据双曲线的渐近线方程,得1=ab,所以离心率2==ac e . 故答案为:C.【分析】根据双曲线的渐近线方程,得到ab,即可求出离心率e.2.(2019•天津)已知抛物线的焦点为F ,准线为l.若与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于点A 和点B , 且||4||OF AB =(O 为原点),则双曲线的离心率为( )A. 2B. 3C. 2D. 5 【答案】 D【考点】圆锥曲线的综合【解析】【解答】抛物线 的准线 :抛物线 的准线为F ,∵抛物线的准线与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于A ,B 两点,且 ,∴,,将A 点坐标代入双曲线渐近线方程得 ,∴ ,∴ ,即 ,∴.故答案为:D.【分析】求出抛物线的准线方程,双曲线的渐近线方程,而得出A 、B 的坐标,||4||OF AB =得出弦长|AB|的值,将A 点坐标代入双曲线渐近线方程结合a,b,c 的关系式得出a,c 的关系,即可求得离心率。
3.(2019•天津)已知抛物线的焦点为F ,准线为l ,若l 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于点A 和点B ,且||4||OF AB =(O 为原点),则双曲线的离心率为( )A. 2B. 3C. 2D. 5 【答案】 D【考点】圆锥曲线的综合 【解析】【解答】抛物线的准线 :抛物线的准线为F ,∵抛物线的准线与双曲线)0,0(12222>>=-b aby a x 的两条渐近线分别交于A ,B 两点,且 ,∴,,将A 点坐标代入双曲线渐近线方程得 ,∴ ,∴ ,即 ,∴.故答案为:D.【分析】求出抛物线的准线方程,双曲线的渐近线方程,而得出A 、B 的坐标,||4||OF AB =得出弦长|AB|的值,将A 点坐标代入双曲线渐近线方程结合a,b,c 的关系式得出a,c 的关系,即可求得离心率。
高考数学-平面解析几何(含22年真题讲解)
高考数学-平面解析几何(含22年真题讲解)1.【2022年全国甲卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1→⋅BA 2→=−1,则C 的方程为( ) A .x 218+y 216=1 B .x 29+y 28=1 C .x 23+y 22=1 D .x 22+y 2=1【答案】B 【解析】 【分析】根据离心率及BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1,解得关于a 2,b 2的等量关系式,即可得解.【详解】解:因为离心率e =c a =√1−b 2a 2=13,解得b 2a 2=89,b 2=89a 2,A 1,A 2分别为C 的左右顶点,则A 1(−a,0),A 2(a,0),B 为上顶点,所以B(0,b).所以BA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(−a,−b),BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =(a,−b),因为BA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BA 2⃑⃑⃑⃑⃑⃑⃑⃑ =−1 所以−a 2+b 2=−1,将b 2=89a 2代入,解得a 2=9,b 2=8, 故椭圆的方程为x 29+y 28=1.故选:B.2.【2022年全国甲卷】椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP,AQ 的斜率之积为14,则C 的离心率为( ) A .√32B .√22C .12D .13【答案】A 【解析】 【分析】设P (x 1,y 1),则Q (−x 1,y 1),根据斜率公式结合题意可得y 12−x 12+a 2=14,再根据x 12a 2+y 12b 2=1,将y 1用x 1表示,整理,再结合离心率公式即可得解. 【详解】解:A(−a,0),设P(x1,y1),则Q(−x1,y1),则k AP=y1x1+a ,k AQ=y1−x1+a,故k AP⋅k AQ=y1x1+a ⋅y1−x1+a=y12−x12+a2=14,又x12a2+y12b2=1,则y12=b2(a2−x12)a2,所以b2(a2−x12)a2−x12+a2=14,即b2a2=14,所以椭圆C的离心率e=ca =√1−b2a2=√32.故选:A.3.【2022年全国乙卷】设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A.2 B.2√2C.3 D.3√2【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A的横坐标,进而求得点A坐标,即可得到答案.【详解】由题意得,F(1,0),则|AF|=|BF|=2,即点A到准线x=−1的距离为2,所以点A的横坐标为−1+2=1,不妨设点A在x轴上方,代入得,A(1,2),所以|AB|=√(3−1)2+(0−2)2=2√2.故选:B4.【2022年全国乙卷】(多选)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√172【答案】AC 【解析】【分析】依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,利用正弦定理结合三角变换、双曲线的定义得到2b=3a或a=2b,即可得解,注意就M,N在双支上还是在单支上分类讨论.【详解】解:依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,若M,N分别在左右支,因为OG⊥NF1,且cos∠F1NF2=35>0,所以N在双曲线的右支,又|OG|=a,|OF1|=c,|GF1|=b,设∠F1NF2=α,∠F2F1N=β,在△F1NF2中,有|NF2|sinβ=|NF1|sin(α+β)=2csinα,故|NF1|−|NF2|sin(α+β)−sinβ=2csinα即asin(α+β)−sinβ=csinα,所以asinαcosβ+cosαsinβ−sinβ=csinα,而cosα=35,sinβ=ac,cosβ=bc,故sinα=45,代入整理得到2b=3a,即ba =32,所以双曲线的离心率e=ca =√1+b2a2=√132若M,N均在左支上,同理有|NF 2|sinβ=|NF 1|sin (α+β)=2c sinα,其中β为钝角,故cosβ=−bc ,故|NF 2|−|NF 1|sinβ−sin (α+β)=2c sinα即a sinβ−sinαcosβ−cosαsinβ=csinα, 代入cosα=35,sinβ=ac ,sinα=45,整理得到:a4b+2a =14, 故a =2b ,故e =√1+(b a)2=√52,故选:AC.5.【2022年北京】若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( ) A .12 B .−12C .1D .−1【答案】A 【解析】 【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解. 【详解】由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a +0−1=0,解得a =12. 故选:A .6.【2022年新高考1卷】(多选)已知O 为坐标原点,点A(1,1)在抛物线C:x 2=2py(p >0)上,过点B(0,−1)的直线交C 于P ,Q 两点,则( ) A .C 的准线为y =−1B .直线AB 与C 相切C .|OP|⋅|OQ|>|OA |2D .|BP|⋅|BQ|>|BA|2【答案】BCD 【解析】 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得1=2p ,所以抛物线方程为x 2=y ,故准线方程为y =−14,A 错误; k AB =1−(−1)1−0=2,所以直线AB 的方程为y =2x −1,联立{y =2x −1x 2=y ,可得x 2−2x +1=0,解得x =1,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为y =kx −1,P(x 1,y 1),Q(x 2,y 2), 联立{y =kx −1x 2=y,得x 2−kx +1=0,所以{Δ=k 2−4>0x 1+x 2=k x 1x 2=1,所以k >2或k <−2,y 1y 2=(x 1x 2)2=1,又|OP|=√x 12+y 12=√y 1+y 12,|OQ|=√x 22+y 22=√y 2+y 22, 所以|OP|⋅|OQ|=√y 1y 2(1+y 1)(1+y 2)=√kx 1×kx 2=|k|>2=|OA|2,故C 正确; 因为|BP|=√1+k 2|x 1|,|BQ|=√1+k 2|x 2|,所以|BP|⋅|BQ|=(1+k 2)|x 1x 2|=1+k 2>5,而|BA|2=5,故D 正确. 故选:BCD7.【2022年新高考2卷】(多选)已知O 为坐标原点,过抛物线C:y 2=2px(p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M(p,0),若|AF|=|AM|,则( ) A .直线AB 的斜率为2√6 B .|OB|=|OF|C .|AB|>4|OF|D .∠OAM +∠OBM <180°【答案】ACD 【解析】 【分析】由|AF |=|AM |及抛物线方程求得A(3p 4,√6p2),再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得B(p 3,−√6p3),即可求出|OB |判断B 选项;由抛物线的定义求出|AB |=25p 12即可判断C 选项;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ <0,MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ <0求得∠AOB ,∠AMB 为钝角即可判断D 选项. 【详解】对于A ,易得F(p2,0),由|AF |=|AM |可得点A 在FM 的垂直平分线上,则A 点横坐标为p2+p2=3p 4,代入抛物线可得y 2=2p ⋅3p 4=32p2,则A(3p 4,√6p2),则直线AB 的斜率为√6p23p 4−p2=2√6,A 正确; 对于B ,由斜率为2√6可得直线AB 的方程为x =2√6+p2,联立抛物线方程得y 2−√6−p 2=0,设B(x 1,y 1),则√62p +y 1=√66p ,则y 1=−√6p3,代入抛物线得(−√6p 3)2=2p ⋅x 1,解得x 1=p3,则B(p 3,−√6p3),则|OB |=√(p 3)2+(−√6p 3)2=√7p 3≠|OF |=p 2,B 错误; 对于C ,由抛物线定义知:|AB |=3p 4+p 3+p =25p 12>2p =4|OF |,C 正确;对于D ,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =(3p 4,√6p 2)⋅(p 3,−√6p 3)=3p 4⋅p 3+√6p 2⋅(−√6p 3)=−3p 24<0,则∠AOB 为钝角, 又MA ⃑⃑⃑⃑⃑⃑ ⋅MB ⃑⃑⃑⃑⃑⃑ =(−p 4,√6p 2)⋅(−2p 3,−√6p 3)=−p 4⋅(−2p 3)+√6p 2⋅(−√6p 3)=−5p 26<0,则∠AMB 为钝角,又∠AOB +∠AMB +∠OAM +∠OBM =360∘,则∠OAM +∠OBM <180∘,D 正确. 故选:ACD.8.【2022年全国甲卷】设点M在直线2x+y−1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M 的方程为______________.【答案】(x−1)2+(y+1)2=5【解析】【分析】设出点M的坐标,利用(3,0)和(0,1)均在⊙M上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M在直线2x+y−1=0上,∴设点M为(a,1−2a),又因为点(3,0)和(0,1)均在⊙M上,∴点M到两点的距离相等且为半径R,∴√(a−3)2+(1−2a)2=√a2+(−2a)2=R,a2−6a+9+4a2−4a+1=5a2,解得a=1,∴M(1,−1),R=√5,⊙M的方程为(x−1)2+(y+1)2=5.故答案为:(x−1)2+(y+1)2=59.【2022年全国甲卷】记双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值______________.【答案】2(满足1<e≤√5皆可)【解析】【分析】根据题干信息,只需双曲线渐近线y=±ba x中0<ba≤2即可求得满足要求的e值.【详解】解:C:x2a2−y2b2=1(a>0,b>0),所以C的渐近线方程为y=±bax,结合渐近线的特点,只需0<ba ≤2,即b2a2≤4,可满足条件“直线y=2x与C无公共点”所以e=ca =√1+b2a2≤√1+4=√5,又因为e>1,所以1<e≤√5,故答案为:2(满足1<e≤√5皆可)10.【2022年全国甲卷】若双曲线y 2−x 2m 2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =_________.【答案】√33【解析】 【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可. 【详解】解:双曲线y 2−x 2m2=1(m >0)的渐近线为y =±xm ,即x ±my =0,不妨取x +my =0,圆x 2+y 2−4y +3=0,即x 2+(y −2)2=1,所以圆心为(0,2),半径r =1,依题意圆心(0,2)到渐近线x +my =0的距离d =√1+m 2=1,解得m =√33或m =−√33(舍去).故答案为:√33.11.【2022年全国乙卷】过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为____________.【答案】(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x−85)2+(y −1)2=16925;【解析】 【分析】设圆的方程为x 2+y 2+Dx +Ey +F =0,根据所选点的坐标,得到方程组,解得即可; 【详解】解:依题意设圆的方程为x 2+y 2+Dx +Ey +F =0,若过(0,0),(4,0),(−1,1),则{F =016+4D +F =01+1−D +E +F =0 ,解得{F =0D =−4E =−6 ,所以圆的方程为x 2+y 2−4x −6y =0,即(x −2)2+(y −3)2=13;若过(0,0),(4,0),(4,2),则{F =016+4D +F =016+4+4D +2E +F =0 ,解得{F =0D =−4E =−2 , 所以圆的方程为x 2+y 2−4x −2y =0,即(x −2)2+(y −1)2=5; 若过(0,0),(4,2),(−1,1),则{F =01+1−D +E +F =016+4+4D +2E +F =0 ,解得{F =0D =−83E =−143 ,所以圆的方程为x 2+y 2−83x −143y =0,即(x −43)2+(y −73)2=659;若过(−1,1),(4,0),(4,2),则{1+1−D +E +F =016+4D +F =016+4+4D +2E +F =0,解得{F =−165D =−165E =−2 , 所以圆的方程为x 2+y 2−165x −2y −165=0,即(x −85)2+(y −1)2=16925;故答案为:(x −2)2+(y −3)2=13或(x −2)2+(y −1)2=5或(x −43)2+(y −73)2=659或(x −85)2+(y −1)2=16925;12.【2022年新高考1卷】写出与圆x 2+y 2=1和(x −3)2+(y −4)2=16都相切的一条直线的方程________________.【答案】y =−34x +54或y =724x −2524或x =−1 【解析】 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】圆x 2+y 2=1的圆心为O (0,0),半径为1,圆(x −3)2+(y −4)2=16的圆心O 1为(3,4),半径为4,两圆圆心距为√32+42=5,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为k OO 1=43,所以k l =−34,设方程为y =−34x +t(t >0)O 到l 的距离d =√1+916=1,解得t =54,所以l 的方程为y =−34x +54,当切线为m 时,设直线方程为kx +y +p =0,其中p >0,k <0,由题意{√1+k 2=1√1+k2=4 ,解得{k =−724p =2524,y =724x −2524 当切线为n 时,易知切线方程为x =−1, 故答案为:y =−34x +54或y =724x −2524或x =−1.13.【2022年新高考1卷】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE|=6,则△ADE 的周长是________________. 【答案】13 【解析】 【分析】利用离心率得到椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,根据离心率得到直线AF 2的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,利用弦长公式求得c =138,得a =2c =134,根据对称性将△ADE 的周长转化为△F 2DE 的周长,利用椭圆的定义得到周长为4a =13. 【详解】∵椭圆的离心率为e =ca =12,∴a =2c ,∴b 2=a 2−c 2=3c 2,∴椭圆的方程为x 24c 2+y 23c 2=1,即3x 2+4y 2−12c 2=0,不妨设左焦点为F 1,右焦点为F 2,如图所示,∵AF 2=a ,OF 2=c ,a =2c ,∴∠AF 2O =π3,∴△AF 1F 2为正三角形,∵过F 1且垂直于AF 2的直线与C 交于D ,E 两点,DE 为线段AF 2的垂直平分线,∴直线DE 的斜率为√33,斜率倒数为√3, 直线DE 的方程:x =√3y −c ,代入椭圆方程3x 2+4y 2−12c 2=0,整理化简得到:13y 2−6√3cy −9c 2=0,判别式∆=(6√3c)2+4×13×9c 2=62×16×c 2, ∴|CD |=√1+(√3)2|y 1−y 2|=2×√∆13=2×6×4×c 13=6,∴ c =138, 得a =2c =134,∵DE 为线段AF 2的垂直平分线,根据对称性,AD =DF 2,AE =EF 2,∴△ADE 的周长等于△F 2DE 的周长,利用椭圆的定义得到△F 2DE 周长为|DF 2|+|EF 2|+|DE|=|DF 2|+|EF 2|+|DF 1|+|EF 1|=|DF 1|+|DF 2|+|EF 1|+|EF 2|=2a +2a =4a =13. 故答案为:13.14.【2022年新高考2卷】设点A(−2,3),B(0,a),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是________. 【答案】[13,32] 【解析】 【分析】首先求出点A 关于y =a 对称点A ′的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可; 【详解】解:A (−2,3)关于y =a 对称的点的坐标为A ′(−2,2a −3),B (0,a )在直线y =a 上, 所以A ′B 所在直线即为直线l ,所以直线l 为y =a−3−2x +a ,即(a −3)x +2y −2a =0;圆C:(x +3)2+(y +2)2=1,圆心C (−3,−2),半径r =1, 依题意圆心到直线l 的距离d =√(a−3)2+22≤1,即(5−5a )2≤(a −3)2+22,解得13≤a ≤32,即a ∈[13,32]; 故答案为:[13,32]15.【2022年新高考2卷】已知直线l 与椭圆x 26+y 23=1在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且|MA|=|NB|,|MN|=2√3,则l 的方程为___________. 【答案】x +√2y −2√2=0 【解析】 【分析】令AB 的中点为E ,设A (x 1,y 1),B (x 2,y 2),利用点差法得到k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,求出M 、N 的坐标,再根据|MN |求出k 、m ,即可得解; 【详解】解:令AB 的中点为E ,因为|MA |=|NB |,所以|ME |=|NE |, 设A (x 1,y 1),B (x 2,y 2),则x 126+y 123=1,x 226+y 223=1,所以x 126−x 226+y 123−y 223=0,即(x 1−x 2)(x 1+x 2)6+(y 1+y 2)(y 1−y 2)3=0所以(y 1+y 2)(y 1−y 2)(x 1−x 2)(x 1+x 2)=−12,即k OE ⋅k AB =−12,设直线AB:y =kx +m ,k <0,m >0,令x =0得y =m ,令y =0得x =−m k ,即M (−m k ,0),N (0,m ),所以E (−m 2k ,m2), 即k ×m2−m 2k=−12,解得k =−√22或k =√22(舍去),又|MN |=2√3,即|MN |=√m 2+(√2m)2=2√3,解得m =2或m =−2(舍去), 所以直线AB:y =−√22x +2,即x +√2y −2√2=0;故答案为:x+√2y−2√2=016.【2022年北京】已知双曲线y2+x2m =1的渐近线方程为y=±√33x,则m=__________.【答案】−3【解析】【分析】首先可得m<0,即可得到双曲线的标准方程,从而得到a、b,再跟渐近线方程得到方程,解得即可;【详解】解:对于双曲线y2+x2m =1,所以m<0,即双曲线的标准方程为y2−x2−m=1,则a=1,b=√−m,又双曲线y2+x2m =1的渐近线方程为y=±√33x,所以ab =√33,即√−m=√33,解得m=−3;故答案为:−317.【2022年浙江】已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A(x1,y1),交双曲线的渐近线于点B(x2,y2)且x1<0<x2.若|FB|=3|FA |,则双曲线的离心率是_________.【答案】3√64【解析】【分析】联立直线AB 和渐近线l 2:y =ba x 方程,可求出点B ,再根据|FB|=3|FA|可求得点A ,最后根据点A 在双曲线上,即可解出离心率. 【详解】过F 且斜率为b4a 的直线AB:y =b4a (x +c),渐近线l 2:y =ba x , 联立{y =b4a (x +c)y =b a x,得B (c 3,bc 3a ),由|FB|=3|FA|,得A (−5c 9,bc 9a), 而点A 在双曲线上,于是25c 281a 2−b 2c 281a 2b 2=1,解得:c 2a 2=8124,所以离心率e =3√64. 故答案为:3√64.18.【2022年全国甲卷】设抛物线C:y 2=2px(p >0)的焦点为F ,点D (p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3. (1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 【答案】(1)y 2=4x ; (2)AB:x =√2y +4. 【解析】 【分析】(1)由抛物线的定义可得|MF|=p +p2,即可得解;(2)设点的坐标及直线MN:x =my +1,由韦达定理及斜率公式可得k MN =2k AB ,再由差角的正切公式及基本不等式可得k AB =√22,设直线AB:x =√2y +n ,结合韦达定理可解.(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2, 所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,Δ>0,y 1y 2=−4,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,Δ>0,y 1y 3=−8,所以y 3=2y 2,同理可得y 4=2y 1, 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β, 所以k AB =tanβ=k MN 2=tanα2,若要使α−β最大,则β∈(0,π2), 设k MN =2k AB=2k >0,则tan(α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k ≤2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0, Δ>0,y 3y 4=−4n =4y 1y 2=−16,所以n =4, 所以直线AB:x =√2y +4. 【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.19.【2022年全国乙卷】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,−2),B (32,−1)两点.(1)求E 的方程;(2)设过点P (1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ .证明:直线HN 过定点. 【答案】(1)y 24+x 23=1(2)(0,−2) 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为mx 2+ny 2=1,过A (0,−2),B (32,−1), 则{4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.(2)A(0,−2),B(32,−1),所以AB:y +2=23x ,①若过点P(1,−2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63),代入AB 方程y =23x −2,可得T(√6+3,2√63),由MT ⃑⃑⃑⃑⃑⃑ =TH ⃑⃑⃑⃑⃑ 得到H(2√6+5,2√63).求得HN 方程:y =(2−2√63)x −2,过点(0,−2).②若过点P(1,−2)的直线斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2). 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,可得{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4 ,{y 1+y 2=−8(2+k)3k 2+4y 2y 2=4(4+4k−2k 2)3k 2+4 , 且x 1y 2+x 2y 1=−24k3k 2+4(∗) 联立{y =y 1y =23x −2 ,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1).可求得此时HN:y−y2=y1−y23y1+6−x1−x2(x−x2),将(0,−2),代入整理得2(x1+x2)−6(y1+y2)+x1y2+x2y1−3y1y2−12=0,将(∗)代入,得24k+12k2+96+48k−24k−48−48k+24k2−36k2−48=0,显然成立,综上,可得直线HN过定点(0,−2).【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20.【2022年新高考1卷】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】(1)−1;(2)16√29.【解析】【分析】(1)由点A(2,1)在双曲线上可求出a,易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q (x2,y2),再根据k AP+k BP=0,即可解出l的斜率;(2)根据直线AP,AQ的斜率之和为0可知直线AP,AQ的倾斜角互补,再根据tan∠PAQ=2√2即可求出直线AP,AQ的斜率,再分别联立直线AP,AQ与双曲线方程求出点P,Q的坐标,即可得到直线PQ的方程以及PQ的长,由点到直线的距离公式求出点A到直线PQ的距离,即可得出△PAQ的面积.(1)因为点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,所以4a2−1a2−1=1,解得a2=2,即双曲线C:x22−y2=1易知直线l的斜率存在,设l:y=kx+m,P(x1,y1),Q(x2,y2),联立{y =kx +m x 22−y 2=1可得,(1−2k 2)x 2−4mkx −2m 2−2=0,所以,x 1+x 2=−4mk 2k 2−1,x 1x 2=2m 2+22k 2−1,Δ=16m 2k 2+4(2m 2+2)(2k 2−1)>0⇒m 2−1+2k 2>0.所以由k AP +k BP =0可得,y 2−1x2−2+y 1−1x 1−2=0,即(x 1−2)(kx 2+m −1)+(x 2−2)(kx 1+m −1)=0, 即2kx 1x 2+(m −1−2k )(x 1+x 2)−4(m −1)=0, 所以2k ×2m 2+22k 2−1+(m −1−2k )(−4mk2k 2−1)−4(m −1)=0,化简得,8k 2+4k −4+4m (k +1)=0,即(k +1)(2k −1+m )=0, 所以k =−1或m =1−2k ,当m =1−2k 时,直线l:y =kx +m =k (x −2)+1过点A (2,1),与题意不符,舍去, 故k =−1. (2)不妨设直线PA,PB 的倾斜角为α,β(α<β),因为k AP +k BP =0,所以α+β=π, 因为tan∠PAQ =2√2,所以tan (β−α)=2√2,即tan2α=−2√2, 即√2tan 2α−tanα−√2=0,解得tanα=√2,于是,直线PA:y =√2(x −2)+1,直线PB:y =−√2(x −2)+1, 联立{y =√2(x −2)+1x 22−y 2=1可得,32x 2+2(1−2√2)x +10−4√2=0,因为方程有一个根为2,所以x P =10−4√23,y P = 4√2−53,同理可得,x Q =10+4√23,y Q = −4√2−53.所以PQ:x +y −53=0,|PQ |=163,点A 到直线PQ 的距离d =|2+1−53|√2=2√23, 故△PAQ 的面积为12×163×2√23=16√29.21.【2022年新高考2卷】已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x . (1)求C 的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1> x2>0,y1>0.过P且斜率为−√3的直线与过Q且斜率为√3的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在AB上;②PQ∥AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.=1【答案】(1)x2−y23(2)见解析【解析】【分析】(1)利用焦点坐标求得c的值,利用渐近线方程求得a,b的关系,进而利用a,b,c的平方关系求得a,b的值,得到双曲线的方程;(2)先分析得到直线AB的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到x0+ky0=8k2;由直线PM和QM的斜率得到直线方程,结合双曲线的方k2−3,由②PQ//AB等价转化为ky0=3x0,由程,两点间距离公式得到直线PQ的斜率m=3x0y①M在直线AB上等价于ky0=k2(x0−2),然后选择两个作为已知条件一个作为结论,进行证明即可.(1)=√3,∴b=√3a,∴c2=a2+右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3x,∴bab2=4a2=4,∴a=1,∴b=√3.=1;∴C的方程为:x2−y23(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x−2),则条件①M在AB上,等价于y0=k(x0−2)⇔ky0=k2(x0−2);两渐近线的方程合并为3x2−y2=0,联立消去y并化简整理得:(k2−3)x2−4k2x+4k2=0设A(x3,y3),B(x3,y4),线段中点为N(x N,y N),则x N=x3+x42=2k2k2−3,y N=k(x N−2)=6kk2−3,设M(x0,y0),则条件③|AM|=|BM|等价于(x0−x3)2+(y0−y3)2=(x0−x4)2+(y0−y4)2, 移项并利用平方差公式整理得:(x3−x4)[2x0−(x3+x4)]+(y3−y4)[2y0−(y3+y4)]=0,[2x0−(x3+x4)]+y3−y4x3−x4[2y0−(y3+y4)]=0,即x−x N+k(y0−y N)=0,即x0+ky0=8k2k2−3;由题意知直线PM的斜率为−√3, 直线QM的斜率为√3, ∴由y1−y0=−√3(x1−x0),y2−y0=√3(x2−x0), ∴y1−y2=−√3(x1+x2−2x0),所以直线PQ的斜率m=y1−y2x1−x2=−√3(x1+x2−2x0)x1−x2,直线PM:y=−√3(x−x0)+y0,即y=y0+√3x0−√3x,代入双曲线的方程3x2−y2−3=0,即(√3x+y)(√3x−y)=3中,得:(y0+√3x0)[2√3x−(y0+√3x0)]=3,解得P的横坐标:x1=2√3(y+√3x+y0+√3x0),同理:x2=2√3(y−√3xy0−√3x0),∴x1−x2=√3(3y0y02−3x02+y0),x1+x2−2x0=−3x0y02−3x02−x0,∴m=3x0y,∴条件②PQ//AB等价于m=k⇔ky0=3x0,综上所述:条件①M在AB上,等价于ky0=k2(x0−2);条件②PQ//AB等价于ky0=3x0;条件③|AM|=|BM|等价于x0+ky0=8k2k2−3;选①②推③:由①②解得:x 0=2k 2k 2−3,∴x 0+ky 0=4x 0=8k 2k 2−3,∴③成立;选①③推②:由①③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3, ∴ky 0=3x 0,∴②成立; 选②③推①:由②③解得:x 0=2k 2k 2−3,ky 0=6k 2k 2−3,∴x 0−2=6k 2−3, ∴ky 0=k 2(x 0−2),∴①成立. 22.【2022年北京】已知椭圆:E:x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A(0,1),焦距为2√3. (1)求椭圆E 的方程;(2)过点P(−2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN|=2时,求k 的值. 【答案】(1)x 24+y 2=1(2)k =−4 【解析】 【分析】(1)依题意可得{b =12c =2√3c 2=a 2−b 2,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设B (x 1,y 1)、C (x 2,y 2),联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出x M 、x N ,根据|MN |=|x N −x M |得到方程,解得即可; (1)解:依题意可得b =1,2c =2√3,又c 2=a 2−b 2, 所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P (−2,1)的直线为y −1=k (x +2),设B (x 1,y 1)、C (x 2,y 2),不妨令−2≤x 1<x 2≤2,由{y −1=k (x +2)x 24+y 2=1 ,消去y 整理得(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, 所以Δ=(16k 2+8k )2−4(1+4k 2)(16k 2+16k )>0,解得k <0,所以x 1+x 2=−16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k 1+4k 2,直线AB 的方程为y −1=y 1−1x 1x ,令y =0,解得x M =x11−y 1, 直线AC 的方程为y −1=y 2−1x 2x ,令y =0,解得x N =x21−y 2, 所以|MN |=|x N −x M |=|x21−y 2−x11−y 1|=|x 21−[k (x 2+2)+1]−x 11−[k (x 1+2)+1]| =|x 2−k (x 2+2)+x 1k (x 1+2)| =|(x 2+2)x 1−x 2(x 1+2)k (x 2+2)(x 1+2)|=2|x 1−x 2||k |(x 2+2)(x 1+2)=2,所以|x 1−x 2|=|k |(x 2+2)(x 1+2),即√(x 1+x 2)2−4x 1x 2=|k |[x 2x 1+2(x 2+x 1)+4] 即√(−16k 2+8k1+4k 2)2−4×16k 2+16k 1+4k 2=|k |[16k 2+16k 1+4k 2+2(−16k 2+8k 1+4k 2)+4]即81+4k 2√(2k 2+k )2−(1+4k 2)(k 2+k )=|k |1+4k2[16k 2+16k −2(16k 2+8k )+4(1+4k 2)]整理得8√−k =4|k |,解得k =−4 23.【2022年浙江】如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P(0,1)的两点,且点Q (0,12)在线段AB 上,直线PA,PB 分别交直线y =−12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD|的最小值.【答案】(1)12√1111;(2)6√55.【解析】 【分析】(1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,再根据两点间的距离公式求出|PQ|2,再根据二次函数的性质即可求出;(2)设直线AB:y =kx +12与椭圆方程联立可得x 1x 2,x 1+x 2,再将直线y =−12x +3方程与PA 、PB 的方程分别联立,可解得点C,D 的坐标,再根据两点间的距离公式求出|CD |,最后代入化简可得|CD |=3√52⋅√16k 2+1|3k+1|,由柯西不等式即可求出最小值. (1)设Q(2√3cosθ,sinθ)是椭圆上任意一点,P(0,1),则|PQ|2=12cos 2θ+(1−sinθ)2=13−11sin 2θ−2sinθ=−11(sinθ+111)2+14411≤14411,当且仅当sinθ=−111时取等号,故|PQ|的最大值是12√1111.(2)设直线AB:y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得(k 2+112)x 2+kx −34=0,设A (x 1,y 1),B (x 2,y 2),所以{x 1+x 2=−kk 2+112x 1x 2=−34(k 2+112), 因为直线PA:y =y 1−1x 1x +1与直线y =−12x +3交于C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1,同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1.则|CD|=√1+14|x C −x D |=√52|4x 1(2k +1)x 1−1−4x 2(2k +1)x 2−1|=2√5|x 1−x 2[(2k +1)x 1−1][(2k +1)x 2−1]|=2√5|x 1−x 2(2k +1)2x 1x 2−(2k +1)(x 1+x 2)+1|=3√52⋅√16k 2+1|3k+1|=6√55⋅√16k 2+1√916+1|3k+1|≥6√55×√(4k×34+1×1)2|3k+1|=6√55, 当且仅当k =316时取等号,故|CD |的最小值为6√55.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.1.(2022·全国·模拟预测)设M 是椭圆C :()222210x y a b a b+=>>的上顶点,P 是C 上的一个动点,当P 运动到下顶点时,PM 取得最大值,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】设()00,P x y ,由()0,M b ,求出()2220PM x y b =+-消元可得,22342220222c b b PM y a b b c c⎛⎫=-++++ ⎪⎝⎭,再根据0b y b -≤≤以及二次函数的性质可知,32b bc -≤-,即可解出. 【详解】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PM x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b =-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即0e 2<≤故选:C .2.(2022·福建·三明一中模拟预测)已知圆229:4O x y +=,圆22:()(1)1M x a y -+-=,若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得π3APB ∠=,则实数a的取值范围是( )A .[B .[C .D .[[3,15]【答案】D【解析】 【分析】由题意求出OP 的距离,得到 P 的轨迹,再由圆与圆的位置关系求得答案. 【详解】由题可知圆O 的半径为32,圆M 上存在点P ,过点P 作圆 O 的两条切线,切点分别为A ,B ,使得60APB ∠=︒,则30APO ∠=︒, 在Rt PAO △中,3PO =, 所以点 P 在圆229x y +=上,由于点 P 也在圆 M 上,故两圆有公共点. 又圆 M 的半径等于1,圆心坐标(),1M a , 3131OM -≤≤+∴,∴24≤≤,∴a ∈[[3,15]. 故选:D.3.(2022·全国·模拟预测(文))已知双曲线22221x y a b-=(0a >,0b >)一个虚轴的顶点为()0,B b ,右焦点为F ,分别以B ,F 为圆心作圆与双曲线的一条斜率为正值的渐近线相切于M ,N 两点,若ON =,则该渐近线的斜率为( )A .12 B .1 C D 【答案】A 【解析】 【分析】根据渐近线倾斜角的正切值表达出ON =,再化简得到4224200b a b a --=求解即可 【详解】由题意,如图,设NOF θ∠=,则因为该渐近线的斜率为ba ,故tanb aθ=,cos acθ==,sin bcθ==,又因为圆与渐近线相切,故BM OM ⊥,FN ON ⊥,故2cos sin 2b OM OB OB c π-θθ⎛⎫=== ⎪⎝⎭,cos ON OF a θ==,所以a =,即2,所以4224200b a b a --=,即()()2222450b a b a -+=,故2240b a -=,即2a b =,故该渐近线的斜率为12b k a ==故选:A4.(2022·河南·开封市东信学校模拟预测(理))已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F △的内切圆半径为1r ,12BF F △的内切圆半径为2r ,若12r r >,且直线l 的倾斜角为60︒,则12r r 的值为( ) A .2 B .3CD.【答案】B 【解析】 【分析】根据内切圆的性质及双曲线的定义求出两内切圆圆心的横坐标,由正切函数求解即可. 【详解】记12AF F △的内切圆圆心为C ,边1212,,AF AF F F 上的切点分别为M ,N ,E ,则C ,E 横坐标相等,则1122||||,,AM AN F M F E F N F E ===,由122AF AF a -=,即()12||||2AM MF AN NF a +-+=,得122MF NF a -=,即122F E F E a -=,记C 的横坐标为0x ,则()0,0E x ,于是()002x c c x a +--=,得0x a =,同理12BF F △的内心D 的横坐标也为a , 则有CD x ⊥轴,由直线的倾斜角为60︒,则230OF D ∠=︒,260CF O ∠=︒, 在2CEF △中,122tan tan 60r CF O EF ∠=︒=,可得12r =, 在2DEF △中,222tan tan 30r DF O EF ∠=︒=,可得22r =,可得123r r ==.故选:B5.(2022·贵州·贵阳一中模拟预测(文))已知双曲线22214x y b-=的左、右焦点分别为12,,F F 过左焦点1F 作斜率为2的直线与双曲线交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则b 的值是( )A .2 BC .32D【答案】D 【解析】 【分析】利用点差法设()11,A x y 、()22,B x y ,作差即可得到2121212124y y y y b x x x x -+⋅=-+,再根据斜率公式,从而得到2124b =,即可得解;【详解】解:设()11,A x y 、()22,B x y ,则2211214x y b -=,2222214x y b-=, 两式相减可得()()()()1212121221104x x x x y y y y b-+--+=,P 为线段AB 的中点,122p x x x ∴=+,122p y y y =+, 2121212124y y y y b x x x x -+∴⋅=-+,又12122AB y y k x x -==-,121214y y x x +=+, 2124b ∴=,即22b =,b ∴= 故选:D.6.(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为( ) A.1) B.1) C.1 D.1【答案】B 【解析】 【分析】由题意求得a,b,c ,即可得双曲线的方程,结合双曲线的定义确定当1||QF PQ +取最小值时Q 点的位置,利用方程组求得Q 点坐标,再利用两点间的距离公式求得答案. 【详解】由题意可得24,2a a == ,又2e =,故4c = , 所以22212b c a =-= ,则双曲线方程为221412x y -= ,结合双曲线定义可得221||4||||4QF PQ QF PQ QF PQ +=++=++, 如图示,连接2PF ,交双曲线右支于点M ,即当2,,P Q F 三点共线, 即Q 在M 位置时,1||QF PQ +取最小值,此时直线2PF 方程为4y x =-+ ,联立221412x y-=,解得点Q的坐标为2,6-,( Q 为双曲线右支上的一点),故21)QF =, 故选:B7.(2022·上海市七宝中学模拟预测)若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线222222222:1(0,0)x y C a b a b -=>>的焦点相同,且12a a >给出下列四个结论:①22221221a a b b -=-;②1221a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2112a a b b +>+;其中所有正确的结论序号是( ) A .①② B .①③C .②③D .①④【答案】B 【解析】 【分析】对于①,根据双曲线的焦点相同,可知焦距相同,可判断22221221a a b b -=-;对于②,举反例可说明1122a b a b <;对于③,根据120a a >>可推得12<b b ,继而推得1212b ba a <,可判断双曲线1C 与双曲线2C 一定没有公共点;对于④,举反例可判断.【详解】对于①:∵两双曲线的焦点相同,∴焦距相同,∴22221122a b a b +=+,即22221221a a b b -=-,故①正确;对于②:若1a =,2a =11b =,2b 1122a b a b <,故②错误; 对于③:∵120a a >>,∴22221221a a b b -=->0,∴2221b b > ,即12<b b ,即1212b b a a <,双曲线1C 与双曲线2C 一定没有公共点,故③正确; 对于④:∵22221221a a b b -=-,∴12121221()()()()a a a a b b b b +-=+-,∵12a a >且12<b b ,∴12211212a ab b b b a a +-=+- , 若12a =,21a =,11b =,22b =,则1212a a b b +=+,故④错误. 故选:B8.(2022·陕西·宝鸡中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,M 为双曲线右支上的一点,若M 在以12F F 为直径的圆上,且215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,则该双曲线离心率的取值范围为( ) A.(B.)+∞C.()1D.1⎤⎦【答案】D 【解析】 【分析】由12MF MF ⊥可得1212sin MF c MF F =∠、2212cos MF c MF F =∠,由双曲线定义可构造方程得到2114caMF F π=⎛⎫∠- ⎪⎝⎭;由正弦型函数值域的求法可求得离心率的取值范围.【详解】M 在以12F F 为直径的圆上,12MF MF ∴⊥,12112sin MF MF F F F ∴∠=,22112cos MF MF F F F ∠=,1212sin MF c MF F ∴=∠,2212cos MF c MF F =∠, 由双曲线定义知:122MF MF a -=,即21212sin 2cos 2c MF F c MF F a ∠-∠=,21212111sin cos 4c a MF F MF F MF F π∴==∠-∠⎛⎫∠- ⎪⎝⎭; 215,312MF F ππ⎡⎤∠∈⎢⎥⎣⎦,21,4126MF F πππ⎡⎤∴∠-∈⎢⎥⎣⎦,211sin 42MF F π⎤⎛⎫∴∠-∈⎥ ⎪⎝⎭⎣⎦,214MF F π⎛⎫∠-∈ ⎪⎝⎭⎣⎦,1c a ⎤∴∈⎦,即双曲线离心率的取值范围为1⎤⎦.故选:D.9.(2022·河南·通许县第一高级中学模拟预测(文))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 的直线l 与C 的左、右两支分别交于点,A B ,若2ABF 是边长为4的等边三角形,则C 的离心率为( ) A .3 BCD .2【答案】B 【解析】 【分析】由双曲线定义可推导得244AF a ==,求得1a =;在12BF F △中,利用余弦定理可求得12F F ,进而得到c ,由ce a=可求得离心率. 【详解】224AB BF AF ===,1212BF BF AF a ∴-==,又212AF AF a -=,244AF a ∴==,解得:1a =,16BF ∴=, 在12BF F △中,由余弦定理得:2221212122cos 283F F BF BF BF BF π=+-⋅=,解得:12F F =2c =,c ∴=∴双曲线C 的离心率ce a==故选:B.10.(2022·四川省泸县第二中学模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】由题可知六个P 点,有两个是短轴端点,因此在四个象限各一个,设(,)P x y 是第一象限内的点,分112PF F F =或212PF F F =,列方程组求得P 点横坐标x ,由0x a <<可得离心率范围;或结合椭圆的性质列出不等关系即得. 【详解】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a +-+=, 解得22a ac x c --=(舍去)或22a acx c -+=, 由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+, 消去y 整理得:222224240c x a cx a c a --+=, 解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意. 综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c == 当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,。
辽宁省营口市高考数学真题分类汇编专题10:平面解析几何(基础题)
辽宁省营口市高考数学真题分类汇编专题10:平面解析几何(基础题)姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2017高二上·牡丹江月考) 抛物线上的点到直线的距离的最小值是()A .B .C .D . 32. (2分)四棱锥P﹣ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是()A . 圆的一部分B . 椭圆的一部分C . 球的一部分D . 抛物线的一部分3. (2分) (2019高二上·长治月考) 已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率为()A .B .C .D .4. (2分) (2015高二下·宜昌期中) 过点(0,6)且与圆(x﹣1)2+(y﹣1)2=1相切的直线方程是()A . 12x﹣5y+30=0B . 12x+5y﹣30=0C . x=0或12x﹣5y+30=0D . x=0或12x+5y﹣30=05. (2分) (2017高二上·牡丹江月考) 抛物线上有,,三点,是它的焦点,若成等差数列,则()A . 成等差数列B . 成等差数列C . 成等比数列D . 成等比数列6. (2分)已知点P在曲线C1:上,点Q在曲线C2:(x﹣5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|﹣|PR|的最大值是()A . 6B . 8C . 10D . 127. (2分)直线截圆x2+y2=4所得的弦长是()A . 1B .C . 2D .8. (2分)已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为()A . 5B . 4C . 2D . 19. (2分) M(x0 , y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x•x0+y•y0=a2与该圆的位置关系为()A . 相离B . 相交C . 相切D . 相切或相离10. (2分)圆心在直线x﹣y﹣4=0上,且经过两圆x2+y2﹣4x﹣3=0,x2+y2﹣4y﹣3=0的交点的圆的方程为()A . ﹣6x+2y﹣3=0B . +6x+2y﹣3=0C . ﹣6x﹣2y﹣3=0D . +6x﹣2y﹣3=011. (2分) (2019高二上·台州期末) 如图,M是抛物线上一点,F是抛物线的焦点,以Fx为始边、FM为终边的角则A .B .C . 3D . 412. (2分)在平面直角坐标系xOy中,已知点F1(﹣5,0),F2(5,0),动点P满足|PF1|﹣|PF2|=8,则点P的轨迹是()A . 椭圆B . 双曲线C . 双曲线的左支D . 双曲线的右支13. (2分)已知抛物线方程为,直线的方程为,在抛物线上有一动点到y轴的距离为,到直线的距离为,则的最小值()A .B .C .D .14. (2分) (2019高一下·西城期末) 已知点 ,点在直线上运动.当最小时,点的坐标是()A .B .C .D .15. (2分) (2016高二上·河北开学考) 设点M是Z轴上一点,且点M到A(1,0,2)与点B(1,﹣3,1)的距离相等,则点M的坐标是()A . (﹣3,﹣3,0)B . (0,0,﹣3)C . (0,﹣3,﹣3)D . (0,0,3)二、多选题 (共1题;共3分)16. (3分)(2020·新高考Ⅰ) 已知曲线 .()A . 若m>n>0,则C是椭圆,其焦点在y轴上B . 若m=n>0,则C是圆,其半径为C . 若mn<0,则C是双曲线,其渐近线方程为D . 若m=0,n>0,则C是两条直线三、填空题 (共10题;共12分)17. (1分) (2018高二下·中山月考) 已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为________.18. (1分)(2020·新课标Ⅰ·理) 已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为________.19. (1分) (2018高二上·南阳月考) 在直角坐标系中,已知直线与椭圆:相切,且椭圆的右焦点关于直线的对称点在椭圆上,则△ 的面积为________.20. (1分)已知直线的参数方程为,点是曲线上的任一点,则点到直线距离的最小值为________.21. (1分) (2018高二下·河北期中) 在极坐标系中,直线的方程为,则点到直线的距离为________.22. (1分)(2017·新课标Ⅲ卷文) 双曲线(a>0)的一条渐近线方程为y= x,则a=________.23. (1分) (2019高三上·双流期中) 已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,F为抛物线C 的焦点,若|AF|=3|BF|,则直线l的倾斜角为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学真题分类汇编专题10:平面解析几何(基础题)
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)以双曲线的一个焦点为圆心,离心率为半径的圆的方程是()
A .
B .
C .
D .
2. (2分)已知双曲线C1:的离心率为2.若抛物线的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()
A .
B .
C .
D .
3. (2分)(2018高二上·阳高期末) 已知椭圆的离心率为,双曲线
与椭圆有相同的焦点,,是两曲线的一个公共点,若,则双典线的渐近线方程为()
A .
B .
C .
D .
4. (2分)已知双曲线的两条渐近线方程为,那么此双曲线的虚轴长为()
A .
B .
C .
D .
5. (2分) (2015高二上·湛江期末) 已知双曲线 =1(a>0,b>0)的两条渐近线与抛物线y2=2px (p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()
A . 1
B .
C . 2
D . 3
6. (2分) (2018高二上·阳高期末) 已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()
A .
B .
C .
D .
7. (2分)已知抛物线的焦点F与椭圆的一个焦点重合,它们在第一象限内的交点为T,且TF与轴垂直,则椭圆的离心率为()
A .
B .
C .
D .
8. (2分)(2017·沈阳模拟) 已知双曲线,则其焦距为()
A .
B .
C .
D .
9. (2分)已知有相同两焦点的椭圆和双曲线, P是它们的一个交点,则
的形状是()
A . 锐角三角形
B . 直角三角形
C . 钝有三角形
D . 等腰三角形
10. (2分)(2017·辽宁模拟) 设函数,若曲线上存在(x0 , y0),使得f(f(y0))=y0成立,则实数m的取值范围为()
A . [0,e2﹣e+1]
B . [0,e2+e﹣1]
C . [0,e2+e+1]
D . [0,e2﹣e﹣1]
11. (2分) (2018高二上·佛山期末) 已知双曲线,以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于四点,四边形的面积为,则双曲线的离心率为()
A .
B . 2
C .
D . 4
12. (2分) (2018高二下·哈尔滨月考) 已知椭圆的左、右焦点分别为F1、F2 ,点M在该椭圆上,且 ,则点M到x轴的距离为()
A .
B .
C .
D .
二、填空题 (共8题;共9分)
13. (1分)(2018·山东模拟) 若,分別是双曲线的左、右焦点,为坐标原点,点在双曲线的左支上,点在直线上,且满足,
,则该双曲线的离心率为________.
14. (1分) (2018高二上·南阳月考) 过椭圆右焦点的直线交于
两点,为的中点,且的斜率为,则椭圆的方程为________.
15. (2分)已知圆O:x2+y2=1,直线x﹣2y+5=0上动点P,过点P作圆O的一条切线,切点为A,则|PA|的最小值为________
16. (1分) (2017高二下·潍坊期中) 已知圆的方程式x2+y2=r2 ,经过圆上一点M(x0 , y0)的切线方
程为x0x+y0y=r2 ,类别上述方法可以得到椭圆类似的性质为:经过椭圆上一点M(x0 , y0)的切线方程为________.
17. (1分)经过直线2x﹣y+3=0与圆x2+y2+2x﹣4y+1=0的两个交点,且面积最小的圆的方程是________
18. (1分) (2017高一下·河北期末) 椭圆的左、右焦点分别为F1 , F2 ,弦AB过F1 ,若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1 , y1),(x2 , y2),则|y1﹣y2|的值为________.
19. (1分)一个圆的圆心在抛物线y2=16x上,且该圆经过抛物线的顶点和焦点,若圆心在第一象限,则该圆的标准方程是________.
20. (1分)(2017·山东) 在平面直角坐标系xOy中,双曲线 =1(a>0,b>0)的右支与焦点为F 的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、答案:略
3-1、
4-1、
5-1、
6-1、
7-1、答案:略
8-1、答案:略
9-1、答案:略
10-1、答案:略
11-1、答案:略
12-1、
二、填空题 (共8题;共9分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、答案:略19-1、答案:略20-1、。