隧道设计衬砌计算范例

合集下载

01马腰岭隧道衬砌结构计算书(初支、二衬、工序)

01马腰岭隧道衬砌结构计算书(初支、二衬、工序)
导管
二次衬砌 C30 砼 C30 砼 拱部 仰拱
80cm 钢砼
80cm 钢砼
60cm 钢砼
60cm 钢砼
Ⅴ级 深埋
φ50 小导管
拱部、仰 拱:28cm
φ8 20×20cm,
单层
I22a 间距 80cm
φ25 注浆锚杆,L-4m, 100×80cm;其余锁脚小
导管
55cm 钢砼
55cm 砼
Ⅳ级 深埋
φ42 小导管
按照无限土体法计算侧压力系数:
2
按照有限土体法计算侧压力系数: n=-+ 2 1 =n1 n n
③边墙回填土石侧压力计算:
ei= 2hi

hi =h
1 2
h1
墙背回填土石侧压力系数:
=t a(n2 4 5 c ) 2
-5-
中山市古神公路二期工程 初步设计
马腰岭隧道结构计算书
表 3.3 围岩压力计算数据表(单位:kN/m2)
本次计算主要依据如下设计规范: (1)《公路隧道设计规范》(JTG D70-2004) (2)《混凝土结构设计规范》(GB50010-2002) (3)《城市桥梁荷载设计标准》(CJJ77-98) (4)《公路桥涵设计通用规范》(JTG D60-2004) (5)《混凝土结构耐久性设计规范》(GB/T 50476-2008) (6)《建筑边坡工程技术规范》(GB 50330-2002) 参考《公路隧道设计规范》(JTG D70-2004),对于复合式衬砌,“根据我国
6 Ⅴ级浅埋工况施工过程模拟 ............................................................................ - 21 -

隧道与洞室工程衬砌与管片设计

隧道与洞室工程衬砌与管片设计

复合管片
复合管片由混凝土和钢材组成, 兼具混凝土管片和钢材管片的优 点,适用于对结构安全性和耐久 性要求较高的隧道工程。
管片结构设计
管片厚度
根据隧道跨度和荷载要求,确定管片的厚度,以满足结构安全性和 耐久性要求。
管片环宽
根据隧道跨度和施工方法,确定管片的环宽,以提高隧道结构的整 体性和稳定性。
管片接缝设计
详细描述
施工过程中可能出现的问题包括施工方法不 当、施工机械故障、施工人员技术水平不足 等。为了应对这些问题,衬砌与管片设计应 充分考虑施工的可操作性,选择合适的施工 方法和技术,同时加强施ห้องสมุดไป่ตู้过程中的质量监 控和安全管理,确保工程质量和进度。
安全与环境保护问题
总结词
衬砌与管片设计中必须考虑安全与环境保护 问题,以确保工程的安全性和环保性。
02
在混凝土衬砌中加入钢筋以提高其抗拉和抗剪切能力,适用于
承受较大侧压力和剪切力的洞室和隧道。
喷射混凝土衬砌
03
通过喷射工艺将混凝土直接喷射到洞室或隧道内壁,具有施工
速度快、密实度高的优点。
衬砌结构设计
厚度设计
根据洞室和隧道的跨度、围岩压力、施工方法等因素确定衬砌厚 度,以满足结构安全和稳定性要求。
详细描述
地质条件包括地层岩性、地质构造、地下水状况等因素,这些因素可能引发工程中的变 形、沉降、渗漏等问题。因此,在衬砌与管片设计中,需要充分了解地质勘察资料,对 地质条件进行深入分析,并采取相应的设计措施,如增加混凝土强度、设置排水系统等,
以应对可能的地质问题。
施工过程中的问题
总结词
施工过程中的问题也是衬砌与管片设计中需 要考虑的重要因素,这些问题可能影响工程 质量和进度。

《隧道衬砌详尽计算》课件

《隧道衬砌详尽计算》课件
运行分析后,需要对结果进行解读和 评估,判断衬砌结构的稳定性和安全 性。
软件应用案例及效果展示
某高速公路隧道施工过程中,采用有 限元分析软件对衬砌结构进行了详尽 的计算和分析,确保了隧道的施工安 全和质量。
此外,该软件还应用于其他多个隧道 工程中,均取得了良好的效果和效益 ,证明了其在隧道衬砌计算中的重要 性和优势。
CHAPTER
有限元分析软件介绍
1
有限元分析软件是一种广泛应用于工程领域的计 算工具,它能够模拟复杂的结构和现象,提供详 尽的分析结果。
2
在隧道衬砌计算中,有限元分析软件能够模拟衬 砌结构的受力状态、变形情况以及稳定性等,为 设计提供重要的参考依据。
3
常见的有限元分析软件包括ANSYS、ABAQUS、 SAP等,这些软件具有强大的计算能力和广泛的 应用领域。
3
有限元法
通过有限元分析软件,模拟衬砌结构的稳定性。
04 隧道衬砌计算的实例分析
CHAPTER
某隧道工程概况
隧道长度:10km
隧道名称:某高速公路隧道
01
隧道断面:矩形断面,宽度
20m,高度5m
02
03
工程地质:隧道穿越山岭地 区,地质条件复杂,包括岩
石、土壤和地下水等
04
05
施工环境:隧道施工难度较 大,需考虑通风、water supply and drainage等
面限制等。
计算结果的分析与评价
受力分析
分析衬砌结构在施工过程中的受力状态,包括衬砌内力、外力和 变形等。
安全评价
根据计算结果,评价衬砌结构的安全性,判断衬砌是否满足设计 要求和施工安全。
优化建议
根据计算和分析结果,提出衬砌结构的优化建议,提高隧道施工 的安全性和可靠性。

毕业设计之隧道衬砌

毕业设计之隧道衬砌

毕业设计之隧道衬砌翠峰山隧道衬砌设计5.1 概述隧道洞身的衬砌结构根据隧道围岩地质条件、施工条件和使用要求大致可以分为以下几种类型:喷锚衬砌、整体式衬砌和复合式衬砌。

规范规定,高速公路的隧道应采用复合式衬砌。

隧道衬砌设计应综合考虑地质条件、断面形状、支护结构、施工条件等,并应充分利用围岩的自承能力。

衬砌应有足够的强度和稳定性,保证隧道长期安全使用。

注:1、隧道高度h=内轮廓线高度+衬砌厚度+预留变形量;2、隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量。

5.2深埋衬砌内力计算5.2.1深、浅埋的判断隧道进、出口段埋深较浅,需按浅埋隧道进行设计。

由明洞计算可知:h q =0. 45⨯2S -1[1+i (B -5)](5.1)式中:s —围岩的级别,取s =4;B —隧道宽度i —以B =5.0m的垂直均布压力增减率,因B =11.8m>5m,所以i =0.1。

带入数据得:h q =6.264对于Ⅳ级围岩: H p =2.5h q =2.5⨯6.264=15.66 深埋:h >H p ;浅埋:h q <h ≤H p ;超浅埋:h ≤h q 。

5.2.2围岩压力计算基本参数:围岩为Ⅳ级,容重γ=20kN /m 3,围岩的弹性抗力系数K =0.5⨯106kN /m 3,衬砌材料为C25钢筋混凝土,弹性模量E h =2.95⨯107KPa 。

1、围岩垂直均布压力根据《公路隧道设计规范》(JTG D70-2019) 的有关计算公式及已知的围岩参数,代入公式:q =0.45⨯2S -1⨯γ⨯ω(5.2)式中: S —围岩的级别,取S=4;γ—围岩容重,根据基本参数γ=23 KN/m3;ω—宽度影响系数,由式ω=1+i(B-5)=1.76计算; B —隧道宽度,B=2⨯(5.7+0.5+0.5)=12.4m;i —以B=5.0m的垂直均布压力增减率。

因B=12.6m>5m,所以i=0.1。

所以围岩竖向荷载: q =0.45⨯24-1⨯20⨯1.74=125.28KN /m 2 2、围岩水平均布压力5 e =0. 2q (5.3)式中:Ⅳ类围岩压力的均布水平力e =(0.15~0.3)q ,这里取值0.25 代入数据得:25125. =28K 3N 1. 3m 2 0. 2⨯/5.2.3衬砌几何要素计算图示如下q1234567R 78R 图5.1 衬砌结构计算图示1、衬砌几何尺寸内轮廓线半径:r 1=5. 70m , r 2=8. 20m ;拱轴线半径:r 1' =5.95m ,r 2' =8.45m ;拱顶截面厚度d 0=0.5m ,拱底截面厚度d n =0.5m。

衬砌计算书 算例演示

衬砌计算书  算例演示

课程设计计算书课程名称:隧道工程题目:隧道选线及结构计算学院:土木工程学院系:土木工程系课题组:岩土与地下工程专业:土木工程专业岩土与地下工程方向班级:土木工程十一班组员学号:09301126组员姓名: 陈祥起讫日期:2013。

1.7—2013.1。

18指导教师:岳峰目录第一部分设计任务 (1)一、设计依据 (1)二、设计资料 (1)1。

设计等级 (1)2.设计车速 (1)3。

围岩级别 (1)4。

折减系数 (1)5.使用功能 (1)6。

隧道平纵曲线半径和纵坡 (1)7.隧道结构设计标准 (1)8。

1:10000地形图. (1)第二部分隧道方案比选说明 0一、平面位置的确定 0二、纵断面设计 (4)三、横断面设计 (4)第三部分二次衬砌结构计算 (5)一、基本参数 (5)二、荷载确定 (6)三、计算衬砌几何要素 (7)四、位移计算 (7)1.单位位移 (9)2.载位移—主动荷载在基本结构中引起的位移 (9)3.载位移—单位弹性抗力及相应的摩擦力引起的位移 (12)4.墙底(弹性地基梁上的刚性梁)位移 (16)五、解力法方程 (17)六、计算主动荷载和被动荷载分别产生的衬砌内力 (18)七、最大抗力值的求解 (20)八、计算衬砌总内力 (20)九、衬砌截面强度检算 (23)十、内力图 (24)第一部分设计任务一、设计依据本设计根据《公路工程技术标准》(JTG B01—2003),《公路隧道设计规范》(JTG D70-2004)进行设计和计算。

二、设计资料1.设计等级:高速公路;2.设计车速:80km/h;3.围岩级别:V级4.折减系数:50%5.使用功能:道路双向四车道,隧道左、右线单向各两车道;6。

隧道平纵曲线半径和纵坡平纵曲线设计满足规范要求,洞口内外各有不小于3s行车速度行程长度范围内的平纵线形保持一致。

7。

隧道结构设计标准(1).设计使用期:100年;(2).设计安全等级:一级;(3)。

结构防水等级:二级;8。

盾构隧道衬砌结构及计算

盾构隧道衬砌结构及计算

2021年3月第9章盾构隧道衬砌结构1.基本概念1.1隧道衬砌隧道衬砌,英文为Tunnel Lining 。

盾构隧道的衬砌一般为预制管片,预制管片英文为Segment 。

1.2衬砌结构分类(1)按施工方法分类衬砌分为:预制管片、二次浇筑衬砌即拼装管片的内部,做了现浇的二次衬砌、压注混凝土衬砌(ECL 工法)。

是否需要内部做二次衬砌,取决于隧道的用途及结构计算,例如南水北调工程穿越黄河的盾构隧洞及珠江三角洲水资源配置工程盾构隧洞,就做了内部二衬。

(2)按材料分类,管片可分为:钢筋混凝土管片(RC )(如图9.1所示)、铸铁管片、钢管片、钢纤维混凝土管片、合成材料。

图9.1盾构管片试拼装(佛山地铁)(错缝拼装,5+1块)1.3管片外形与尺寸管片外形可分为四边形的,六角蜂窝形的。

四边形的,例如:深圳地铁快线长隧道,例如11号线、14号线等。

管片外径6700mm ,内径6000mm ,厚度350mm ,宽度1.5m ,纵向螺栓16个,管片分度22.5°,采用左右转弯环+标准环的形式。

管片统一采用1+2+3形式(即:1块封顶块(F ),2块邻接块(L1)、(L2)、3块标准块(B1)、(B2)、(B3))。

止水条采用三元乙丙橡胶及遇水膨胀橡胶条,如图9.2所示。

K 块图9.2用于深圳地铁的Փ6700盾构管片(14号线,2020年)日本的一个六角形管片的案例,并采用插销式接头的案例:隧道直径为Ф6600mm,单线隧道衬砌主要采用6等分的RC平板型管片,环宽1600mm,厚320mm,管片连结采用新研制的FAKT插销式接头。

部分段采用环宽1250mm、厚250mm的蜂窝形RC管片。

如图9.3、图9.4所示。

图9.3日本的六角蜂窝状管片示意图图9.4在盾构隧道中待拼装的六角形管片(傅德明2012)中国在引水隧道中也用过六角形管片(山西万家寨引水工程)。

1.4管环类型:为了满足盾构隧道在曲线上偏转及蛇行纠偏的需要,应设计楔形衬砌环。

(整理)隧道设计衬砌计算范例(结构力学方法)

(整理)隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。

隧道中部地势较高。

隧址区地形地貌与地层岩性及构造条件密切相关。

由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。

隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。

主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。

由于山系屏障,二郎山东西两侧气候有显著差异。

东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。

全年分早季和雨季。

夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

偏压隧道衬砌作用计算方法

偏压隧道衬砌作用计算方法

偏压隧道衬砌作用计算方法C.0.1偏压隧道设计时,在假定偏压分布图形与地面坡度一致(图C.0.1)作用下,其垂直压力宜按下列公式计算:Q=Z[(力+〃,)8—(劝2+z7∕2)tano](C.0.1-1) z=—!—X ------------------------- tan "T ----------------------- (C.0.1-2) tan β-tana 1+tan^(tan φc -tan θ)+tan φc tan Θ/= ]X _______________ t an∕Γ-ta∏∙ ____________tan∕7,+tanα1+tan/(tan φc -tan+tan φc tan Oteβ-taια *:—G(CoJ —3)tan β=tan 纥÷叵互画良三逅 Ytan φt .-tan θtan β∙=tan 仍÷附纥+W 国Ytan φc-tan θ 式中:h ——内侧由拱顶水平至地面的高度(m );h ,——外侧由拱顶水平至地面的高度(m );B ——隧道宽度(m );γ ---- 围岩重度(kN/m 3);O ——顶板土柱两侧摩擦角(°);当无实测资料时,宜按表BO1选取;λ——内侧的侧压力系数;才——外侧的侧压力系数;o. --- 地面坡度角(°);φr —围岩计算摩擦角(°),可按表B.0.2取值;β——内侧产生最大推力时的破裂角(°);β,——外侧产生最大推力时的破裂角(o )o (C.0.1-4) (C.0.1-5)图CO1偏压隧道衬砌作用(荷载)计算图式C.0.2在荷载作用下的水平侧压力宜按下列公式计算:内侧:e i=γh iλ夕卜侧:e i=γh i,λ,,式中:h i—内侧任一点i至地面的距离(m);h;—外侧任一点i至地面的距离(m)。

(C.0.2-1) (C.0.2-2)。

隧道衬砌结构知识、原理和衬砌计算及设计公式

隧道衬砌结构知识、原理和衬砌计算及设计公式

隧道衬砌结构知识、原理和衬砌计算及设
计公式
简介
隧道衬砌结构是用于支撑和保护隧道壁面的一种结构。

衬砌的设计和计算是确保隧道的安全和稳定性的重要步骤。

衬砌结构类型
隧道衬砌结构通常包括以下几种类型:
1. 塑料管衬砌:使用塑料管来加固和保护隧道壁面。

2. 预制混凝土片衬砌:使用预制混凝土片来支撑和保护隧道壁面。

3. 钢筋混凝土衬砌:使用钢筋混凝土结构来加固和保护隧道壁面。

衬砌计算及设计公式
在进行隧道衬砌的计算和设计时,需要考虑以下因素:
1. 隧道直径:隧道的直径是确定衬砌结构尺寸和类型的关键因素。

2. 地层情况:地层的稳定性和承载能力将影响衬砌的安全性和设计方法。

3. 水压情况:如果隧道处于水下或水土压力较大的地区,需要考虑水压对衬砌的影响。

根据以上因素,可以使用以下公式进行衬砌计算和设计:
1. 隧道衬砌尺寸计算公式:根据隧道直径和地层参数计算衬砌的合适尺寸。

2. 衬砌材料选择公式:根据地层情况和环境条件选择合适的衬砌材料。

3. 衬砌厚度计算公式:根据地层情况和水压情况计算衬砌的合适厚度。

结论
隧道衬砌结构的知识、原理和衬砌计算及设计公式对于确保隧道的安全和稳定性至关重要。

根据隧道的直径、地层情况和水压情况等因素,可以选择合适的衬砌结构类型,并使用相应的公式进行计算和设计。

隧道(衬砌工程量)计算书

隧道(衬砌工程量)计算书

x x x隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:8 编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:。

隧道洞门和衬砌的隧道工程课程设计计算书

隧道洞门和衬砌的隧道工程课程设计计算书
隧道衬砌排水是在初期支护与防水层之间设置环向半圆排水管,环向半圆排水管设置间距为5~10m。纵向排水管采用EVA波纹管,设置在洞内初期支护边墙脚,沿隧道两侧,全隧道贯通,环向半圆排水管沿隧道拱背环向布设将水排入纵向PVC波纹管,然后通过EVA塑料排水管将水导入隧道底部φ300中央排水管,引水至洞外排水沟。在遇有地下水较大地段、集中渗水地段及在喷层中如遇较大渗水地段,应加设半圆排水管将水导入纵向排水管。
隧道路面采用双面坡,路面水通过开口流入缝隙管,缝隙管设在两侧,洞内缝隙管主要排放消防及清洗水,使衬砌背后围岩水与污染水分离排放。隧道中央排水管设置了沉砂井、检查井,边墙脚纵向排水管设置了检查井,使隧道排水设施具有了可维修性。
隧道如遇涌水地段,应对于可能发生涌水的地段采用堵水处理,根据国内外堵水经验和隧道的具体情况,再采用超前探水等物理勘探手段,查明隧道前方地下水分布状况及水量后,适时采取预注浆,将大量水尽可能封堵在围岩内,使隧道开挖后不出现大量涌水,为隧道后续施工创造条件,以确保隧道施工能安全、按时完成。
3.1隧道洞内防排水
隧道防排水设计以复合式结构衬砌原则进行设计,隧道二次衬砌以自防水为主,衬砌采用防水混凝土。根据隧道围岩裂隙水的大小采取不同的防排水措施,主要防排水措施为:在初期支护与二次衬砌之间设置PVC防水板(2mmEVA防水板+300g/㎡无纺土工布)防水,并实现无钉铺设;并采用半圆排水管、EVA排水管等形成完善的防排水系统。
Ⅲ级围岩采用短台阶新奥法施工,台阶长度5米。台阶上部钻眼深度1.7m,光面爆破,每次进尺1.5米,台阶下部钻眼1.7m光面爆破,每次进尺1.5米。开挖过程中,初期支护紧跟工作面,尽快完成支护体系。
爆破设计当循环进尺在2.0m以内时采用二级斜眼复合楔形掏槽,当循环进尺大于2.0m时采用直眼掏槽。隧道边墙及拱部均按“光面爆破”设计,爆破后不得有欠挖,线性超挖控制在15cm以内。

隧道衬砌计算

隧道衬砌计算

第五章隧道衬砌结构检算5.1结构检算一般规定为了保证隧道衬砌结构的安全,需对衬砌进行检算。

隧道结构应按破损阶段法对构件截面强度进行验算。

结构抗裂有要求时,对混凝土应进行抗裂验算。

5.2 隧道结构计算方法本隧道结构计算采用荷载结构法。

其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。

计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。

5.3 隧道结构计算模型本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。

取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定:①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。

②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。

计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。

④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。

⑤衬砌结构材料采用理想线弹性材料。

⑥衬砌结构单元划分长度小于0.5m。

隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。

根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。

Ⅳ级围岩段为深埋段。

根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。

从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。

5.4.1 材料基本参数 (1)Ⅴ级围岩围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角045ϕ=,泊松比u=0.4。

隧道设计衬砌计算范例(结构力学方法)

隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。

隧道中部地势较高。

隧址区地形地貌与地层岩性及构造条件密切相关。

由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。

隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。

主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。

由于山系屏障,二郎山东西两侧气候有显著差异。

东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。

全年分早季和雨季。

夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

隧道衬砌设计与计算

隧道衬砌设计与计算

《公路隧道设计规范》JTG D70-2004中在对隧道结构进行计算时,《列出 了荷载类型,(如表5-1所示)并按其可能出现的最不利组合考虑。
表5-1 作用在隧道结构上的荷载
(2)荷载组合:
结构自重+围岩压力+附加恒载(基本) 结构自重+土压力+公路荷载+附加恒载 结构自重+土压力+附加恒载+施工荷载+ 温度作用力 结构自重+土压力+附加恒载+地震作用
⑶ 拱脚没有径向位移,只有切向位移;
⑷ 对称的垂直分位移对拱圈内力不产生影响;
⑸ 拱脚的转角 和切向位移的水平分位移 是必须考虑的
3、正则方程(拱顶切开处截面相对位移为0)
根据结构力学方法可以建立正则方程:
X 1 11 X 2 12 1P a 0 X121 X 222 2P fa ua 0
(6) 墙脚支承在弹性岩 体上,可发生转动和垂直 位移(无水平位移)
bh段: i
cos2 b cos2 b
cos2 i cos2 h
h
ha段: i
1
y
' i
y
' h
2
h
2 、主动荷载作用下的力法方程和衬砌内力
力法方程:
X 1p11 X 2 p12 1p ap 0 X 1p 21 X 2 p 22 2 p f ap uap 0
式中: ik ,
位转角;
0 ap
ip是为基基本本结结构构的墙单底位的位荷移载和转主角动;荷f 载为位衬移砌;的矢1高是。墙底单
求得 X1p , X 2 p 后,在主动荷载作用下,衬砌内力即可计 算:
M ip
X1p
X 2 p yi
M
0 ip
N ip
X2p
cos i

隧道与地铁工程_ 隧道支护结构的设计计算_ 直墙式衬砌的计算方法_

隧道与地铁工程_ 隧道支护结构的设计计算_ 直墙式衬砌的计算方法_
《隧道与地铁工程》
第五章 隧道支护结构的计算
第5讲 直墙式衬砌的计算方法
本讲主要内容:
1. 隧道支护结构的计算模型 2. 隧道衬砌受力特点 3. 荷载分类及组合 4. 隧道衬砌计算的有关规定
2
直墙式衬砌有哪些特点?
• 结构形式: 拱圈+竖直边墙+底板
• 受力特点: 拱圈、边墙受力
• 适用条件: 水平压力大或稳定性较差岩层
l 可近似作为弹性地基上的绝对刚 性梁,近似认为=0
l 边墙本身不产生弹性变形,在外 力作用下只产生刚体位移,即只 产生整体下沉和转动
l 由于墙底摩擦力很大,所以不产 生水平位移
l 当边墙向围岩方向位移时,围岩 将对边墙产生弹性抗力,墙底处 为零,墙顶处为最大值σh,中间 呈直线分布
l 墙底面的抗力按梯形分布
之间的相互作用(拱脚变位取决于墙 顶的约束情况)
l 直墙式衬砌的拱圈计算中的拱脚位移,需要 考虑边墙变位的影响
l 直边墙的变形和受力状况与弹性地基梁相类 似,可以作为弹性地基上的直梁计算
l 墙顶(拱脚)变位与弹性地基梁(边墙)的
弹性特征值及换算长度λ=ahc有关,按l可以
分为三种情况:
(1)短梁 1 2 .7 5
M
k 2a2
uc3
k 4a3
c4
M c1
1 2a
H c2
H
k 2a
uc2
k 4a
c3
M ca4
H c1
c
uc a4
c1
2a3 k
M c2
2a2 k
H c3
uc
uc1
1 2a
c2
2a2 k
M c3
a k

隧道衬砌详尽计算

隧道衬砌详尽计算
T T1 t0 T ' 12 0.2 5 6.8o C温降
△T使坑道半径减小
P 1.607 Kg / cm2
P——衬砌温度应力,相当于内水压力16m水头。 ②无压隧洞,在确定温差后,用结构力学的方法计算内力。
一、荷载及荷载组合
(七)地震力 地震力对埋置在地下建筑物的影响远小于对地面建筑物
的,难以反映实际情况。 岩体的工程地质,水文地质条件错综复杂,山岩压力
显然不能用一个简单的公式予以概括。
一、荷载及荷载组合
(二)围岩的弹性抗力
当衬砌承受荷载向围岩方向变形时,将受到围岩的抵抗, 这个抵抗力叫弹性抗力。
弹性抗力的大小和性质与工程地质条件有密切的关系, 坚固完整的岩石,弹性抗力大;围岩软弱破碎,弹性抗力小, 甚至不能利用。
石颗粒间的真实摩擦系数:
fk



tg

c

式中,τ—岩石抗剪强度,φ—岩石内摩擦角,
σ—正应力, c—粘结力
一、荷载及荷载组合
实际工程中:
fk

A

Rc 100
Rc—岩石单轴抗压强度 A—小于1的修正系数
近似计算为:
fk

A

Rc 100
普氏观测试验资料,制成各种岩石 fk 分类表。 最坚硬的岩石 fk达20;最差(松、软) fk 只有0.3。
其中内水压力、自重比较明确,而其余的力 只能在一些简化和假定的前提下进行近似计算。
一、荷载及荷载组合
(一)围岩压力(山岩压力) 隧洞开挖后围岩变形或塌落作用在支护上的
压力。 影响山岩压力大小的因素:围岩的地质条件
和力学特征(强度和变形性能节理,裂隙的分布 和发育情况);初始应力,地下水,隧洞的走向, 埋深和几何形状;开挖方法;衬护时间,衬护形 式。

隧道衬砌计算

隧道衬砌计算

隧道衬砌计算--------------------------------------------------------------------- [ 计算条件 ]---------------------------------------------------------------------- [ 基本参数 ]规范标准:水工砼规范SL/T191-96承载能力极限状态10: 1.0正常使用极限状态10: 1.0设计状况系数: 1.00衬砌断面类型:圆拱直墙形每段计算的分段数:10计算迭代次数:10抗力验证要求:高[ 衬砌参数 ]底板半宽: 3.000(m)底板厚度: 0.600(m)侧墙高度: 6.000(m)侧墙厚度: 0.600(m)顶拱半中心角: 60.000(度)顶拱拱脚厚度: 0.600(m)顶拱拱顶厚度: 0.600(m)底板围岩弹抗系数: 500.000(MN/m3)侧墙围岩弹抗系数: 500.000(MN/m3)顶拱围岩弹抗系数: 500.000(MN/m3)衬砌的弹性模量: 23000.000(MPa)[ 荷载参数 ]底部山岩压力(侧):0.000(kN/m)底部山岩压力(中):0.000(kN/m)侧向山岩压力(上):0.000(kN/m)侧向山岩压力(下):0.000(kN/m)顶部山岩压力(侧):70.000(kN/m) 顶部山岩压力(中):70.000(kN/m) 内水压力水头: 6.000(m)外水压力水头:0.000(m)外水压力折减系数(2):0.400顶拱灌浆压力:20.000(kPa)顶拱灌浆压力作用范围角:60.000(度)其它段灌浆压力:0.000(kPa)衬砌容重:24.000(kN/m3) [ 荷载组合参数 ]编号荷载名称是否计算分项系数1 衬砌自重√ 1.002 顶岩压力√ 1.003 底岩压力√ 1.004 侧岩压力√ 1.005 内水压力√ 1.006 外水压力√ 1.007 顶部灌浆压力√ 1.008 其余灌浆压力√ 1.00[ 配筋参数 ]对称配筋:是混凝土等级:C25纵筋等级:Ⅱ级(fy=310MPa,fyk=335MPa)箍筋计算:计算箍筋等级:Ⅰ级(fy=210MPa,fyk=235MPa)箍筋间距:100(mm)配筋计算as:65(mm)配筋调整系数: 1.00裂缝计算:计算采用的荷载效应组合:短期效应组合最大裂缝宽度允许值:0.40(mm)单侧钢筋:12D20砼保护层厚度:50(mm)----------------------------------------------------------------------[ 计算结果 ]----------------------------------------------------------------------[ 内力配筋计算 ]----------------------------------------------------------------------计算结论:经过3次计算,达到各点设定抗力条件和法向位移一致!轴向力剪力弯矩切向位移法向位移转角围岩抗力单侧纵筋箍筋面积抗剪验算N Q M U V W As Av(kN) (kN) (kN.m) (mm) (mm) (度) (kPa) (mm^2)(mm^2)底板(从中心向左等分10段):0 -83.738 0.000 87.995 0.000 0.102 0.000 0.1 1070.0 173.9 满足1 -83.738 -6.479 89.003 -0.002 0.112 0.004 0.1 1070.0 173.9 满足2 -83.738 -10.071 91.594 -0.004 0.141 0.007 0.1 1070.0 173.9 满足3 -83.738 -7.833 94.464 -0.005 0.190 0.011 0.1 1070.0 173.9 满足4 -83.738 3.271 95.408 -0.007 0.259 0.015 0.1 1070.0 173.9 满足5 -83.738 26.336 91.305 -0.009 0.349 0.019 0.2 1070.0 173.9 满足6 -83.738 64.408 78.105 -0.011 0.459 0.023 0.2 1070.0 173.9 满足7 -83.738 120.249 50.879 -0.013 0.585 0.025 0.3 1070.0 173.9 满足8 -83.738 195.964 3.960 -0.015 0.723 0.027 0.4 1070.0 173.9 满足9 -83.738 292.445 -68.789 -0.016 0.860 0.025 0.4 1070.0 173.9 满足10 -83.738 408.637 -173.498 -0.018 0.982 0.020 0.5 1266.9 173.9 满足侧墙(从底向上等分10段):0 -408.637 -83.738 -173.498 -0.982 -0.018 0.020 0.0 1070.0 173.9 满足1 -399.997 -97.306 -117.028 -1.000 0.129 0.008 0.1 1070.0 173.9 满足2 -391.357 -80.558 -62.750 -1.017 0.174 0.001 0.1 1070.0 173.9 满足3 -382.717 -56.141 -21.665 -1.034 0.163 -0.002 0.1 1070.0 173.9 满足4 -374.077 -35.140 5.480 -1.050 0.132 -0.003 0.1 1070.0 173.9 满足5 -365.437 -19.703 21.737 -1.066 0.105 -0.002 0.1 1070.0 173.9 满足6 -356.797 -6.285 29.600 -1.082 0.096 0.000 0.0 1070.0 173.9 满足7 -348.157 11.821 28.375 -1.097 0.113 0.003 0.1 1070.0 173.9 满足8 -339.517 42.200 12.951 -1.112 0.153 0.005 0.1 1070.0 173.9 满足9 -330.877 90.268 -25.877 -1.127 0.203 0.004 0.1 1070.0 173.9 满足10 -322.237 154.356 -98.751 -1.141 0.228 -0.001 0.1 1070.0 173.9 满足顶拱(从拱脚向拱顶等分10段):0 -356.244 -27.442 -98.751 -1.102 -0.373 -0.001 0.0 1070.0 173.9 满足1 -336.393 -46.091 -85.264 -1.065 -0.506 -0.005 0.0 1070.0 173.9 满足2 -314.360 -59.576 -65.937 -1.013 -0.661 -0.009 0.0 1070.0 173.9 满足3 -291.286 -67.648 -42.696 -0.943 -0.830 -0.012 0.0 1070.0 173.9 满足4 -268.334 -70.299 -17.514 -0.854 -1.004 -0.013 0.0 1070.0 173.9 满足5 -246.640 -67.762 7.678 -0.747 -1.174 -0.014 0.0 1070.0 173.9 满足6 -227.262 -60.497 31.076 -0.622 -1.329 -0.013 0.0 1070.0 173.9 满足7 -211.136 -49.175 51.079 -0.481 -1.460 -0.010 0.0 1070.0 173.9 满足8 -199.036 -34.643 66.364 -0.328 -1.560 -0.008 0.0 1070.0 173.9满足9 -191.537 -17.889 75.944 -0.166 -1.623 -0.004 0.0 1070.0 173.9 满足10 -188.998 0.000 79.206 0.000 -1.644 0.000 0.0 1070.0 173.9 满足----------------------------------------------------------------------[ 配筋结果 ]衬砌内侧纵筋最大面积As = 1266.9mm^2,外侧纵筋最大面积As1 = 1266.9mm^2;纵筋面积总和As = 2533.7mm^2。

隧道计算书精选全文

隧道计算书精选全文

可编辑修改精选全文完整版一、设计资料 1、工程概况:安徽省铜汤高速公路要穿越黄山的焦家山,在该山建一隧道。

隧道址区属构造剥蚀低山区,海拔105.2m —231.1m ,相对高差125.9m 。

山脊走向35度左右,隧道轴线与山脊走向基本垂直。

2、地形地质等条件工作区属亚热带湿润季风气候区,梅雨区40天左右,年平均气温为15.2—17.3度,最高日平均气温为42度,最低日平均气温为-20度。

七、八月气温最高,一月气温最低。

区内雨量充沛,多年平均年降雨量为1673.5mm ,最大为2525.7mm ,最小为627.9mm ,多锋面雨及地形雨,山区冬季风速较大,一般为4~5级。

地层岩性主要为志留系畈村组粉砂岩(fn S 2)和第四系全新统崩坡积成因碎石土(14d e Q )。

3、设计标准设计等级:高速公路双向四车道; 地震设防烈度:7级 4、计算断面资料:桩号:K151+900.00; 地面高程:205.76m ; 设计高程:138.673m ; 围岩类别:Ⅲ类;复合式衬砌类型:Ⅲ类;工程地质条件及评价:该段隧道通过微风化粉砂岩地段,节理裂隙不发育,埋置较深,围岩稳定性较好。

5、设计计算内容(1)确定隧道开挖方式及隧道断面布置图; (2)围岩压力计算; (3)隧道支护设计图; (4)隧道衬砌设计图。

6、设计依据 (1)《公路隧道设计规范》(JTG D70-2004); (2)《公路隧道施工技术规范》(JTJ042-94); (3)《隧道工程》王毅才 主编 人民交通出版社; (4)《地下结构静力计算》 天津大学建筑工程系地下建筑工程教研室 编 中国建筑工业出版社。

二、隧道断面布置本公路设计等级为高速公路双向四车道,由《公路隧道设计规范》(JTG D70-2004)4.3.2有:高速公路、一级公路的隧道应设计为上、下行分离的独立双洞。

对于Ⅲ类围岩,分离式独立双洞间的最小净距为2.0B ,B 为隧道开挖断面的宽度。

隧道衬砌台车结构计算书

隧道衬砌台车结构计算书

XXXXXXXXXX引水隧道项目衬砌台车计算书编制:校核:审核:2017年10月xxxxx项目衬砌台车计算书1、《xxxxx施工图设计》2、《衬砌台车结构设计图》3、《钢结构设计规范》(GB 50017-2003)4、《混凝土结构设计规范》(GB 50010-2002)2. 概况xxxxx隧道衬砌模板系统及台车布置图如下图。

隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。

顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。

衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。

顶拱支撑采用H200×200×立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。

衬砌台车门式框架立柱采用H200×200×型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。

本衬砌台车与顶拱支撑焊接为一个整体。

进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。

侧模支撑系统的螺旋丝杆,每断面设置4个。

下部螺旋丝杆水平支承于台车的I20a纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。

三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。

模板系统及台车构件均采用Q235普通型刚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约 260km , 西至康定约 97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长 8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。

隧道中部地势较高。

隧址区地形地貌与地层岩性及构造条件密切相关。

由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。

隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。

主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“ v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。

由于山系屏障,二郎山东西两侧气候有显著差异。

东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。

全年分早季和雨季。

夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

据沪定、天全两县21年(1960-1980年)气候资料,多年平均气温分别为16.6℃和15.1℃,沪定略高于天全,多年平均降雨量分别为636.8 mm和1730.0mm,多年平均蒸发量分别为和924.2mm,每年8级以上大风日数分别为14天和3天,沪定相对大风更多、更强烈。

据调查访问,二郎山东坡季节冰冻线约在海拔2200m以上,积雪线海拔1900m左右,积雪时限11月上旬至次年4月,西坡季节冰冻线约为海拔2600m-2800m季节积雪线海拔2300m-2500m左右。

二郎山东西两侧分别属于青衣江和眠江支流一大渡河两大水系。

东坡龙胆溪为青衣江支流天全河发源地,西坡潘沟,属大渡河支流。

本区溪沟均受大气降水(雨、雪)和地下水的补给,其中主要为大气降水补给。

因而,亦具有一般山区沟河“易涨易落”之特点。

1.2.3 地质状况隧道穿越地层以志留系、泥盆系浅海—滨海相碳酸盐和碎屑岩为主,出口端上覆地层为崩坡积层, 黄灰、黑灰色块石土或块石、碎石土, 由山前滑坡、崩塌等坡积、崩积物及少量坡面洪流形成的洪积物组成, 主要成份为岩屑砂砾、角砾、亚粘土等。

由于区内岩层软硬相间, 故地形呈东陡西缓的单面山特征, 东坡为逆向坡, 西坡为顺向坡。

二郎山断裂带从隧址区西北侧通过, 距隧道出口约350~400m , 该断裂是龙门山断裂带的南西延长部分,为区内控制性主干断裂, 在其影响下区内沿其旁侧发育一系列次级分支羽状断裂, 在隧道轴线上共穿越断层11条, 多属压性—压扭性质, 断层带不宽, 影响带较小, 胶结较好。

隧址区地震基本烈度为8 度。

隧址区初始应力条件通过采用水压致裂法在7 个钻孔中的地应力测量, 得出隧道最大水平主应力(σmax )的总体方向为N 74°W , 与隧道轴线夹角 31°左右, 隧址区地应力场具有以下分布特征:(1)大约位于标高2200 m 处, 为山体应力与构造应力的分界线, 分界线以上垂直应力(Rv )占主导地位; 分界线以下水平主应力值明显增加并占主导地位, 隧道顶板正好位于分界线偏下。

(2)水平地应力(σHmax、σhmin )在垂直方向上的分布随深度增加而增大,在横向上由隧道两端向山体内部逐渐增加, 即隧道中部地应力最大, σHmax =54.37M Pa。

(3)在同一深度内硬质岩类显示高应力值, 软岩类显示低应力值。

二郎山隧道(主洞)长4176 m , 以II、III类围岩为主,长3004 m,占%; IV 类围岩长821 m , 占%; V类围岩长351 m,占%。

2 隧道设计设计标准设计行车速度: 40 km/ h (三级公路) ;隧道建筑限界: 隧道净宽 9.0 m (7.5 m + 2×0.75 m) , 限高5 m设计荷载: 汽车—20 级, 挂车—100;设计小时交通量: 441辆/h;行车方式: 单洞双向行驶;卫生标准: 正常运营CO允许浓度为150×10- 6, 阻塞及救灾短时间内(15 min)为250×10- 6;烟雾允许浓度0.009 m - 1。

平面线形、纵断面设计2.2.1 平面线形隧道的平面线形应根据地质、地形、路线走向、通风等因素确定隧道的平曲线线形。

直线便于施工;曲线段施工难度较大,除测量上难度加大以外,例如模板台车载曲线段施工很困难,有超高时就更困难。

结合隧址区地形、地貌及工程地质与水文地质条件、地应力大小与方向、经济性, 确定出了隧道轴线位置, 同时还兼顾了两端接线的衔接,隧道平面线形确定为直线型。

隧道设计里程 K259+ 036~ K263+ 212, 长 4 176 m,进口标高2 180.31 m , 出口标高 2182.01 m。

2.2.2 纵断面设计隧道内纵断面线形应考虑行车安全性、营运通风规模、施工作业效率和排水要求,隧道纵坡不应小于%,一般情况不应大于3%;受地形等跳警限制时,高速公路、一级公路的中、短隧道可适当加大,但不宜大于4%;短于100m的隧道纵坡可与该公路隧道外路线的指标相同。

隧道内的纵坡形式,一般采用单向坡;当地下水发育的长隧道、特长隧道可采用双向坡。

纵坡变更的凸形竖曲线和凹形竖曲线的最小半径和最小长度应符合规范规定(《公路隧道设计规范》JTGD70-2004,表4.3.4)。

二郎山隧道属特长隧道,因此纵坡形式采用“人”字坡式,进口侧上坡, 坡度% (长2000 m ) , 出口侧下坡, 坡度% (长2176 m )。

横断面设计2.3.1 建筑限界隧道横断面设计主要是对隧道净空的设计。

隧道净空是指隧道衬砌的内轮廓线所包围的空间。

隧道净空是根据“建筑限界”确定的。

“限界”是一种规定的轮廓线,这种轮廓线以内的空间是保证车辆安全运行所必需的,是建筑物不得侵入的一种限界。

公路隧道建筑限界包括车道、路肩、路缘带、人行道等的宽度及车道、人行道的净高。

下图为公路隧道建筑限界横断面组成宽度。

根据《公路工程技术标准》, 隧道建筑限界采用净宽9.0 m , 限高4.5m。

隧道内轮廓经过比选确定采用单心圆断面, 隧道总高度6.1m。

2.3.2 紧急停车带长、特长隧道应在行车方向的右侧设置紧急停车带。

双向行车隧道,其紧急停车带应双侧交错设置。

紧急停车带的宽度,包含右侧向宽度应取 3.5m,长度应取40m,其中有效长度不得小于30m。

紧急停车带的设置间距不宜大于750m。

停车带的路面横坡,长隧道可取水平,特长隧道可取%~%或水平。

二郎山隧道应设紧急停车带,双向交错布置,紧急停车带间距700m,有效长度30m,横向坡度取1%。

紧急停车带的建筑限界、宽度和长度见图。

图建筑界(单位:cm)a)宽度构成及建筑限界(单位:cm)b)长度(单位:cm)图紧急停车带的建筑限界、宽度和长度2.3.3 内轮廓设计隧道内轮廓设计除符合隧道建造限界的规定外,还应满足洞内路面、排水设施、装饰的需要,并为通风、照明、消防、监控、营运管理等设施提供安装控件,同时考虑围岩变形、施工方法影响的预留富裕量,使确定的断面形式及尺寸符合安全、经济、合理的原则。

二郎山隧道内轮廓采用单心圆方案,半径R1=4.8m,R2=1m,R3=9.6m,θ1=108°,θ2=67°,θ3=12°,IV、V级围岩设置仰拱,内轮廓线如图。

a)一般内轮廓线b) 含紧急停车带内轮廓线图内轮廓线(单位:m)3 洞门设计《公路隧道设计规范》(JTGD70-2004)对洞门有如下规定:1.洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定;2.隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定;3.洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟,并和路基排水系统综合考虑布置。

洞门位置选择《公路隧道设计规范》(JTGD70-2004)规定洞口位置的确定应符合下列要求:1.洞口的边坡及仰坡必须保证稳定。

有条件时,应贴壁进洞;条件限制时,边坡及仰坡的设计开挖最大高度可按表控制。

表洞口边、仰坡控制高度注:设计开挖高度系从路基边缘算起2.洞口位置应设于山坡稳定、地质条件好处。

3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。

4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选确定。

5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定。

6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范措施。

7.洞口边坡、仰坡应根据实际情况加固防护措施,有条件时应优先采用绿化护坡。

8.当洞口处有塌方、落石、泥石流等时,应采取清刷、延伸洞口、设置明洞或支挡结构物等措施。

洞门形式选择标准洞门形式的选择应适应地形、地质的需要,同时考虑施工方法和施工需要。

一般地形等高线与线路中线斜交角度在45。

~65。

之间,地面横坡较陡,地质条件好,无落石掉块现象时,可选择斜交洞门;当斜交角度大于65。

时,地面横坡较陡,或一侧地形凸出,可考虑用台阶洞门;当斜交角度小于45。

时,地面横坡较陡,边仰坡刷方较高,有落石掉块掉块威胁运营安全时,考虑接长明洞。

洞门确定二郎山隧道穿越地层以志留系、泥盆系浅海—滨海相碳酸盐和碎屑岩为主,出口端上覆地层为崩坡积层, 黄灰、黑灰色块石土或块石、碎石土, 由山前滑坡、崩塌等坡积、崩积物及少量坡面洪流形成的洪积物组成, 主要成份为岩屑砂砾、角砾、亚粘土等。

因此洞门采用翼墙式洞门。

4隧道结构设计与计算初期支护二郎山隧道采用复合式衬砌支护,初期支护采用喷锚支护,由喷射混凝土、锚杆、钢筋网和钢架等支护形式组合使用,根据不同围岩级别区别组合。

锚杆支护采用全长粘结锚杆。

相关文档
最新文档