轴对称及中心对称变换平移及旋转变换

合集下载

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点
嘿,朋友!今天咱来好好唠唠旋转、平移和轴对称这些超有意思的知识点!
先说旋转吧,你就想象一下,一个东西像个小陀螺一样围着一个中心点转圈,这就是旋转啦!比如说,家里的电风扇在呼呼转,那就是在做旋转运动呀!旋转可是有角度的哦,转多少度可是很关键的呢!
平移呢,就好像一个小玩具车在直直地往前跑,没有拐弯,也没有转圈,就是平平地移动。

就像你在操场上笔直地向前走,这就是平移呀!教室里的桌子从这边挪到那边,也是平移呢!
接下来就是轴对称啦!哎呀呀,这就像是有个神奇的镜子,能把一个东西分成两边,两边完全对称,可神奇啦!你看,蝴蝶的翅膀不就是轴对称的嘛!
旋转、平移和轴对称在生活中可到处都是呢!它们可不只是书本上的知识哟!你想想看,那些漂亮的图案、建筑,不都有它们的功劳嘛!它们就像隐藏在生活中的小魔法,让一切变得更有趣、更有秩序!难道不是吗?所以呀,好好了解它们,会发现好多好玩的东西呢!。

专题28 轴对称、平移、旋转的核心知识点精讲(讲义)(全国通用)

专题28 轴对称、平移、旋转的核心知识点精讲(讲义)(全国通用)

专题28 轴对称、平移、旋转的核心知识点精讲1.理解轴对称图形与中心对称图形概念;2.掌握图形的平移的性质及有关计算;3.掌握图形的旋转性质并运用其性质进行有关的计算;4.掌握位似的性质。

考点1:轴对称图形与轴对称轴对称图形轴对称图 形定 义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性 质对应线段相等 AB =ACAB =A ′B ′,BC =B ′C ′,AC =A ′C ′对应角相等∠B =∠C∠A =∠A ′,∠B =∠B ′,∠C =∠C ′对应点所连的线段被对称轴垂直平分区 别 (1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言; (2)对称轴不一定只有一条 (1)轴对称是指两个图形的位置关系,必须涉及两个图形; (2)只有一条对称轴关 系(1)沿对称轴对折,两部分重合; (2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.考点2:图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.考点3:图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.考点4:中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形常见的中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.考点5:坐标变换的规律(1)P(a,b)关于x轴对称的点的坐标为(a,-b);(2)P(a,b)关于y轴对称的点的坐标为(-a,b);(3)P(a,b)关于原点对称的点的坐标为(-a,-b).【题型1:平移、旋转与轴对称的识别】【典例1】(2023•苏州)古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.【变式1-1】(2023•泰州)书法是我国特有的优秀传统文化,其中篆书具有象形特征,充满美感.下列“福”字的四种篆书图案中,可以看作轴对称图形的是()A.B.C.D.【变式1-2】(2023•广西)下列数学经典图形中,是中心对称图形的是()A.B.C.D.【变式1-3】(2023•宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是()A.B.C.D.【题型2:平移、旋转与轴对称性质的应用】【典例2】(2023•无锡)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°【变式2-1】(2023•南充)如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是()A.2B.2.5C.3D.5【变式2-2】(2023•牡丹江)在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图①的方法折出一个正方形ABEF,然后把纸片展平;第二步:将图①中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图②.根据以上的操作,若AB=8,AD=12,则线段BM的长是()A.3B.C.2D.1【变式2-3】(2023•宁夏)如图,在△ABC中,∠BAC=90°,AB=AC,BC=2.点D在BC上,且BD:CD=1:3.连接AD,线段AD绕点A顺时针旋转90°得到线段AE,连接BE,DE.则△BDE的面积是()A.B.C.D.【题型3:图形变化与点坐标变化】【典例3】(2023•海南)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为(6,0),将△ABO绕着点B顺时针旋转60°,得到△DBC,则点C的坐标是()A.(3,3)B.(3,3)C.(6,3)D.(3,6)【变式3-1】(2023•金华)如图,两盏灯笼的位置A,B的坐标分别是(﹣3,3),(1,2),将点B向右平移2个单位,再向上平移1个单位得到点B′,则关于点A,B′的位置描述正确的是()A.关于x轴对称B.关于y轴对称C.关于原点O对称D.关于直线y=x对称【变式3-2】(2023•青岛)如图,将线段AB先向左平移,使点B与原点O重合,再将所得线段绕原点旋转180°得到线段A′B′,则点A的对应点A′的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,﹣2)D.(﹣3,2)【变式3-3】(2023•聊城)如图,在直角坐标系中,△ABC各点坐标分别为A(﹣2,1),B(﹣1,3),C (﹣4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A2B2C2.若B2(2,1),则点A2坐标为()A.(1,5)B.(1,3)C.(5,3)D.(5,5)【变式3-4】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)【题型4:与平移、旋转与轴对称相关的网格作图】【典例4】(2023•达州)如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.【变式4-1】(2023•宜昌)如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为.【变式4-2】(2023•宁波)在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).【变式4-3】(2023•黑龙江)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)将△ABC向上平移4个单位,再向右平移1个单位,得到△A1B1C1,请画出△A1B1C1;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)将△A2B2C2绕着原点O顺时针旋转90°,得到△A3B3C3,求线段A2C2在旋转过程中扫过的面积(结果保留π).一.选择题(共8小题)1.在学习图案与设计这一节课时,老师要求同学们利用图形变化设计图案,下列设计的图案中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.在《生活中的平移现象》的数学讨论课上,小明和小红先将一块三角板描边得到△ABC,后沿着直尺BC 方向平移3cm,再描边得到到△DEF,连接AD.如图,经测量发现△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.22cm C.20cm D.24cm3.如图,△ABC与△A'B'C'关于直线l对称,连接AA',BB',CC',其中BB′分别交AC,A′C于点D,D',下列结论:①AA'∥BB';②∠ADB=∠A′D′B′;③直线l垂直平分AA';④直线AB与A'B'的交点不一定在直线l上.其中正确的是()A.①②③B.②③④C.①②④D.①③④4.如图,在长方形ABCD中,AB=5,BC=3,将长方形沿BE折叠,使得点A落在CD边上F处,则AE 的长是()A.B.C.D.25.如图,将△ABC绕点A逆时针旋转30°得到△AB′C′,若∠C′=45°,且AB′⊥BC于点E,则∠BAC的度数为()A.60°B.75°C.45°D.50°6.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为36,DE=2,则AF的长为()A.6B.C.8D.7.如图,Rt△ABC中,∠ACB=90°,BC=4,AC=3,将△ABC绕点B逆时针旋转得△A'BC',若点C'在AB上,则AA'的长为()A.B.4C.D.58.如图,在等腰△AOB中,OA=AB,∠OAB=120°,OA边在x轴上,将△AOB绕原点O逆时针旋转120°,得到△A'OB',若,则点A的对应点A'的坐标为()A.(﹣1,﹣1)B.(﹣1,)C.(﹣1,2)D.(﹣1,)二.填空题(共7小题)9.若点A(2,﹣3)关于坐标原点的对称点是B,则点B的坐标为.10.如图,已知四边形ABCD是长方形,点E、F分别在线段AB、CD上,将四边形AEFD沿EF翻折得到四边形A'EFD',若∠CFD'=36°,则∠DFE=.11.如图,将长为6,宽为4的长方形ABCD先向右平移2,再向下平移1,得到长方形A'B'CD',则阴影部分的面积为.12.线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.13.如图,有一块长方形区域,AD=2AB,现在其中修建两条长方形小路,每条小路的宽度均为1米,设AB边的长为x米,则图中空白区域的面积为.14.如图,在Rt△ABC中,∠BAC=30°,BC=3,将△ABC绕点A顺时针旋转90°得到△AB′C′,则BB′=.15.如图,在平面直角坐标系中,将点P(2,3)绕原点O旋转90°得到点P′,则点P′的坐标为.三.解答题(共3小题)16.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出A1的坐标;(2)求(1)中C点旋转到C1点所经过的路径长(结果保留π).17.如图所示,点O是等边△ABC内的任一点,连接OA,OB,OC,∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.(1)求∠DAO的度数;(2)用等式表示线段OA,OB,OC之间的数量关系,并证明.18.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C逆时针旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当∠BDE=25°时,求∠BEF的度数.一.选择题(共7小题)1.如图,将长方形ABCO放置于平面直角坐标系中,点O与原点重合,点A,C分别在y轴和x轴上,点B(8,4),连接BO,并将△ABO沿BO翻折至长方形ABCO所在平面,点A的对称点为点E,则点E 的坐标为()A.B.C.D.2.如图,将周长为8的△ABC沿BC方向向右平移2个单位长度得到△DEF,则四边形ABFD的周长为()A.10B.12C.14D.163.如图,正方形ABCD,边长AB=2,对角线AC、BD相交于点O,将直角三角板的直角顶点放在点O处,三角板两边足够长,与BC、CD交于E、F两点,当三角板绕点O旋转时,线段EF的最小值为()A.1B.2C.D.24.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.B.C.D.5.如图,菱形ABCD,点A,B,C,D均在坐标轴上,∠ADC=120°,点A的坐标为(﹣4,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.4B.C.D.6.如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D的对称点为点F,EF 为交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE∽△QFG;②S△CEG=S+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是()△CBEA.①②③B.①③④C.①②④D.②③④7.如图,在矩形ABCD中,AB=8,BC=10,点E、F分别是边AB、BC上一动点,将△BEF沿EF折叠,若点B恰好落在AD边上的点G处,设EF=x,则x的取值范围为()A.B.C.D.二.填空题(共6小题)8.如图,在Rt△ABC中,∠ABC=90°,∠C=65°,将△ABC绕点B逆时针旋转至△EBD,使点C落在边AC上的D处,则∠EBA=.9.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=5,则BE的长度为.10.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使CD∥AB,则∠BAE的度数为.11.如图,在等边△ABC中,AB=6,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是.12.如图,正方形ABCD中,AB=4,点P为射线AD上一个动点.连接BP,把△ABP沿BP折叠,当点A 的对应点A'刚好落在线段BC的垂直平分线上时,AP的长为.13.如图,已知四边形ABCD是边长为4的正方形,点E是BC边的中点,连接DE,将△DCE沿DE翻折得到△DC'E,连接AC′,则AC′的长为.三.解答题(共2小题)14.如图,在△ABC中,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,连接AE.求证:AB=AE.15.[教材呈现]下面是华师版九年级上册数学教材第76页的部分内容.如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1,证明△AFD∽△DCE,并计算点A到直线DE的距离(结果保留根号).结合图①,完成解答过程.[拓展](1)在图①的基础上,延长线段AF交边CD于点G,如图②,则FG的长为;(2)如图③,E、F是矩形ABCD的边AB、CD上的点,连结EF,将矩形ABCD沿EF翻折,使点D 的对称点D'与点B重合,点A的对称点为点A'.若AB=4,AD=3,则EF的长为.1.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)2.(2023•自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(2023•天津)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD4.(2023•通辽)如图,将△ABC绕点A逆时针旋转到△ADE,旋转角为α(0°<α<180°),点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=24°,则旋转角α的度数为()A.24°B.28°C.48°D.66°5.(2023•黄石)如图,已知点A(1,0),B(4,m),若将线段AB平移至CD,其中点C(﹣2,1),D(a,n),则m﹣n的值为()A.﹣3B.﹣1C.1D.36.(2023•绍兴)在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)7.(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是()A.96B.96C.192D.1608.(2022•张家界)如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).。

抛物线

抛物线

(二)抛物线在平面直角坐标系中的轴对称变换。抛物线在平面直角坐系中的轴对称变换主要有两种变换。即关于x轴对称的抛物线和关于y轴对称的抛物线变换。
其变换的一般规律是:抛物线y=ax2+bx+c关于x轴对称的抛物线解析式为y=-ax2-bx-c。变化的实质是:只改变抛物线的开口方向,对称轴保持不变。
一、抛物线在平面直角坐标系中的平移、旋转、轴对称、中心对称变换
(一)抛物线在平面直角坐标系中的平移。我们知道,抛物线y=ax2+bx+c的形状(包括开口方向与开口大小)是由其二次项系数决定的,具体来说,a的符号决定了其开口方向。a>0时,开口向上;a<0时,开口向下。|a|越大,抛物线开口越小;|a|越小,其开口越大。因此抛物线在平面直角坐标系中的平移,并不会改变抛物线的形状,即在平移过程中其开口方向与抛物线开口的大小保持不变。平移中改变的是抛物线在平面直角坐标系中的位置,即对称轴和顶点坐标的改变。其一般变化规律是:把抛物线y=ax2向左平移h个单位后其解析式为y=a(x+h)2,向右平移h个单位后其解析式为y=a(x-h)2,向上平移k个单位后其解析式是y=ax2+k,向下平移k个单位后其解析式是y=ax2-k。平移中解析式变化的实质是:左右平移时只要自变量x加减某个量即可,即抛物线上每个点的横坐标发生变化,纵坐标保持不变。上、下平移时抛物线上每个点的纵坐标发生改变,横坐标保持不变。
二、在知识探索中,认定归类整理的教学方法
由以上综述可知,抛物线在平面直角坐标系中的变换非常灵活。无论是抛物线在平面直角坐标系中的平移变换,轴对称变换,还是抛物线在平面直角坐标系中的旋转变换,中心对称变换,其形状和大小均保持不变。即归类整理就有头绪。只要我们在数学课堂教学中注意引导学生探索发现它们变化的一般规律,就能发现它们的奥妙所在,那么学生们在学习本单元内容时会充满兴趣。把本来比较枯燥难以理解掌握的抛物线在平面直角坐标系中的变换内容,变得生动有趣,使同学们对学好本单元内容充满自信,为我们提高数学课堂效率,大面积提为学生长远发展打好坚实基础。

初中阶段的五种图形变换(精)

初中阶段的五种图形变换(精)

初中阶段的五种图形变换初中阶段,我们学习了五种图形变换:平移变换、轴对称变换、中心对称变换、旋转变换、位似变换。

这些变换都不改变图形的形状,只是改变了其位置。

其中前四种变换还不改变图形的大小。

下面,让我们逐一回顾与归纳。

一、平移1.平移的定义:在平面内,将一个图形沿某一方向移动一定的距离,这样的图形变换称为平移。

(提示:决定平移的两个要素:平移方向和平移距离。

)2.平移的性质:(1)平移前后,对应线段平行(或共线)且相等;(2)平移前后,对应点所连线段平行(或共线)且相等;(3)平移前后的图形是全等形。

(提示:平移的性质也是平移作图的依据。

)3.用坐标表示平移:在平面直角坐标系中,将点(x,y)向右或向左平移a (a>0)个单位,可以得到对应点(x+a,y)或(x-a,y);向上或向下平移b (b>0)个单位,可以得到对应点(x,y+b)或(x,y-b)。

二、轴对称变换1.轴对称图形:(1)定义:把一个图形沿一条直线对折,如果直线两旁的部分能够完全重合,那么就称这个图形为轴对称图形,这条直线就是它的对称轴。

(提示:对称轴是一条直线,而不是射线或线段,对称轴不一定只有一条。

)(2)性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②轴对称图形对称轴两旁的图形是全等形。

2.轴对称:(1)定义:把一个图形沿一条直线翻折,如果它能与另一个图形重合,那么这两个图形关于这条直线(成轴)对称,这条直线就是它们的对称轴,两个图形中的对应点叫做对称点。

(2)性质:①关于某直线对称的两个图形是全等形;②如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某直线对称,如果它们的对应线段或延长线相交,则交点必在对称轴上。

(3)判定:①根据定义(提示:成轴对称的两个图形必全等,但全等的两个图形不一定对称);②如果两个图形对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

16.5 利用图形的平移、旋转和轴对称设计图案课件 2021—2022学年冀教版八年级数学上册

16.5 利用图形的平移、旋转和轴对称设计图案课件 2021—2022学年冀教版八年级数学上册

猫头鹰
小鸟飞翔
鱼翔浅底
小猪小猪胖乎乎
蝴蝶纷飞
三毛他哥二毛
开心雪人
母女俩
渔翁
小雨伞
旭日东升
放飞心情
随堂演练
1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图
案是 ( D )
A
B
C
D
2.如图所示的四个图案中,不能由基本图形旋转得到的是( D )
3.如图,若要使这个图案与自身重合,则它至少绕它的中心旋转 ( A) A.45° B.90° C.135° D.180°
第十六章 轴对称和中心对称
16.5 利用图形的平移、旋转和 轴对称设计图案
知识回顾
我们学过哪几种图形变换?它们的性质分别是什么? ①平移:平移只改变图形的位置,不改变图形的形状和大小;连接 对应点的线段平行(或在同一条直线上)且相等;对应线段平行且 相等,对应角相等.
②旋转:在平面内,一个图形旋转后得到的图形与原来图形之 间有:图形的大小与形状不变;对应点到旋转中心的距离相等; 每对对应点与旋转中心的连线所成的角都是相等的角,它们都 等于旋转角.
例2 请以给定的图形○○△△=(两个圆,两个三角形,两条平行线)为构件,尽
可能多地构思有意义的一些中心图形,并写上一两句贴切,诙谐的解说词.
如下图就是符合要求的图形,你能构思其它图形吗?比一比,看谁的想象力
丰富!
小丑踩球
漂亮的小领结
温馨提示: 进行图案设计时,
首先要整体构思,确 定“基本图形”,再 制定出“基本图形” 变换的具体操作程 序.
(1)
(2)
(3)
解: 如答图所示.
课堂小结
图案的设计
分析图案设计
分清基本图形 知道形成过程

初中数学知识归纳旋转平移与对称的性质

初中数学知识归纳旋转平移与对称的性质

初中数学知识归纳旋转平移与对称的性质初中数学知识归纳—旋转、平移与对称的性质学习数学是培养学生逻辑思维和解决问题的能力的重要途径之一。

在初中数学中,旋转、平移和对称是三个基本的几何变换,它们具有广泛的应用价值。

本文将对旋转、平移和对称的性质进行归纳总结,以帮助初中生更好地理解和运用这些知识。

一、旋转的性质旋转是指物体绕着某个轴心或点旋转一定角度后,其位置和形状发生改变。

旋转变换可以分为顺时针和逆时针两种方式。

下面我们来总结旋转的一些性质:1. 旋转不改变物体的大小和形状,只改变其位置和方向。

2. 旋转有叠加效应,即多次旋转等价于一次旋转,旋转次数的奇偶性决定了旋转后物体是否“回到原位”。

3. 绕一个中心点旋转180°,相当于进行一次对称变换。

4. 绕一个中心点旋转360°,相当于保持不变。

5. 旋转操作可以用角度、弧度制或单位圆来描述。

二、平移的性质平移是指物体在平面上沿着某个方向保持形状和大小不变地移动一定的距离。

平移变换的重要性在于可以帮助我们描述物体在坐标平面上的位置变化。

以下是平移的一些性质:1. 平移保持物体的大小、形状和方向不变,只改变其位置。

2. 不同的平移方式可以组合,得到新的平移操作。

3. 平移操作可以使用向量来表示,向量的模表示平移的距离,方向表示平移的方向。

4. 在平面上,任何平行线上的两个点经过平移后,仍然保持平行。

5. 平移的逆操作是将物体向相反的方向移动相同的距离。

三、对称的性质对称是指物体按照某条直线或某个点的位置关系呈现镜像对称。

对称变换在初中数学中被广泛应用于图形的构造和性质的证明。

以下是对称的一些性质:1. 镜面对称:物体按照一条直线呈现镜像对称,此直线称为对称轴。

对称轴把物体分成两个部分,其中一个部分关于对称轴对称复制得到另一个部分。

2. 点对称:物体按照一个点呈现镜像对称,此点称为对称中心。

对称中心把物体分成两个部分,其中一个部分关于对称中心对称复制得到另一个部分。

中考数学旋转平移轴对称中和复习

中考数学旋转平移轴对称中和复习

第五章图形与变换本章思维导图考点精要解析考点一:平移变换1.平移是指图形按照一定的方向从一个位置平移到另一个位置,平移后所得图形与原图形的形状、大小都没有发生变化.2.平移变换的性质(1)平移后,对应线段平行(或在同一直线上)且相等,对应角相等.(2)平移后,对应点所连的线段平行(或在同一直线上)且相等.考点二:旋转变换1.旋转是指图形绕着某一个点按一定的旋转方向旋转一定的角度,旋转后所得图形与原来的图形的形状、大小都没有发生变化.中心对称变换是旋转180°的特殊旋转变换.2.旋转变换的基本性质①旋转变换的对应点到旋转中心的距离相等.②旋转前后两图形的对应线段和对应角分别相等.③对应边所夹的角等于旋转角.考点三:轴对称变换1.轴对称是指将一个图形沿着某条直线翻折180°与另一个图形完全重合,则这两个图形关于这条直线成轴对称,这条直线是对称轴.2.轴对称、轴对称图形的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(3)对应边所在直线交于对称轴.注:成轴对称的两个图形一定全等,全等的图形不一定成轴对称.高频考点过关考点一:平移变换例题1.如下左图所示,将△ABC沿着XY方向平移一定的距离就得到△MNL,则下列结论中正确的有()个.①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNLA.1B.2C.3D.4答案:B例题2.如下右图所示,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE是由AB平移得到的,则AC+BD与AB的大小关系是 .答案:AC+BD AB提示:连接DE,可证四边形ACEB是平行四边形,△CED是等边三角形.在△EBD中,根据三边关系得证,当AC∥BD时,取“=”号.考点二:平移变换例题3.如右图所示,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC 内不同于O的另一点;△A1BO1,△A1BP1分别由△AOB,△APB旋转而得,旋转角都为60°,则下列结论:①△O1BO为等边三角形,且A1,O1,O,C在一条直线上.②A1O1+O1O=AO+BO.③A1P1+PP1=PA+PB.④PA+PB+PC>OA+OB+OC.其中正确的有(填序号).答案:①②③④提示:连接O1O,P1P,此题通过旋转60°得到△OBO1,△P1PB是等边三角形,然后利用等边三角形的性质转化线段.考点三:轴对称变换例题4.如右图所示,AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C/落在的位置上,连接BC/,则BC/的长为()A.1B.3C.2D.23答案:C例题5.如右图所示,在平面直角坐标系中,A,B两点的坐标分别为A(2,-3),B(4,-1).(1)若P(p,0)是x轴上的一个动点,则当p= 时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a= 时,四边形ABCD的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0),N(0,n),使四边形ABMN的周长最短?若存在,请求出m= ,n= (不必写解答过程);若不存在,请说明理由.答案:(1)72;[提示]作点B关于x轴的对称点B/,连接AB/交x轴于点P,则点P即为所求,易求直线AB/的解析式为y=2x-7,所以点P的坐标为(72,0).(2)54;[提示]将点A向右平移3个单位得到点A1,其坐标为(5,-3).作点A1关于x轴的对称点A2,其坐标为(5,3),连接A2B交x轴于点D,将点D 向左平移3个单位得到点C .易求直线A 2B 的解析式为y =4x -17,所以点D 的坐标为(174,0),则点C 的坐标为(54,0). (3)存在使四边形ABMN 周长最短的点M 、N ,m =52,n =53-. 中考真题链接真题1.(鄂州中考) 如下左图所示,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB =230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB 的值为( )A .6B .8C .10D .12真题2.(济宁中考) 如下右图所示,在平面直角坐标系中,点A ,B 的坐标分别为(1,4)和(3,0),点C 是y 轴上一个动点,且A ,B ,C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)真题3.(苏州中考) 如下左图所示,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为( ) A .132 B .312 C .3192+ D .27 真题4.(南京中考) 如下右图所示,在菱形ABCD 中,∠A =60°,将纸片折叠,点A ,D 分别落在点A ′、D ′处,且A ′D ′经过点B ,EF 为折叠,当D ′F ⊥CD 时,CF DF 的值为( ) A . B . C .D .真题5.(葫芦岛中考)两个形状和大小完全一样的梯形纸片如图(a )摆放,将梯形纸片ABCD沿上底AD 方向向右平移得到图(b ).已知AD =4,BC =8,若阴影部分的面积是四边形A ′B ′CD 的面积的13,则图(b )中平移距离A ′A =________.xyOABC真题6.(南京中考)如下左图所示,将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,旋转角为α (0︒<α<90︒).若∠1=110︒,则α= .真题7.(烟台中考) 如下右图所示,在△ABC中,AB=AC,BAC=54°,∠BAC的平分线与AB 的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.真题8.(安徽中考) 如下图所示,已知A(-3,-3),B(-2,-1),C(-1,-2)是平面直角坐标系上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1的内部,指出h的取值范围.真题9.(义乌中考)如图(a)所示,小明将一张矩形纸片沿对角线剪开,得到两种三角形纸片(如图(b)所示),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图(c)的形状,但点B,C,F,D在同一条直线上,且点C与点F重合(在图(c)至图(f)中统一用F表示)(a)(b)(c)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图(c)中的△ABF沿BD向右平移到图(d)的位置,使点B与点F重合,请你求出平移的距离;AB CDB’1C’D’(2)将图(c)中的△ABF绕点F顺时针方向旋转30°到图(e)的位置,A1F交DE 于点G,请你求出线段FG的长度;(3)将图(c)中的△ABF沿直线AF翻折到图(f)的位置,AB1交DE于点H,请证明:AH﹦DH.(d)(e)(f)真题10.(娄底中考)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按图按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.真题11. (潍坊中考)如图(a)所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE'F'D',旋转角为α.⑴当点D'恰好落在EF边上时,求旋转角α的值;⑵如图(b)所示,G为BC的中点,且0°<α<90°,求证:G D'= E'D;⑶小长方形CEFD绕点C顺时针旋转一周的过程中,△DC D'与△CB D'能否全等?若能,直接写出旋转角α的值;若不能,说明理由.真题12. (北京中考)如右图所示,已知△ABC,⑴请你在BC边上分别取两点D、E(BC的中点除外),连接AD,AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明AB+AC>AD+AE.真题13. (日照中考改编)如图(a )所示,点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小.我们可以作出点B 关于l 的对称点B ',连接AB '与直线l 交于点C ,则点C 即为所求.⑴实践运用如图(b )所示,已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,点B为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为_________.⑵知识拓展如图(c )所示,在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 与点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程. ⑶如图(d )所示,点P 是四边形ABCD 内一点,分别在边AB 、BC 上作出点M 、N ,使PM+PN+MN 的值最小,保留作图痕迹,不写作法.创训练新思维创新 1. 将两块含30°角且大小相同的直角三角形如图(a )所示.⑴将图(a )中的△A 1B 1C 绕点C 顺时针旋转45°得到图(b ),点P 1是A 1 C 与AB的交点.求证:112CP AP . ⑵将图(b )中的△A 1B 1C 绕点C 顺时针旋转15°得到△A 2B 2C ,如图(c ),点P 2是A 2C 与AB 的交点,直接写出直线A 1B 1与直线A 2B 2所夹的角的度数.⑶在⑵的条件下,写出线段CP 1与P 1P 2之间的数量关系,并证明你的结论.创新2. 在Rt△ABC中,∠ACB=90°,点P在△ABC的内部.⑴如图(a)所示,若∠BAC=30°,AP=4,点D、E分别在AB、AC边上,则△PDE 周长的最小值为______________;此时∠DPE=______________.⑵如图(b)所示,若∠BAC=45°,AP=4,点D、E分别在AB、AC边上,则△PDE 周长的最小值为______________;此时∠DPE=______________.⑶如图(c)所示,若∠BAC=α,AP=4,点D、E分别在AB、AC边上,求△PDE 周长的最小值及此时∠DPE的度数.⑷如图(d)所示,若PA=a,PB=b,PC=c,∠BAC=α,且c=bcosα=asinα,直接写出∠APB的度数.。

专题16 图形变换之平移与对称(解析版)

专题16 图形变换之平移与对称(解析版)

专题16图形变换之平移与对称考纲要求:1.理解轴对称、轴对称图形、中心对称、中心对称图形、平移的概念. 2.运用图形的轴对称、平移进行图案设计.3.利用平移、对称的图形变换性质解决有关问题.基础知识回顾:知识点一:图形变换1.图形的轴对称(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴. (2)性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.2.图形的平移(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(2)性质:①平移后,对应线段相等且平行,对应点所连的线段相等且平行;②平移后,对应角相等且对应角的两边分别平行、方向相同;③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两个图形全等.3.图形的中心对称(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.(2)①关于中心对称的两个图形全等;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.知识点二:网格作图坐标与图形的位置及运动图形的平移变换在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.图形关于坐标轴成对称变换在平面直角坐标系内,如果两个图形关于x轴对称,那么这两个图形上的对应点的横坐标相等,纵坐标互为相反数;在平面直角坐标系内,如果两个图形关于y轴对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标相等.图形关于原点成中心对称在平面直角坐标系内,如果两个图形关于原点成中心对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标互为相反数.应用举例:招数一、变换图形的形状问题【例1】下列倡导节约的图案中,是轴对称图形的是A. B. C. D.【答案】C【解析】将一个图形沿一条直线折叠,直线两旁的部分能够完全重合;这样的图形叫轴对称图形.故选C.招数二、平面坐标系中的图形变换问题【例2】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1.A2的坐标.【答案】(1)△A1B1C1即为所求;(2)△A2B2C2即为所求;(3)A1(2,3),A2(-2,-1).【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.招数三、函数中的图形变换问题【例3】已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.<﹣3.【答案】(1)﹣m﹣3;(2)y=﹣x﹣2(x>1);(3)﹣4<yP【解析】(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3.(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3,∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3,顶点坐标为(m+1,﹣m﹣3),∴抛物线G1∴x=m+1,y=﹣m﹣3,∴x+y=m+1﹣m﹣3=﹣2.即x+y=﹣2,变形得y=﹣x﹣2,∵m>0,m=x﹣1,∴x﹣1>0,∴x>1,∴y与x的函数关系式为y=﹣x﹣2(x>1).(3)如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4,∴函数H的图象恒过点B(2,﹣4),∵抛物线G:y=m(x﹣1)2﹣m﹣3,x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3,∴抛物线G恒过点A(2,﹣3),由图象可知,若抛物线与函数H的图象有交点P,则yB <yP<yA,∴点P纵坐标的取值范围为﹣4<yP<﹣3,招数四、三角形、四边形中图形变换问题【例4】将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1 C.D.【答案】A【解析】连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==[∴HF=GF=∴MF=PH==a∴=a÷=故选:A.【例5】如图,在中,,,,点M为边AC的中点,点N为边BC 上任意一点,若点C关于直线MN的对称点恰好落在的中位线上,则CN的长为______.【答案】或【解析】取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点落在MH上时,设,由题意可知:,,,,在中,,,解得;如图2中,当点落在GH上时,设,在中,,,,∽,∴,,;综上所述,满足条件的线段CN的长为或.故答案为为或.招数五、图案设计方案问题【例6】在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【答案】见解析.【解析】如图所示方法、规律归纳:1.识别某图形是轴对称图形还是中心对称图形的关键在于对定义的准确把握,抓住轴对称图形、中心对称图形的特征,看能否找出其对称轴或对称中心,再作出判断.2.在平面直角坐标系中,将点P(x,y)向右(或左)平移a个单位长度后,其对应点的坐标变为(x+a,y)〔或(x-a,y)〕;将点P(x,y)向上(或下)平移b个单位长度后,其对应点的坐标变为(x,y+b)〔或(x,y-b)〕.3.要画出一个图形的平移、对称后的图形,关键是先确定一些关键点,根据相应顶点的平移方向、平移距离、对称不变的性质作出关键点的对应点,这种以“局部代整体”的作图方法是平移、对称中最常用的方法.4.利用平移、对称的性质解题时,要抓住平移规律及对称中不变的特点来解决问题.实战演练:1.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【答案】C【解答】如图所示,n的最小值为3,2. 如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,则图中阴影部分的面积是()A.2 B.3 C.4 D.无法计算【答案】A【解析】如下图所示,∵抛物线y1=-x2+2向右平移1个单位得到抛物线y2,∴两个顶点的连线平行x轴,∴图中阴影部分和图中红色部分是等底等高的,∴图中阴影部分等于红色部分的面积,而红色部分的是一个矩形,长、宽分别为2,1,∴图中阴影部分的面积S=2.故选A.3. 将抛物线y=x2-6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x-4)2-6 B.y=(x-1)2-3 C.y=(x-2)2-2 D.y=(x-4)2-2 【答案】D【解析】y=x2-6x+5= (x-3) 2-4,把向上平移两个单位长度,再向右平移一个单位长度后,得y= (x-3-1) 2-4+2,即y=(x-4)2-2.4.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.【答案】B【解答】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.5. 如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是 .【答案】.【解析】试题解析:如图1,当点P为BC的中点时,MN最短.此时E、F分别为AB、AC的中点,∴PE=AC,PF=AB,EF=BC,∴MN=ME+EF+FN=PE+EF+PF=6;如图2,当点P和点B(或点C)重合时,此时BN(或CM)最长.此时G(H)为AB(AC)的中点,∴CG=2(BH=2),CM=4(BN=4).故线段MN长的取值范围是6≤MN≤4.6. 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.【解析】DE⊥FG.理由:由题知:Rt△ABC≌Rt△BDE≌Rt△FEG∴∠A=∠BDE=∠GFE∵∠BDE+∠BED=90°∴∠GFE+∠BED=90°,即DE⊥FG.7.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B 的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n >0,求m ,n 的值.【答案】(1)26x -;(2)72,1.【解析】(1)令0y =,则212602x x -++=,解得,12x =-,26x =,(2,0)A ∴-,(6,0)B , 由函数图象得,当0y 时,26x -;(2)由题意得,1(6,)B n m -,2(,)B n m -, 函数图象的对称轴为直线2622x -+==, 点1B ,2B 在二次函数图象上且纵坐标相同, ∴6()22n n -+-=,1n ∴=, ∴217(1)2(1)622m =-⨯-+⨯-+=, m ∴,n 的值分别为72,1. 8.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0).得到正方形A′B′C′D′及其内部的点,其中点A 、B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.由B 到B ′,可得方程组:⎩⎨⎧=+⨯=+2023n a m a ,解得:a =12,m =12,n =2. 设F 点的坐标为(x ,y ),点F ′点F 重合得到方程组:⎪⎪⎩⎪⎪⎨⎧=+=+y y x x 2212121 ,解得:⎩⎨⎧==41y x ,即F(1,4).9. 如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上.点B 的坐标为(8,4),将该长方形沿OB 翻折,点A 的对应点为点D ,OD 与BC 交于点E . (I )证明:EO=EB ;(Ⅱ)点P 是直线OB 上的任意一点,且△OPC 是等腰三角形,求满足条件的点P 的坐标; (Ⅲ)点M 是OB 上任意一点,点N 是OA 上任意一点,若存在这样的点M 、N ,使得AM+MN 最小,请直接写出这个最小值.【答案】(I )证明见解析;(Ⅱ)P 的坐标为(4,2)或(,)或P (﹣,﹣)或(,);(Ⅲ).【解析】(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=x,∵点P是直线OB上的任意一点,∴设P(a,a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(a)2=a2,PC2=a2+(4-a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则a2=a2+(4-a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则a2=16,解得a=±,即P(,)或P(-,-);③如果PC=OC时,那么PC2=OC2,则a2+(4-a)2=16,解得a=0(舍),或a=,即P(,);故满足条件的点P的坐标为(4,2)或(,)或P(-,-)或(,);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=DE×BD=BE×DG,∴DG=,由题意有,GN=OC=4,∴DN=DG+GN=+4=.即:AM+MN的最小值为.10. 如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t >0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.【解析】(1)设直线l1的表达式为y=kx+b,∵直线l1过点F(0,10),E(20,0),∴,解得:,直线l1的表达式为y=﹣x+10,解方程组得,∴点P坐标为(8,6);(2)①如图,当点D在直线上l2时,∵AD=9∴点D与点A的横坐标之差为9,∴将直线l1与直线l2的解析式变形为x=20﹣2y,x=y,∴y﹣(20﹣2y)=9,解得:y=,∴x=20﹣2y=,则点A的坐标为:(,),则AF=,∵点A速度为每秒个单位,∴t=;如图,当点B在l2直线上时,∵AB=6,∴点A的纵坐标比点B的纵坐标高6个单位,∴直线l1的解析式减去直线l2的解析式得,﹣x+10﹣x=6,解得x=,y=﹣x+10=,则点A坐标为(,)则AF=,∵点A速度为每秒个单位,∴t=,故t值为或;②如图,设直线AB交l2于点H,设点A横坐标为a,则点D横坐标为a+9,由①中方法可知:MN=,此时点P到MN距离为:a+9﹣8=a+1,∵△PMN的面积等于18,∴=18,解得a1=-1,a2=﹣-1(舍去),∴AF=6﹣,则此时t为,当t=时,△PMN的面积等于18.。

《轴对称图形》平移、旋转和轴对称

《轴对称图形》平移、旋转和轴对称
对称点的特点
对于任何一对对称点,它们到对称轴的距离相等,且连线垂直于对 称轴。
旋转与轴对称的关系
一个图形以某点为旋转中心旋转一定角度后与另一个图形重合,那 么这两个图形关于这条旋转中心成轴对称。
轴对称应用
艺术领域
许多艺术作品都利用了轴对称原 理,如建筑、雕塑、绘画等,给
人以美的感受。
自然界中
自然界中许多物体也具有轴对称 性,如叶子、花朵、动物身体等 ,这反映了自然界中一种平衡和
平移的性质
平移不改变图形的形状、 大小和方向,只改变图形 的位置。
平移性质
对应线段相等
平移后得到的图形与原图形对应线段相等。
对应角相等
平移后得到的图形与原图形对应角相等。
对应点所连的线段平行(或在同一直线上)且相等
平移后得到的图形与原图形对应点所连的线段平行(或在同一直线上)且相等。
平移应用
平行四边形的判定
旋转定义
旋转
在平面内,将一个图形绕 一个定点沿某个方向转动 一个角度,这样的图形运 动称为旋转。
旋转角
图形旋转时转动的角度。
旋转中心
图形旋转时,定点所在的 位置称为旋转中心。
旋转性质
旋转方向:可以是顺时针或逆 时针方向。
旋转角度:可以是任意角度, 但必须是0°的整数倍。
旋转前后图形全等,对应点到 旋转中心的距离相等,对应线 段长度、对应角大小相等。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。

二次函数平移、旋转、轴对称变换汇总

二次函数平移、旋转、轴对称变换汇总

二次函数专题训练(平移、旋转、轴对称变换)一、二次函数图象的平移、旋转(只研究中心对称)、轴对称变换 1、抛物线的平移变换:一般都是在顶点式的情况下进行的。

y=a(x-h)²+k y=a(x-h)²+k ±my=a(x-h)² y=a(x-h ±m)²+k 练习:(1)函数图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数__________________的图象。

(2)抛物线225y x x =-+向左平移3个单位,再向下平移6个单位,所得抛物线的解析式是 。

2、抛物线的旋转变换(只研究中心对称):一般都是在顶点式的情况下进行的。

(1)将抛物线绕其顶点旋转180︒(即两条抛物线关于其顶点成中心对称) ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+。

(2)将抛物线绕原点旋转180︒(即两条抛物线关于原点成中心对称)()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-。

练习:(1)抛物线2246y x x =-+绕其顶点旋转180︒后,所得抛物线的解析式是 (2)将抛物线y =x 2+1绕原点O 旋转180°,则旋转后抛物线的解析式为( ) A .y =-x 2 B .y =-x 2+1 C .y =x 2-1 D .y =-x 2-1 3、抛物线的轴对称变换: 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;练习:已知抛物线C 1:2(2)3y x =-+(1)抛物线C 2与抛物线C 1关于y 轴对称,则抛物线C 2的解析式为 (2)抛物线C 3与抛物线C 1关于x 轴对称,则抛物线C 3的解析式为 总结:根据平移、旋转、轴对称的性质,显然无论作何种变换,抛物线的形状一定不会发生变化,因此a 永远不变。

对称、平移和旋转变换

对称、平移和旋转变换

对称、平移和旋转变换在平面几何的解证题中,往往由条件的隐蔽和分散,以至找不到解证题的途径,而恰当地运用几何变换,就可以使“分散”变为“集中”,“隐蔽”变为“明显”,使解证题思路清晰起来。

这一讲我们着重学习三种主要的合同变换——对称变换、平移变换、旋转变换及其在解证几何题中的运用。

一、对称变换对称变换包括轴对称变换和中心对称变换。

将一个图形以一条定直线为轴作对称图形,这种变换是轴对称变换。

将一个图形以一个定点为中心作对称图形,这种变换是中心对称变换(也是旋转变换的特殊情况)。

对称变换的特点是不改变图形的形状和大小,只是改变了图形的位置。

一条直线或一个点就确定了一个对称变换。

例1:试证:等腰三角形的底角相等。

已知:如图(1),在△ABC 中,AB=AC ,求:∠B=∠C分析:(1)由于等腰三角形是一个轴对称图形,则可添加对称轴证之,如作AD ⊥BC 于D ,再证△ABD ≌△ACD 即可。

(2)更妙的是,把△ABC 看作是以AD 为轴的两个重叠在一起的三角形由△ABC ≌△ACB 换出∠B=∠C 。

例2:如图(2),四边形ABCD 中,AB ∥CD ,且有AB=AC=AD=213cm ,BC=5cm ,求BD 的长。

分析:由于△ACD 是等腰三角形,以底边CD 中垂线NM 为轴补全图形,做出△ABC 关于MN 的对称△AED ,则AB=AD=AE=213,所以∠BDE=Rt ∠,而DE=BC=5,所以BD=12。

例3:如图(3),在梯形ABCD 中,AD ∥BC ,点E 是CD 的中点,EF ⊥A B 于F ,则S ABCD 梯形=AB •EF 。

分析:由于DE=EC ,因此,以E 为定点作A 的对称点G ,则△ADE 与△GCE 关于点E 对称,且B ,C ,G 三点共线,所以S BEG ∆=S ABE ∆=21AB •EF ,故S ABCD 梯形= AB •EF 。

二、平移变换平移变换是将一个图形向某一个方向移动一个距离得到一个新的图形,其平移前后的线段保持相等且平行,角也保持相等。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

旋转与平移轴对称的异同点

旋转与平移轴对称的异同点

旋转与平移轴对称的异同点
旋转和平移都是刚体的变换方式,而且它们都可以维持物体的形状和大小不变,只是改变了物体所处的位置或方向。

但是它们的变换方式有所不同。

相同点:
1. 维持物体形状不变:旋转和平移都是刚体变换,对物体的形状没有影响,不会改变物体的大小、形状和空间结构。

2. 不改变物体在空间中的朝向:旋转和平移都可以保持物体的朝向不变,只是改变物体所处的位置或方向。

3. 不改变物体的中心点:旋转和平移都是以物体中心点为基准进行变换,不会改变物体的中心点。

差异点:
1. 变换方式不同:旋转是通过以物体中心为基准旋转物体一定角度,平移是通过以物体中心为基准将物体整体移动到新的位置。

2. 变换效果不同:旋转会使物体在空间中绕着中心点旋转一定角度,改变物体的方向;平移会使物体整体移动到新的位置,但不改变物体的方向。

3. 相应参数不同:旋转可以用角度来描述旋转的大小和方向,平移可以用位移向量来描述平移的大小和方向。

总结:
旋转和平移都是刚体变换的方式,它们都可以维持物体的形状和大小不变,只是改变了物体所处的位置或方向。

旋转是以物体中心为基准旋转物体一定角度,改变物体的方向;平移是以物体中心为基准将物体整体移动到新的位置,但不改变物体的方向。

平移、旋转、轴对称

平移、旋转、轴对称

---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。

旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。

轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。

这条直线叫对称轴。

互相重合的点叫对称点。

(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。

回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。

如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。

全等变换有几种方式。

我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。

除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。

对称问题的四种情形与解法

对称问题的四种情形与解法

对称问题的四种情形与解法对称问题是数学中一个非常有趣且常见的问题。

它涉及到物体、图形或方程等在某种变换下保持不变的性质。

在这篇文章中,我将介绍四种常见的对称问题情形以及它们的解法。

第一种情形是轴对称。

轴对称是指物体或图形可以通过某条直线进行折叠,使得折叠后的两部分完全重合。

这条直线被称为轴线。

轴对称的图形具有左右对称的特点,例如正方形、圆形和心形等。

解决轴对称问题的方法是找到轴线,并将图形沿轴线进行折叠,观察折叠后的重合部分。

第二种情形是中心对称。

中心对称是指物体或图形可以通过某个点进行旋转180度,使得旋转后的图形与原图形完全重合。

这个点被称为中心点。

中心对称的图形具有前后对称的特点,例如正五角星和蝴蝶形状等。

解决中心对称问题的方法是找到中心点,并将图形绕中心点进行旋转,观察旋转后的重合部分。

第三种情形是平移对称。

平移对称是指物体或图形可以通过沿着某个方向进行平移,使得平移后的图形与原图形完全重合。

平移对称的图形具有位置对称的特点,例如正方形和长方形等。

解决平移对称问题的方法是找到平移的方向和距离,并将图形沿着这个方向进行平移,观察平移后的重合部分。

第四种情形是旋转对称。

旋转对称是指物体或图形可以通过某个角度进行旋转,使得旋转后的图形与原图形完全重合。

旋转对称的图形具有角度对称的特点,例如正三角形和正六边形等。

解决旋转对称问题的方法是找到旋转的角度,并将图形绕着某个点进行旋转,观察旋转后的重合部分。

除了这四种情形外,还有一些特殊的对称问题,例如镜像对称和射影对称等。

镜像对称是指物体或图形可以通过镜面反射,使得反射后的图形与原图形完全重合。

射影对称是指物体或图形可以通过某种投影方式,使得投影后的图形与原图形完全重合。

解决这些特殊对称问题的方法需要根据具体情况进行分析和推理。

总结起来,对称问题是数学中一个有趣且具有挑战性的问题。

通过对轴对称、中心对称、平移对称和旋转对称等四种情形的认识和解法,我们可以更好地理解对称性在数学中的应用。

平移_旋转_轴对称_知识点总结

平移_旋转_轴对称_知识点总结

旋转、平移、轴对称、中心对称知识点总结对应点间的连线平行且相等(或在同一条直线上)对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。

图形上每一点都绕同一点按相同的方向和角度旋转对应点到旋转中心的距离相等对应边相等,对应角相等,图形的性状大小不改变旋转180°能否与自身重合对应点间的连线是否经过同一点,并被这一点平分找对称轴:找一组对应点连线,做其垂直平分线。

找两组对应点连线,过两条中点的直线找对称中心:找一组对应点连线找其中点两组对应点连线的交点找关键点过每个关键点做对称轴的垂线截取与之相等的距离,标出对应找关键点过每个关键点做平移方向的平行线截取与之相等的距离,标出对应点找关键点连接关键点与旋转中心,将这条线段按方向和角度旋转,标出对应点找关键点连接关键点与对称中心,延长并截取相等的长度,标出对应点点连接对应点。

连接对应点。

连接对应点。

连接对应点。

线段是轴对称图形,对称轴是它的垂直平分线。

角是轴对称图形,对称轴是它的角平分线。

垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。

④角平分线的性质:角平分线上任意一点到叫两边的距离相等。

⑤对称轴垂直平分对称点间的连线。

多次平移相当于一次平移两条对称轴平行时,两次轴对称相当于一次平移线段旋转90°后与原来的位置垂直两条对称轴相交时,两次轴对称相当于一次旋转。

中心对称一定是旋转对称,旋转对称不一定是中心对称。

任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。

两条对称轴互相垂直时,两次轴对称相当于一次中心对称一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等两个全等的图形总能经过轴对称、平移或旋转等变换后重合。

《图形的平移与旋转》全章重点题型-提高

《图形的平移与旋转》全章重点题型-提高

《图形的平移与旋转》全章复习与巩固(提高)知识讲解【学习目标】1.了解平移、旋转、中心对称,探索它们的基本性质;2.能够按要求作出简单平面图形经过平移、旋转后的图形,能作出简单平面图形经过一次或两次图形变换后的图形;3.利用平移、旋转、中心对称、轴对称及其组合进行图案设计;4.认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【要点梳理】要点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.要点诠释:(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的形状和大小.2.平移的基本性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.要点诠释:(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行(或在一条直线上)且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.3. 平移与坐标变换:(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的变化引起的点相应的平移变换.(2)图形的平移平移是图形的整体运动.在平面直角坐标系内,一个图形进行了平移变化,则它上面的所有点的坐标都发生了同样的变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.要点诠释:(1)上述结论反之亦成立,即如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(2)一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.●要点二、旋转变换1.旋转概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.要点诠释:(1)旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定能通过旋转得到. (2)旋转的角度一般小于360°.(3)旋转的三个要素:旋转中心、旋转角度和旋转方向(即顺时针或逆时针方向)2.旋转变换的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.旋转作图步骤:①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.●要点三、中心对称与图案设计1.中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心,这两个图形称为成中心对称的.要点诠释:中心对称的性质:成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.2. 中心对称图形:把一个图形绕着某点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做它的对称中心.要点诠释:中心对称作图步骤:①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.3.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.4.平移、轴对称、旋转三种变换的关系:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的.【典型例题】➢类型一、平移变换1. 阅读理解题.(1)两条直线a,b相交于一点O,如图①,有两对不同的对顶角;(2)三条直线a,b,c相交于点O,如图②,则把直线平移成如图③所示的图形,可数出6对不同的对顶角;(3)四条直线a,b,c,d相交于一点O,如图④,用(2)的方法把直线c平移,可数出对不同的对顶角;(4)n条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角;(5)2013条直线相交于一点O,用同样的方法把直线平移后,有对不同的对顶角.【思路点拨】(3)画出图形,根据图形得出即可;(4)根据以上能得出规律,有n(n-1)对不同的对顶角;(5)把n=2013代入求出即可.【答案与解析】解:(3)如图有12对不同的对顶角,故答案为:12.(4)有n(n-1)对不同的对顶角,故答案为:n(n-1);(5)把n=2013代入得:2013×(2013-1)=4050156,故答案为:4050156.【总结升华】本题考查了平移与对顶角的应用,关键是能根据题意得出规律.举一反三:【变式】(2017·莒县模拟)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为().A.6 B.8 C.10 D.12【答案】C2.(2015春•召陵区期中)如图①,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用阴影表示;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1= ,S2= ,S3= ;(3)如图④,在一块长方形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是2个单位),请你求出空白部分表示的草地面积是多少?(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的度都是1个单位),请你求出空白部分表示的草地的面积是多少?【思路点拨】(1)根据题意,直接画图即可,注意答案不唯一,只要画一条有两个折点的折线,得到一个封闭图形即可.(2)结合图形,根据平移的性质可知,①②③中阴影部分的面积都可看作是以a﹣1为长,b为宽的长方形的面积.(3)结合图形,通过平移,阴影部分可平移为以a﹣2米为长,b米为宽的长方形,根据长方形的面积可得小路部分所占的面积.(4)结合图形可知,小路部分所占的面积=a米为长,b米为宽的长方形的面积﹣a米为长,1米为宽的长方形的面积﹣2米为长,b米为宽的长方形的面积+2米为长,1米为宽的长方形的面积.【答案与解析】解:(1)画图如下:(2)S1=ab﹣b,S=ab﹣b,S2=ab﹣b,S3=ab﹣b猜想:依据前面的有关计算,可以猜想草地的面积仍然是ab﹣b方案:1、将“小路”沿着左右两个边界“剪去”;2、将左侧的草地向右平移一个单位;3、得到一个新的矩形理由:在新得到的矩形中,其纵向宽仍然是b.其水平方向的长变成了a﹣1,所以草地的面积就是:b(a﹣1)=ab﹣b.(3)∵小路任何地方的水平宽度都是2个单位,∴空白部分表示的草地面积是(a﹣2)b;(4)∵小路任何地方的宽度都是1个单位,∴空白部分表示的草地面积是ab﹣a﹣2b+2.【总结升华】本题主要考查了利用平移设计图案,用到的知识点是矩形的性质和平移的性质,能利用平移的性质把不规则的图形拆分或拼凑为简单图形来计算草地的面积是解题的关键.举一反三:【变式】如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移距离是边BC长的两倍,则图中四边形ACED的面积为().A.24cm2 B.36cm2 C.48cm2 D.无法确定【答案】B.四边形ABED是平行四边形且S四边形ABED=S四边形ACFD,而S四边形ACED=S四边形ABED-S△ABC.➢类型二、旋转变换3.正方形ABCD中对角线AC、BD相交于点O,E是AC上一点,F是OB上一点,且OE=OF,回答下列问题:(1)在图中1,可以通过平移、旋转、翻折中的哪一种方法,使△OAF变到△OBE的位置.请说出其变化过程.(2)指出图(1)中AF和BE之间的关系,并证明你的结论.(3)若点E、F分别运动到OB、OC的延长线上,且OE=OF(如图2),则(2)中的结论仍然成立吗?若成立,请证明你的结论;若不成立,请说明你的理由.【思路点拨】(1)根据图形特点即可得到答案;(2)延长AF交BE于M,根据正方形性质求出AB=BC,∠AOB=∠BOC,证△AOF≌△BOE,推出AF=BE,∠FAO=∠EBO,根据三角形内角和定理证出即可;(3)延长EB交AF于N,根据正方形性质推出∠ABD=∠ACB=45°,AB=BC,得到∠ABF=∠BCE,同法可证△ABF ≌△BCE,推出AF=BE,∠F=∠E,∠FAB=∠EBC,得到∠E+∠FAB+∠BAO=90°即可.【答案与解析】解:(1)旋转,以点O为旋转中心,逆时针旋转90度.(2)图(1)中AF和BE之间的关系:AF=BE;AF⊥BE.证明:延长AF交BE于M,∵正方形ABCD,∴AC⊥BD,OA=OB,∴∠AOB=∠BOC=90°,在△AOF和△BOE中∴△AOF≌△BOE(SAS),∴AF=BE,∠FAO=∠EBO,∵∠EBO+∠OEB=90°,∴∠FAO+∠OEB=90°,∴∠AME=90°,∴AF⊥BE,即AF=BE,AF⊥BE.(3)成立;证明:延长EB交AF于N,∵正方形ABCD,∴∠ABD=∠ACB=45°,AB=BC,∵∠ABF+∠ABD=180°,∠BCE+∠ACB=180°,∴∠ABF=∠BCE,∵AB=BC,BF=CE,∴△ABF≌△BCE,∴AF=BE,∠F=∠E,∠FAB=∠EBC,∵∠F+∠FAB=∠ABD=45°,∴∠E+∠FAB=45°,∴∠E+∠FAB+∠BAO=45°+45°=90°,∴∠ANE=180°-90°=90°,∴AF ⊥BE ,即AF=BE ,AF ⊥BE .【总结升华】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,旋转的性质等知识点的连接和掌握,综合运用这些性质进行推理是解此题的关键.4.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接 EF.将△EOF 绕点O 逆时针旋转角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明;(2)当=30°时,求证:△AOE 1为直角三角形.【思路点拨】(1)要证AE 1=BF 1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE 1为直角三角形,就要考虑证∠E 1AO =90°.【答案与解析】解:(1)AE 1=BF 1,证明如下:∵O 为正方形ABCD 的中心,∴OA=OB =OD.∴OE=OF .∵△E 1OF 1是△EOF 绕点O 逆时针旋转角得到,∴OE 1=OF 1.∵ ∠AOB=∠EOF=900, ∴ ∠E 1OA =900-∠F 1OA =∠F 1OB. 在△E 1OA 和△F 1OB 中,, ∴△E 1OA≌△F 1OB (SAS ).∴ AE 1=BF 1.(2)取OE 1中点G ,连接AG.∵∠AOD=900,=30° ,∴ ∠E 1OA =900-=60°. ααα1111OE OF E OA FOB O A OB⎧⎪∠∠⎨⎪⎩===αα∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】在等边三角形ABC中有一点P,已知PC=2, PA=4,PB=APB=.【答案】90°➢类型三、中心对称与图形设计5.如图,方格纸中四边形ABCD的四个顶点均在格点上,将四边形ABCD向右平移5格得到四边形A1B1C1D1.再将四边形A1B1C1D1,绕点A逆时针旋转180°,得到四边形A1B2C2D2.(1)在方格纸中画出四边形A1B1C1D1和四边形A1B2C2D2.(2)四边形ABCD与四边形A1B2C2D2.是否成中心对称?若成中心对称,请画出对称中心;若不成中心对称,请说明理由.【思路点拨】(1)首先把各个顶点平移,以及作出对称点,然后顺次连接各个对称点即可作出对称图形;(2)观察所作图形,对称点连线的交点就是对称中心.【答案与解析】解:(1)(2)两个图形关于点O对称中心.【总结升华】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.举一反三:【变式】(罗平县校级期末)每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,①写出A、B、C的坐标.②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.【答案】解:①A(1,﹣4),B(5,﹣4),C(4,﹣1);②A1(﹣1,4),B1(﹣5,4),C1(﹣4,1),如图所示:6.如图,这两幅图是怎样利用旋转、平移或轴对称进行设计的?你能依照其中的图案自己设计一个图案吗?【答案与解析】解:(1)答案不惟一,可以看作是一个小正方形图案连续平移48次,平移前后所有的图形共同组成的图案.(2)答案不唯一,可以看作是一组竖条线组成的等腰直角三角形,以直角顶点为中心、按同一个方向分别旋转,旋转前后的四个图形共同组成的图案.【总结升华】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,对于不同的基本图形需要作的几何变换也不同.举一反三:90180270、、(1)(2)【变式】下列图形中,能通过某个基本图形平移得到的是().A. B. C. D. 【答案】D.。

平移、旋转与轴对称

平移、旋转与轴对称

【微点警示】 (1)彼此的不同之处:平移的两个要素是移动方向和移 动距离;旋转有一个旋转中心;轴对称有一个或多个对 称轴.
(2)彼此的包容关系:中心对称是特殊的旋转变换,生活 中的镜面对称是特殊的轴对称变换. (3)彼此的图形个数:中心对称和轴对称都是指两个图 形之间的关系,中心对称图形和轴对称图形都是指具有 特殊形状的一个图形.
3.对称引起的坐标变化依据关于x轴、y轴、原点对称 的坐标变化规律. 4.与旋转有关的坐标变化通常构造直角三角形,利用勾 股定理求相关线段的长度.
【题组过关】
1.(2019·天津滨海新区模拟)已知点A的坐标为(2,0),
点B的坐标为(0,1),若将线段AB平移至A1B1,使点A的对
应点A1的坐标为(3,1),则点B1的坐标为 ( A )
(1)求证:EF=BC. (2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.
【思路点拨】(1)由旋转的性质可得AC=AF,利用SAS证 明△ABC≌△AEF,根据全等三角形的对应边相等即可得 出EF=BC.
(2)根据等腰三角形的性质以及三角形内角和定理求出 ∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC ≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质 即可求出∠FGC=∠FAG+∠F=78°.
(1)求证:△EDC ≌△EFA. (2)若AB=3,BC=5,求图中阴影部分的面积.
【解析】(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=
90°,∵将矩形ABCD沿对角线AC翻折,点B落在点F处,
∴∠F=∠B,AB=AF,∴AF=CD,∠F=∠D,
F D,
在△AEF与△CDE中, AEF CED,

轴对称及中心对称变换平移及旋转变换

轴对称及中心对称变换平移及旋转变换

轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。

一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。

两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。

轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。

例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。

分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。

证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。

连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。

∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。

∴BC+AD>AB+CD。

注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。

其证明思路也完全相同,读者试自证。

二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。

轴对称平移与旋转中心对称

轴对称平移与旋转中心对称

应用与实例
应用
旋转中心对称在现实生活中有着广泛的应用,如建筑设计、艺术造型、机械制造等领域。
实例
例如,摩天大楼、旋转木马、汽车轮子等都利用了旋转中心对称的原理。
03
对比与联系
异同点对比
轴对称平移与旋转中心对称的概念
01
轴对称平移和旋转中心对称是两种常见的几何变换,它们分别
涉及到图形的平移和旋转,但变换的中心点不同。
腊神庙和中国的故宫等著名建筑就运用了轴对称平移的设计理念。
02 03
建筑功能性
在建筑设计中,轴对称平移不仅具有美学价值,还可以提高建筑的功能 性。例如,通过将建筑结构按照轴对称平移,可以更加高效地利用空间 ,提高建筑的稳定性。
建筑构造
轴对称平移可以帮助建筑师更加准确地绘制建筑图,使建筑构造更加精 确。通过平移和旋转,建筑师可以轻松地复制和调整建筑元素,提高工 作效率。
舞蹈创新
旋转中心对称还可以帮助舞蹈编导创新舞蹈动作。通过旋 转和对称,可以创造出新的舞蹈动作和组合,丰富舞蹈的 内涵和表现力。
对比分析在图形设计中的作用
图形识别
对比分析可以帮助人们更加准确地识别图形。通过对比图形之间的差异和相似之处,人们 可以更加清晰地理解图形的结构和特征。
图形优化
在图形设计中,对比分析可以帮助设计师优化图形的结构和功能。例如,通过对比不同设 计方案之间的优劣,设计师可以更加准确地选择最佳方案。
轴对称平移
02
将图形沿着某条直线进行平移,这种变换通常用于图形在空间
中的定位和排列。
旋转中心对称
03
将图形围绕某个点进行旋转,这种变换通常用于描述图形在空
间中的旋转对称性。
转换关系
轴对称平移与旋转中心对 称的转换关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称及中心对称变换、平移及旋转变换
变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。

一、轴对称变换
把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。

两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。

轴对称图形有以下两条性质:
1.对应点的连线被对称轴垂直平分;
2.对应点到对称轴上任一点的距离相等。

例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。

分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。

证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。

连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。

∴ BE+AE>AB ①
EC'+ED'>C'D' ②
①+②,得BC'+AD'>AB+C'D'。

∴BC+AD>AB+CD。

注:(1)本题的结论对于凹四边形仍然成立;
(2)还可将四边形推广成2n边形,也有类似结论。

其证明思路也完全相同,读者试自证。

二、中心对称变换
如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。

中心对称变换有以下性质:
(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

这个性质的逆命题也成立,即“如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么两个图形关于这一点对称。

(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等。

例3 如图所示,地面上有不在同一直线的A、B、C三点,一只青蛙位于地面异于A、B、C的P点,第一步青蛙从P跳到P关于A的对称点P1,第二步从P1跳到P1关于B的对称点P2,第三步从P2跳到P2关于C的对称点P3,第四步从P3跳到关于A的对称点P4,……,以下跳法类推,问青蛙跳完第1992步,落在地面的什么位置?
解:青蛙每跳一次,就是完成一个中心对称变换,如图,根据中位线定理,有
PP22AB P3P5①
并且由P2C=CP3,P6C=CP5,可知P3P5P2P6是平行四边形。

∴P2P6P2P。


由①、②及平行公理可知P和P6重合,这表明青蛙每跳6步,都可以回到起点P,而1992是6的倍数,因此跳完第1992步青蛙应落在P点。

三、平移变换
把图形F上的所有的点都按一定方向移动一定距离d形成图形F',则由F到F'的变换叫做平移变换。

一般地,题设条件中有彼此平行的线段,或有造成平行的因素,又需要将有关线段与角由分散到相应集中,使图形中诸元素之间的联系变得明显,可以采用平移变换。

例4 设P是平行四边形ABCD内部的一点,∠PAB=∠PCB,求证:∠PBA=∠PDA。

证明:如图,∵AB CD,故可将△ABP沿AD方向平移至△DCP'处,∴AP DP',BP CP'。

因此四边形APP'D,BCP'P都是平行四边形,
∴∠P'DC=∠PAB,∠P'CD=∠PBA,
∠BCP=∠CPP',∠PDA=∠DPP',
又∠PAB=∠PCB,∴∠CPP'=∠P'DC,
∴C、P'、D、P四点共圆,
∠DPP'=∠P'CD,
∴∠PBA=∠PDA。

例5 由平行四边形ABCD的顶点作它的高AE和AF,已知EF=a,AC=b,求点A到△AEF 的三条高的交点H的距离。

解:∵AD∥BC,AE⊥BC,过C作CG⊥AD垂足为G,(即将AE平移到CG),得矩形
AECG,连结FG,EG,CG,得EG=AC=b,AG EC。

∵EH⊥AF,CF⊥AF,FH⊥AE,CE⊥AE。

∴EH∥CF,EC∥HF,ECFH为平行四边形,因此EC HF。

又AGEC,∴AG HF,AH FG是平行四边形,∴AH GF
又∵AH⊥EF,∵GF⊥EF,因此△EFG是直角三角形。

注:本题是经过若干平移而获得解决的。

四、旋转变换
将平面图形F绕这平面内的一个定点O旋转一个定角α而形成的图形F',由F到F'这种变换称旋转变换。

点O称旋转中心,旋转中心是旋转变换下唯一位置不变点,α称旋转角。

运用旋转变换的关键在于选好旋转中心和旋转角。

旋转变换在解题中的主要应用有以下两个方面:
(1)在题设条件与结论间联系不易沟通或条件分散不易集中利用的情形下,通过旋转变换起到铺路架桥作用。

(2)图形错综复杂,但图形中等量关系多,可通过旋转变换,移动部分图形,使题设中隐蔽着的关系明朗起来,从而找到解题途径。

例6 设O是等边三角形ABC内一点,已知∠AOB=115°,∠BOC=125°,求以线段OA、OB、OC为边构成的三角形的各角。

解:以B为中心,将△BOA逆时针方向旋转60°,则点A落在点C,点O落在点D,连结OD,CD,∵OB=BD,∠OBD=60°,
∴△BOD是等边三角形;则OD=OB,
又CD=OA,
∴△COD是以OA,OB,OC为边构成一个三角形。

∴∠BOC=125°,∠BOD=60°。

∴∠COD=65°。

又∵∠BDC=∠AOB=115°,而∠ODB=60°,
∴∠ODC=55°,从而∠OCD=180°-65°-55°= 60°。

故求得以线段OA,OB,OC为边构成三角形的各角为65°,55°,60°。

注:在有等边三角形的条件下考虑旋转变换,常常把旋转角度选为60°;在有正方形的条件下,考虑旋转变换,常常把旋转角度选为90°,以达到目的。

相关文档
最新文档