民用建筑室内空气污染净化技术的研究进展_符适

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建材与装饰2008年04月

民用建筑室内空气污染净化技术的研究进展

符适1胡平放2

(1.深圳市建筑科学研究院有限公司2.华中科技大学环境科学与工程学院)

1引言

随着社会的发展,建筑设计越来越追求高能效,其绝热效果越来越好,但建筑物的通透性却越来越差;同时大量的合成物质被用于建筑和装饰,这些因素都导致了室内空气污染物的积累,使得污染程度远比室外严重。再加上人们一生中有80%以上的时间都是在室内度过,室内空气污染对人们的身体舒适、生命健康及工作效率产生很多不利影响,室内空气质量研究已成为当今国际环境与健康相关领域研究的热门课题。

室内空气净化是借助专门的系统分离或转化室内空气污染物,使其从室内空气中分离出来,或转化成无害的物质。该法特别适用于污染源控制和通风不能解决的室内空气污染的场所。室内污染物的净化技术,目前应用较为广泛的主要有:吸附净化技术、低温非平衡等离子、光催化氧化技术、生物净化技术、负离子技术等。

2单一净化技术

2.1吸附净化技术

吸附是借助多孔性固体吸附剂表面存在不平衡力的作用,使气态污染物吸附在其表面,从而实现从气流中分离出来的目的。吸附技术分为物理吸附、化学吸附两种。

2.1.1物理吸附

主要由于吸附剂与吸附质之间的分子间力的作用所引起的吸附为物理吸附。适合挥发性有机化合物、放射性气体氡、尼古丁、焦油等的净化。高比表面积、高孔隙率的吸附剂一般有活性炭、沸石、分子筛、硅胶等。目前使用较广的是活性炭,它吸附能力强、化学稳定性好、机械强度高。还有硅藻土是重要的非金属矿物材料,具有强吸收性,大比表面积,高空隙率及耐高温的优良性质。日本、瑞典和中国等国家已经研究出一种硅藻土涂料,能吸收带臭味的分子,而这些分子难于靠通风来排除,从而达到净化空气的目的。物理吸附过程是可逆的,当温度、温度、风速升高到一定程度时,所吸附的气体污染物将从固体表面逸出,重新进入空气中,而吸附剂与吸附质分子原来的性状没有改变。此外,吸附一旦达到饱和,稳定性很差,容易脱附,要求经常更换滤芯。若不及时更换滤芯,吸附的有害物质、细菌和病毒等随时有释放出来的危险。解决这一问题,要从多方面综合考虑,采用合适的吸附剂,定期更换处理剂或吸附剂载体,对于不易处理的气态污染物,要采用具有自我再生能力或选择性的吸附剂[1]。2.1.2化学吸附

化学吸附技术是在物理吸附材料表面浸泡活性化学物质以

及分子筛,在吸附过程中,发生相应的化学反应,以催化分解、中和有害气体。化学吸附的实质是一种发生在固体颗粒表面的化学反应,固体颗粒表面与吸附质之间产生的化学键结合,它反应需要活化能且速度慢,一般是不可逆的化学吸附具有很强的选择性,仅能吸附参与化学反应的某些气体,且吸附质与吸附剂结合比较牢固,一般必须在高温下才能脱附。对于沸点低于0℃的气体,如甲醛、乙烯等吸附到活性炭上较易逃逸,这时就要用化学处理过的活性炭或者活性氧化铝之类来进行吸附处理。例如,用溴浸渍炭去除乙烯和丙烯,用硫化钠浸渍炭去除甲醛,用高锰酸钾浸渍的活性氧化铝去除乙烯等,皆属于化学吸附。

2.2低温非平衡等离子体净化技术

低温非平衡等离子体净化技术属于环境科学与电气工程的交叉领域。等离子体是由电子、离子、自由基和中性粒子组成的导电流体,整体保持电中性。在低温等离子体中,电子温度极高,而其他粒子的温度接近常温。低温等离子体不但可以分解气态污染物,还可以从气流中分离出微粒,整个净化过程涉及荷电集电,催化净化和负离子发生等多种机制。其中,催化分解气态污染物为主要净化机制,涉及两方面的作用[2];在产生等离子体的过程中,高频放电产生瞬间高能量,打开某些有害气体分子的化学键,使其分解成单质原子或无害分子;低温等离子体中包含大量的高能电子、离子、游离态粒子和具有强氧化性的自由基,这些活性粒子的平均能量高于气体分子的键能,同时还会生成大量・OH、・HO

、・OH自由基和氧化性极强的O

,它们和有害气体发生化学反应生成无害物。低温等离子体适合于室内空气中挥发性有机化合物的处理。影响低温等离子体净化效果的因素包括脉冲电晕特性、电晕极结构、反应器直径、反应器外筒材料、反应器长度、电晕线间距和气体特性等。

2.3光催化净化技术

光催化净化是基于光催化剂在基于光催化在紫外线照射下

具有的氧化还原能力净化污染物。光催化剂属半导体材料,TiO

2是迄今为止公认的最佳光催化剂。在光催化剂表面发生气固-多相光催化反应,最终分解在机化合物的过程主要为:其一,产生

光致电子和空穴;其二,O

、H

O和有机化合物吸附在催化剂表面;其三,生成氧化剂;其四,催化分解有机化合物。影响光催化

净化性能的主要因素有O

含量、H

O含量、光强、以及TiO2的结构和性能。

摘要:由于建筑材料、装饰装修材料、家具、家电与办公器材等造成的室内环境污染,已成为影响人们健康的一大杀手。本研究重点从技术角度研究了目前主要的室内空气污染净化技术和方法,诸如,微粒捕集净化技术、吸附净化技术、化学中和技术、臭氧氧化技术、光催化氧化技术、生物技术、负离子技术……等作用原理和应用范围并分析了各种技术的优缺点及研究进展,最后对净化技术的研究方向和前景进行了展望。

关键词:空气污染物;室内空气净化

节能与环保

・282・

建材与装饰2008年04月

现有研究表明,光催化氧化可以使大多数烷烃、芳香烃、卤

代烃、醇、醛和酮等有机体降解,还可以使有机酸发生脱碳反应。

近年来,光催化净化空气技术备受关注。成为各国研究和开发的热点,其原因是该法具有以下优点:其一,广谱性:研究表明,光催化对绝大部分污染物都具有治理效果;其二,经济性:光催化能在常温常压下进行,直接利用空气中的O

作为氧化剂,气相光催剂可利用光催化可利用低能量的紫外灯,甚至利用太阳光;其三,灭菌消毒:利用紫外光控制微生物的繁殖已在生活中广泛使用,光催化灭菌消毒不仅仅是单纯的紫外光作用,而是紫外光和催化的共同作用,无论从降低微生物数目的效率,还是从杀灭微生物的彻底性考虑,其效果都是单纯采用紫外光技术无法比拟的。

古政荣等[3]研制的活性炭-纳米TiO

复合光催化空气净化网,在功率6W、波长254nm的紫外灯照射3h后,空气中甲苯、

甲醛、H

S、NH3和CO的净化率分别为98.8%、98.5%、99.6%、96.5%和60.1%。

纳米材料光催化是目前最具发展前景的室内空气净化技术,但是它不能净化空气中的悬浮物及细菌颗粒物;同时催化剂微孔易被灰尘和颗粒物堵塞而使其失活。半导体光催化存在的问题是量子效率低(约4%)和光生载流子的重新复合影响催化效率等问题,这使得光催化在经济上还难以和常规环保技术竞争。刘建平[4]等研究表明,通过光敏化、过渡金属离子掺杂,半导体耦合、贵金属沉淀、电子捕获及和微波等外场协同强化等措

施,有望提高TiO

2的光催化活性。用于光催化的纳米TiO

同时

还具有杀灭微生物的功能[5]。

2.4生物净化技术

以植物特效溶解酶、微量氧化吸附剂、活化剂、稳定剂和聚合剂等混合经过高温化合后,冷却并加入少量结合剂制备的甲醛捕捉剂,可以较好地分解室内空气中的甲醛[6]。

生物过滤法是除去VOCs有效而廉价的方法,在过滤器的多孔填料表面覆盖生物膜,废气流经填料床时通过扩散过程,把污染物传递到生物膜,并与膜内的微生物相接触而发生生物化

学反应,使废气中的污染物完全降解为CO

2和H

O。金耀明[7]等

研究表明,利用生物膜分离技术分离醇、醛、酮、和苯、甲苯、乙苯、二甲苯等简单的芳香族合化物,效果非常明显。

绿色植物对室内的污染空气具有很好的净化作用。绿色植物能有效地降低空气中的化学物质并将它们转化为自己的养料。在24h的照明条件下,芦荟可去除1m3空气中所含90%的甲醛;常青藤能吸收90%的苯;龙舌兰可吸收70%的苯、50%的甲醛和24%的三氯乙烯;垂钓兰能吸收96%的一氧化碳、86%的甲醛[8]。

2.5负离子净化技术

负离子被医学家誉为“空气自然清洁器”和“空气维生素”。负离子不仅可以中和尘埃中的正电使尘埃落地,还可以有效杀灭空气中的细菌,负离子还可与氧气结合形成携氧负离子,具有活化空气,增强人体抗病能力的功能,有益人体健康。蒋耀庭等[9]在室内用人工负离子作用2h,空气中的悬浮颗粒、细菌总数和甲醛等浓度都有明显的降低。空气负离子能降低空气污染物浓度,其原理是借助凝结和吸附作用,它能附着在固相或液相污染物微粒上,从而形成大离子并沉降下来,与此同时,空气中的负离

子数目也大量地损失。在污染物浓度高的环境里,若清除污染物所损失的负离子得不到及时的补偿,则会出现正负离子浓度不平衡的状态,存在高浓度的空气正离子现象,结果使人产生不适感。正因为如此,在此类环境中,以人造负离子来补偿不断被污染物消耗掉的负离子,一方面能维持正负离子的平衡;另一方面可以不断地清除污染物,从而达到改善空气质量的目的。值得注意的是,尽管空气负离子对人体的人理功能具有某些促进作用,但是单纯依靠负离子净化空气是片面的。因为负离子极易与空气中的尘埃结合,成为具有一定极性的污染粒子,即“重离子”,而悬浮的负离子在降落过程中,依然被吸附在室内家具,电视机屏幕等物品上,人一走动以使其再次飞扬到空气中,所以负离子只是吸附灰尘,并不能消除它,或将其排至室外。

为了增加居住环境中的负离子浓度,人们采用了各种办法(负离子发生器、人造瀑布、负离子织物等),但目前采用最多的是利用经过处理的天然矿石为原料开发会产生空气负离子的材料[10]。其主要选用具有明显的热电效应的稀有矿物石为原料,加入到建筑装修材料中,在与空气接触中,电离空气及空气中的水分,产生负离子;可发生极化,并向外放电,起到净化室内空气的作用。冯艳文等[11]应用天然矿物的改性活化技术和纳米稀土激活技术研制的健康环保型建筑内墙涂料,不仅具有较为优越的常规性能,还集无污染、抗菌、防霉、辐射远红外线、释放负离子等对人体健康有益的功能于一身。负离子技术也可应用到建材上,如负离子涂料,其能够持续释放的负离子与室内污染源持续释放的有害气体(正离子)不断中和、降解,可长期起到去除甲醛的作用。

2.6单一净化技术应用中存在的问题

上述的各种单一净化技术,虽然在某些污染物的去除上取得了满意的效果,但由于室内污染物来源广,种类多,各种净化技术受限于自身的局限性。此外上述的净化技术中,均存在污染物附着浓度低,实验的重复性较差,不能完全消除二次污染等现象[12]。

3多种控制技术的组合

上述单一的方法均存在一定的局限性,无法全面祛除室内空气污染,必须进行综合使用各种技术,将多种技术融合,取长补短,才能彻底解决室内空气污染问题。程琰[23]等的研究报道,发展组合技术是技术发展的趋势之一,如活性炭吸附技术与光催化技术的组合,活性炭的吸附能力使气态污染物富集到某一特定的环境,从而提高了光催化氧化反应速率,而且可以吸附中间副产物使其进一步被催化氧化,达到完全净化。另外,由于被吸附的污染物在光催化剂的作用下参与了氧化反应,使活性炭得以再生,从而也延长了活性炭的使用周期。文远高[13]等提出了依次采用多种控制技术的组合来控制和解决室内空气污染方案,静电除尘用于去除空气中的颗粒物及尘埃;活性炭用于可吸入粒子的进一步净化,同时吸附空气中的部分有害气体;光催化氧化系采用光源照射纳米材料(如TiO

)有效分解甲醛、苯、氯乙

烯等有机污染物和SO

、NO

等无机物;光源一般采用紫外光,其兼有除臭、杀菌等功能;负离子发生器产生负氧离子,能使空气清新,有助于消除人体疲劳,同时可中和空气中带正电的微粒。该方案处理过程较复杂,需定期更换吸附材料,实际应用中效果如何有待进一步研究。

节能与环保

・283・

相关文档
最新文档