小升初数学应用题大全新整理
六年级小升初数学应用题50道附答案(满分必刷)
六年级小升初数学应用题50道一.解答题(共50题,共311分)1.一个圆柱形玻璃容器的底面直径是10厘米,把一块铁块从这个容器的水中取出后,水面下降2厘米,这块铁块的体积是多少?2.一个圆柱体的蓄水池,从里面量底面周长31.4米,深2米,在它的内壁与底面抹上水泥。
(1)抹水泥的面积是多少平方米?(2)蓄水池能蓄多少吨水?(每立方米水约重1.1吨)3.一个圆柱形的粮仓,从里面量得底面直径是3米,装有2.5米高的小麦.如果每立方米小麦重0.7吨,这个粮仓装有多少吨的小麦?4.如图是红梅服装厂2021年七月份到十二月份生产服装统计图:(1)西装和童装产量最高的分别是哪个月?最低的呢?(2)童装哪个月到哪个月增长得最快?西装呢?(3)十二月份西装产量比童装多百分之几?5.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?6.幼儿园买回240个苹果,按照大、中、小三个幼儿班的人数分配给各个班。
大班有28人,中班有25人,小班有27人。
三个班各应分多少个苹果?7.一个长方体木块长、宽、高分别是5cm、4cm、3cm。
如果用它锯成一个最大的正方体,体积要比原来减少百分之几?8.某修路队修一条路,5天完成全长的20%,照这样计算,完成任务还需多少天?9.张经理的公司今年盈利500万元,按国家规定应缴纳20%的税款,张经理最后应得利益是多少万元?10.如图,用彩带捆扎一个圆柱形礼盒,打结处用了35厘米长的彩带,礼盒的底面周长是94.2厘米,高是10厘米,求一共用了多长的彩带?11.一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
12.修路队修一条路,八月份修了4800米,九月份修了全长的,这两个月一共修了全长的60%,这条路全长多少米?13.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?14.张叔叔购买了三年期国债,当时年利率为3.14%。
小升初数学应用题大全100例附答案(完整版)
小升初数学应用题大全100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以1 桶水可以冲3/4 ×2 = 3/2 = 1.5 杯水。
2. 小明看一本120 页的故事书,已经看了全书的5/6,还剩多少页没看?答案:全书120 页,已经看了全书的5/6,即看了120×5/6 = 100 页,还剩120 - 100 = 20 页。
3. 一个长方形的长是8 厘米,宽是长的1/4,这个长方形的面积是多少?答案:宽是长的1/4,所以宽为8×1/4 = 2 厘米,面积= 长×宽= 8×2 = 16 平方厘米。
4. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达。
若要4 小时到达,则每小时需要多行多少千米?答案:甲乙两地的距离为60×5 = 300 千米。
若4 小时到达,速度应为300÷4 = 75 千米/小时,每小时需要多行75 - 60 = 15 千米。
5. 某工厂有男职工120 人,女职工人数是男职工人数的4/5,这个工厂共有职工多少人?答案:女职工人数为120×4/5 = 96 人,全厂职工人数为120 + 96 = 216 人。
6. 学校买来180 本图书,按4:5 分给五年级和六年级,五年级分得多少本?答案:一共分成4 + 5 = 9 份,每份180÷9 = 20 本,五年级分得4 份,即20×4 = 80 本。
7. 果园里有苹果树240 棵,梨树的棵数比苹果树少1/4,梨树有多少棵?答案:梨树比苹果树少1/4,所以梨树的棵数为240×(1 - 1/4) = 180 棵。
8. 修一条路,已经修了全长的3/7 ,还剩360 米没修,这条路全长多少米?答案:没修的占全长的1 - 3/7 = 4/7 ,全长为360÷4/7 = 630 米。
小学升初中数学应用题150道及答案
小学升初中数学应用题150道及答案1. 小明有10 个苹果,小红的苹果数比小明多5 个,小红有多少个苹果?-解题提示:用小明的苹果数加上5 就是小红的苹果数。
-答案:10 + 5 = 15(个)2. 商店里有30 支铅笔,卖出12 支,还剩多少支?-解题提示:用原有的铅笔数减去卖出的就是剩余的。
-答案:30 - 12 = 18(支)3. 一本书有80 页,小明第一天看了25 页,第二天看了30 页,还剩多少页没看?-解题提示:用总页数依次减去前两天看的页数。
-答案:80 - 25 - 30 = 25(页)4. 一个长方形的长是12 厘米,宽比长短3 厘米,这个长方形的周长是多少厘米?-解题提示:先求出宽,再根据长方形周长= (长+ 宽)×2 计算。
-答案:宽为12 - 3 = 9 厘米,周长= (12 + 9)×2 = 42 厘米5. 同学们排队做操,每行站15 人,正好站8 行。
如果每行站20 人,可以站多少行?-解题提示:先算出总人数,再除以每行站的人数。
-答案:总人数为15×8 = 120 人,120÷20 = 6 行6. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?-解题提示:先求出速度,再用速度乘以时间。
-答案:速度为180÷3 = 60 千米/小时,5 小时行驶60×5 = 300 千米7. 果园里有苹果树250 棵,梨树比苹果树少50 棵,梨树有多少棵?-解题提示:用苹果树的数量减去50 。
-答案:250 - 50 = 200(棵)8. 学校买了5 个篮球,每个80 元,又买了2 个足球,一共花了500 元,一个足球多少钱?-解题提示:先算出买篮球花的钱,用总钱数减去买篮球的钱就是买足球的钱,再除以足球个数。
-答案:买篮球花5×80 = 400 元,买足球花500 - 400 = 100 元,一个足球100÷2 = 50 元9. 一条路长600 米,已经修了240 米,剩下的要6 天修完,平均每天修多少米?-解题提示:先算出剩下的长度,再除以天数。
(完整版)人教版小升初数学应用题归纳
(完整版)人教版小升初数学应用题归纳小升初数学应用题归纳1、果园里桃树的棵数相当于梨树棵数的53,相当于苹果树棵数的73。
如果梨树比苹果树少180棵,这个果园里有桃树、梨树、苹果树多少棵?(用方程思想解题)2、小明在商店买了苹果和梨,苹果的个数是梨的54,小明吃了10个苹果,8个梨,则剩下的苹果个数是剩下的梨的75。
求小明买的苹果核梨各有多少个?(用方程思想解题)3、顺风运输队包运1万只瓷碗,每100只运费1.5元,如果损坏一只碗,不但不给运费,还要赔偿0.2元,完成包运任务后,这个运输队共得运费146.56元。
求运输中损坏了几只碗?(用方程思想解题)4、一件玩具,第一天按原价出售,没人来买,第二天降价20%出售,仍没人来买,第三天再降价20元,仍没人来买,第四天在第三天价格的基础上再降价20%,终于售出,已知售出价格是原价的48%。
问原价是多少?(用方程思想解题)5、王飞到山上图书馆借书,他上山每小时行3千米,从原路返回,每小时行6千米。
求他上、下山的平均速度。
(路程速度时间问题)6、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?(鸡兔同笼问题)7、两列火车从甲、乙两地同时开始相对开出,4小时后在距离中点48千米处相遇。
已知慢车速度是快车的75,快车和慢车的速度各是多少?甲、乙两地相距多少米?(相遇问题)(用方程思想解题)8、A 车和B 车同时从甲、乙两地相向开出,经过5小时相遇。
然后,它们又各自按照原速度方向继续行驶3小时,这时A 车离乙地还有135千米,B 车离甲地还有165千米。
甲、乙两地相距多少千米?(相遇问题)9、A 、B 两地相距1000米,甲、乙两人分别从A 、B 两地同时出发,在A 、B 两地间往返散步。
两人第一次相遇时距离AB 中点100米,那么两人第二次相遇时距离第一次相遇的地点多少米?(相遇问题)10、有一项工程需要完成,甲队单独做需要20天完成,乙队单独做需要30天完成。
(完整版)小升初六年级下册数学应用题50道丨精品(预热题)
(完整版)小升初六年级下册数学应用题50道一.解答题(共50题,共289分)1.甲、乙两店都经营同样的某种商品,甲店先涨价10%后,又降价10%;乙店先涨价15%后,又降价15%。
此时,哪个店的售价高些?2.如图,有一个圆柱形的零件,高是10cm,底面直径是6cm,零件的一端有一个圆柱形的孔,圆柱形孔的直径是4cm,孔深5cm,如果将这个零件接触空气的部分涂上防锈漆,一共需涂多少平方厘米?3.一个无盖的圆柱形铁皮水桶,底面直径是0.4米,高是0.8米,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)4.某商场在五月份进了甲、乙两种商品共100件,甲商品进货价每件40元,乙商品进货价每件60元。
如果两种商品都按20%的利润来定零售价.这样当两种商品全部销售完后,共获利润940元。
(利润是指“销价与进货价的差”。
)(1)甲、乙两种商品每件可获利润各是多少元?(2)其中甲种商品进了多少件?5.一件上衣打八折后的售价是160元,老板说:“如果这件上衣对折就不赚也不亏”。
这件上衣成本是多少元?6.把下面几个城市的最高气温按从高到低排列起来;把最低气温按从低到高排列起来。
北京:-7°C~7°C上海:5°C~10°C成都:8°C~11°C唐山:-5°C~6°C7.2018年2月,王阿姨把一些钱存入银行,定期三年,如果年利率是5.0%,到期后可以取出92000元。
王阿姨当时存入银行多少钱?8.右图是丁丁家4月份支出统计图,已知丁丁家4月份的教育支出是300元。
(1)这个月总支出多少元?(2)伙食支出比水电通讯支出多多少元?9.少年服饰专卖店换季促销,每件半袖原价50元,现在八折销售。
小林买了三件,一共花了多少钱?10.体育场共有12000个座位,举办方决定把门票总数的3%免费送给福利院的孩子们,送出去的门票有多少张?11.一根长2米,底面半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。
六年级小升初数学应用题50道含完整答案【夺冠】
六年级小升初数学应用题50道一.解答题(共50题,共287分)1.下图是根据乐乐今天的早餐制作的统计图。
(1)乐乐今天的早餐是按怎样的比搭配的?如果乐乐今天早餐吃了50克鸡蛋,则他早餐一共吃了多少克食物?(2)乐乐的妈妈按同样的比大约吃了420克早餐,算算妈妈今天的早餐中各种食物大约分别吃了多少?2.某水果店新进一批水果,其中苹果占新进水果总量的30%,香蕉占40%,已知这两种水果共70kg,这批水果的总量是多少?3.一个圆锥形沙堆,底面积是45.9m2,高1.2m.用这堆沙在12m宽的路面上铺3cm厚的路基,能铺多少米?4.解答题。
(1)-1与0之间还有负数吗?-与0之间呢?如有,你能举出例子来吗?(2)写出在-1与-3之间的三个负数。
5.在生活中,找出三种相关联的量,并写明这三种量在什么情况下成比例关系。
6.一个圆柱铁皮油桶内装有半桶汽油,现在倒出汽油的后,还剩12升汽油。
如果这个油桶的内底面积是10平方分米,油桶的高是多少分米?7.张师傅要把一根圆柱形木料(如图)削成一个圆锥,削成的圆锥的体积最大是多少立方分米?8.一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
9.如果x和y成正比例关系,当x=16时,y=0.8;当x=10时,y是多少?如果x和y成反比例关系,当x=16时,y=0.8;当x=10时,y是多少?10.广州的气温的15℃,上海的气温是0℃,北京的气温是-9℃,请问气温最高的地方比气温最低的地方温度高多少度?11.小明在银行存入700元,记作+700,如果小明的账户余额从2000变成2500,那么应该记作?12.根据某地实验测得的数据表明,高度每增加1 km,气温大约下降6℃,已知该地地面温度为21℃。
(1)高空某处高度是8 km,求此处的温度是多少?(2)高空某处温度为一24 ℃,求此处的高度。
13.一件西服原价180元,现在的价格比原来增加了10%,现在的价格是多少元?14.一个圆锥形沙堆,底面周长25.12米,高3米。
六年级小升初数学应用题50道及参考答案(满分必刷)
六年级小升初数学应用题50道一.解答题(共50题,共290分)1.一个无盖圆柱形油桶,底面半径2分米,高8分米,里面装满汽油,1升汽油重0.8千克。
这个油桶最多装多少千克的汽油?2.一辆客车从甲地开往乙地,去时速度是40千米/小时,返回时速度是60千米/小时,返回时的速度比去时的速度提高了百分之几?3.某商场在五月份进了甲、乙两种商品共100件,甲商品进货价每件40元,乙商品进货价每件60元。
如果两种商品都按20%的利润来定零售价.这样当两种商品全部销售完后,共获利润940元。
(利润是指“销价与进货价的差”。
)(1)甲、乙两种商品每件可获利润各是多少元?(2)其中甲种商品进了多少件?4.在六(1)班新年联欢会的“猜谜”抢答比赛中,规定答对1题得5分,答错1题得-8分,不答者得0分,淘淘共得12分,他抢答几次?答对几道题?答错几道题?5.有一桶菜籽油重105千克,第一次取出全部的25%,第二次取出全部的,桶里还剩多少千克菜籽油?6.修一段路,第一天修了全长的15%,第二天修了960米,还余全长的65%未修,这段路全长多少米?7.把一个底面半径是4厘米,高是6分米的铁制圆锥体放入盛满水的桶里,将有多少立方厘米的水溢出?8.某电视机厂去年电视机生产情况统计图(单位:台; 2011年1月)看图列式计算:(1)全年共生产电视机多少台?(2)平均每月生产电视机多少台?(3)第四季度比第一季度增产百分之几?9.我们把李明从家出发,向西走了500米记作走了-500米,那么李明又接着走了+800米是什么意思?这时李明离家的距离有多远?10.一个底面周长是3.14分米的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的,将两个同样大小的鸡蛋放入杯子中,浸没在水中,这时水面上升8厘米,刚好与杯子口相平,求玻璃杯的容积。
11.如果把甲书架上20%的书搬到乙书架上,那么两个书架上书的本数相等。
原来甲书架上书的本数比乙书架上书的本数多百分之几?12.有一个圆锥形沙堆,底面半径是10米,高是4.8米,把这些沙子均匀地铺在一条宽20米,厚40厘米的通道上,可以铺多长?13.一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?14.生活中的数学。
(完整版)小升初数学应用题50道加答案(必刷)
(完整版)小升初数学应用题50道一.解答题(共50题, 共289分)1.用96厘米长的铁丝围成一个直角三角形, 这个直角三角形三条边的长度比是3∶4∶5, 这个三角形的面积是多少?2.一个长方体木块长、宽、高分别是5cm、4cm、3cm。
如果用它锯成一个最大的正方体, 体积要比原来减少百分之几?3.小华的妈妈把10000元钱存入银行, 定期三年。
如果年利率按3.25%计算, 到期一共可以取回多少元?4.展览厅有8根同样的圆柱, 柱高10米, 直径1米, 全都刷上油漆, 如果每平方米用油漆100克, 需要油漆多少千克?5.一个圆柱形玻璃容器的底面直径是10厘米, 把一块铁块从这个容器的水中取出后, 水面下降2厘米, 这块铁块的体积是多少?6.张师傅要把一根圆柱形木料(如图)削成一个圆锥, 削成的圆锥的体积最大是多少立方分米?/7.五星电器一款华为手机平时售价1800元, “五一”期间开展促销活动, 打八五折出售。
陈叔叔在促销期间购买了这款手机, 比平时购买优惠多少元?8.如图是红梅服装厂2021年七月份到十二月份生产服装统计图:(1)西装和童装产量最高的分别是哪个月?最低的呢?(2)童装哪个月到哪个月增长得最快?西装呢?(3)十二月份西装产量比童装多百分之几?9.一艘潜水艇所在高度为-60米, 一条鲨鱼在潜水艇上方20米, 请你表示出鲨鱼所在的位置。
10.某服装店凭优惠卡可打七折, 妈妈用优惠卡买了一件衣服, 省了60元。
这件衣服原价多少钱?11.哈尔滨的气温的-30℃, 北京的气温比哈尔滨高19℃, 请问北京的气温是多少度?12.有一个圆锥形沙堆, 底面半径是10米, 高是4.8米, 把这些沙子均匀地铺在一条宽20米, 厚40厘米的通道上, 可以铺多长?13.一件衬衣降价20%后, 售价为100。
这件衬衣原价是多少元?14.我国国土面积960万平方千米, 各种地势所占百分比如下图。
(1)请你计算我国国土中山地的面积是多少万平方千米。
小升初数学20种必考应用题(含例题及答案解析),收藏练习!
小升初数学20种必考应用题(含例题及答案解析),收藏练习!以下20个题目是小升初考试中经常会遇到的题型,希望你的孩子能够全部吃透,并熟练运用其中的知识点。
转给孩子,快来复习吧!解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
解题思路:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。
解题思路:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
(完整版)小升初数学应用题50道附参考答案【完整版】
(完整版)小升初数学应用题50道一.解答题(共50题, 共286分)1.新华书店打折出售图书, 张老师用340元买了一套《中国四大名著》, 而原价是400元。
这套《中国四大名著》打了几折?2.一个圆柱体的蓄水池, 从里面量底面周长31.4米, 深2米, 在它的内壁与底面抹上水泥。
(1)抹水泥的面积是多少平方米?(2)蓄水池能蓄多少吨水?(每立方米水约重1.1吨)3.下表是部分城市同一天的气温情况。
(1)哪个城市的气温最高?哪个城市的气温最低?(2)把各个城市的最低气温从低到高排列出来。
(3)把各个城市的最高温从高到低排列出来。
4.一个装满玉米的圆柱形粮囤, 底面周长6.28米, 高2米。
如果将这些玉米堆成一个高1米的圆锥形的玉米堆, 圆锥底面积是多少平方米?5.张经理的公司今年盈利500万元, 按国家规定应缴纳20%的税款, 张经理最后应得利益是多少万元?6.出租车司机小王某天下午营运是在东西走向的人民大道上进行的, 如果规定向东为正, 向西为负, 这天下午他的行程(单位:千米)如下:+5 -2 +8 -10 -3 -4 +7 +2 -9 +6小王最后是否能回到出发点?7.某水果店新进一批水果, 其中苹果占新进水果总量的30%, 香蕉占40%, 已知这两种水果共70kg, 这批水果的总量是多少?8.用96厘米长的铁丝围成一个直角三角形, 这个直角三角形三条边的长度比是3∶4∶5, 这个三角形的面积是多少?9.广州的气温的15℃, 上海的气温是0℃, 北京的气温是-9℃, 请问气温最高的地方比气温最低的地方温度高多少度?10.修一段路, 第一天修了全长的15%, 第二天修了960米, 还余全长的65%未修, 这段路全长多少米?11.一个无盖的圆柱形铁皮水桶, 底面直径是0.4米, 高是0.8米, 要在水桶里、外两面都漆防锈漆, 油漆的面积大约是多少平方米?(得数保留一位小数)12.学校购进图书2000本, 其中文学类图书占80%, 将这些文学书按2:3全部分给中、高年级, 高年级可以分得多少本?13.王林参加射击比赛, 打了20组子弹, 每组10发。
小学数学小升初应用题150道及答案
小学数学小升初应用题150道及答案1. 学校图书馆有科技书320 本,比故事书少80 本,两种书一共有多少本?答案:故事书有320 + 80 = 400 本,两种书一共320 + 400 = 720 本。
2. 果园里有苹果树180 棵,梨树比苹果树多20 棵,桃树的棵数是苹果树和梨树总棵数的2 倍,桃树有多少棵?答案:梨树有180 + 20 = 200 棵,苹果树和梨树总棵数为180 + 200 = 380 棵,桃树有380×2 = 760 棵。
3. 小明家离学校1200 米,他每天步行上学,往返一次需要20 分钟,小明平均每分钟走多少米?答案:往返一次走的路程是1200×2 = 2400 米,速度= 路程÷时间,即2400÷20 = 120 米/分钟。
4. 一辆汽车4 小时行驶320 千米,照这样计算,7 小时行驶多少千米?答案:汽车的速度为320÷4 = 80 千米/小时,7 小时行驶80×7 = 560 千米。
5. 工厂要生产800 个零件,已经生产了300 个,剩下的要在5 天内完成,平均每天生产多少个?答案:还剩下800 - 300 = 500 个,平均每天生产500÷5 = 100 个。
6. 学校买了6 个篮球和8 个排球,一共用了500 元,篮球每个40 元,排球每个多少元?答案:篮球花费6×40 = 240 元,排球花费500 - 240 = 260 元,每个排球260÷8 = 32.5 元。
7. 一块长方形菜地,长30 米,宽20 米,如果每平方米种8 棵白菜,这块地一共可以种多少棵白菜?答案:面积为30×20 = 600 平方米,一共可以种600×8 = 4800 棵白菜。
8. 小明有20 元钱,买了一支钢笔用去8 元,剩下的钱买每本2 元的笔记本,可以买几本?答案:剩下20 - 8 = 12 元,能买笔记本12÷2 = 6 本。
小升初数学常出应用题100例附答案(完整版)
小升初数学常出应用题100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以 1 桶水可以冲3/4×2 = 3/2 = 1.5 杯水。
2. 修一条公路,第一天修了全长的1/4 ,第二天修了全长的1/5 ,还剩110 米没修,这条公路全长多少米?答案:设公路全长为x 米,第一天修了1/4 x 米,第二天修了1/5 x 米,可列出方程:x - 1/4 x - 1/5 x = 110 ,解得x = 200 米。
3. 某工厂有三个车间,第一车间人数占总人数的1/4 ,第二车间人数是第三车间人数的3/4 ,已知第一车间比第二车间少40 人,三个车间共多少人?答案:设总人数为x 人,第一车间人数为1/4 x 人,第二车间人数为3/8 x 人,可列出方程:3/8 x - 1/4 x = 40 ,解得x = 320 人。
4. 果园里有苹果树和梨树共420 棵,苹果树棵数的1/3 等于梨树棵数的4/9 ,问两种树各有多少棵?答案:设苹果树有x 棵,梨树有420 - x 棵。
1/3 x = 4/9 (420 - x) ,解得x = 240 ,则梨树有180 棵。
5. 甲、乙两堆煤共300 吨,甲堆的2/5 比乙堆的1/4 多55 吨,两堆煤各多少吨?答案:设甲堆煤有x 吨,乙堆煤有300 - x 吨。
2/5 x - 1/4 (300 - x) = 55 ,解得x = 200 ,则乙堆煤有100 吨。
6. 一本书,第一天看了全书的1/4 ,第二天看了50 页,这时已看的页数与未看的页数比是11:19 ,这本书共有多少页?答案:设这本书共有x 页,第一天看了1/4 x 页,已看的页数为1/4 x + 50 ,未看的页数为x - (1/4 x + 50) = 3/4 x - 50 。
(1/4 x + 50) : (3/4 x - 50) = 11 : 19 ,解得x = 400 页。
(完整版)小升初数学应用题100道含完整答案(精品)
(完整版)小升初数学应用题100道一.解答题(共100题, 共578分)1.体育场共有12000个座位, 举办方决定把门票总数的3%免费送给福利院的孩子们, 送出去的门票有多少张?2.某俱乐部要购买40套运动服, 每套300元, 甲商场打七五折, 乙商场买4套赠送一套, 去哪个商场买便宜?便宜多少钱?3.王阿姨录一份80页的稿件, 第一天录了这份稿件的20%, 第二天录了这份稿件的35%。
她两天一共录了多少页?4.新华书店打折出售图书, 张老师用340元买了一套《中国四大名著》, 而原价是400元。
这套《中国四大名著》打了几折?5.六(1)班同学植树节去公园种树, 有114棵成活, 6棵没成活。
(1)一共植树多少棵?(2)这批树的成活率是多少?6.一个圆柱, 高减少2厘米, 表面积就减少18.84平方厘米, 这个圆柱的上、下两个底面面积的和是多少平方厘米?7.化肥厂把生产1600 t化肥的任务按三个车间的人数比分配, 一车间53人, 二车间52人, 三车间55人。
三个车间各应生产化肥多少吨?8.在温度计上画出下面这些温度。
-5℃ 20℃ 15℃ -10℃9.一个圆锥形的煤堆, 底面直径是8米, 高1.4米, 如果每立方米煤重2500千克, 这堆煤共有多少千克?10.下图是根据乐乐今天的早餐制作的统计图。
(1)乐乐今天的早餐是按怎样的比搭配的?如果乐乐今天早餐吃了50克鸡蛋, 则他早餐一共吃了多少克食物?(2)乐乐的妈妈按同样的比大约吃了420克早餐, 算算妈妈今天的早餐中各种食物大约分别吃了多少?11.王老师推荐了甲、乙两本课外读物, 六年级每个同学至少买了一本。
已知有/同学买了甲读物, 有45%的同学买了乙读物, 有14个同学两本都买了。
六年级共有多少名同学?12.一个长方体木块长、宽、高分别是5cm、4cm、3cm。
如果用它锯成一个最大的正方体, 体积要比原来减少百分之几?13.一个圆锥形沙堆, 底面周长25.12米, 高3米。
小升初数学20类必考应用题汇总(含答案解析)
解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
解题思路:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。
根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)两地间路程:(40+45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。
解题思路:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]?千米,也就是第一组要追赶的路程。
又知第一组每小时比第二组快(?4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
小学升初中数学应用题专题(带答案偏难)
小学升初中数学应用题专题(带答案偏难)第一篇:小学升初中数学应用题专题(带答案偏难)一:应用题专题一、和差倍问题(一)和差问题:已知两个数的和及两个数的差,求这两个数。
方法①:(和-差)÷2=较小数,和-较小数=较大数方法②:(和+差)÷2=较大数,和-较大数=较小数例如:两个数的和是15,差是5,求这两个数。
方法:(15-5)÷2=5,(15+5)÷2=10.(二)和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。
方法:和÷(倍数+1)=1倍数(较小数)1倍数(较小数)⨯倍数=几倍数(较大数)或和-1倍数(较小数)=几倍数(较大数)例如:两个数的和为50,大数是小数的4倍,求这两个数。
方法:50÷(4+1)=10 10⨯4=40(三)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数。
方法:差÷(倍数-1)=1倍数(较小数)1倍数(较小数)⨯倍数=几倍数(较大数)或和-1倍数(较小数)=几倍数(较大数)例如:两个数的差为80,大数是小数的5倍,求这两个数。
方法:80÷(5-1)=20 20⨯5=100二、年龄问题年龄问题的三大规律:1.两人的年龄差是不变的;2.两人年龄的倍数关系是变化的量;3.随着时间的推移,两人的年龄都是增加相等的量.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差.三、植树问题(一)不封闭型(直线)植树问题直线两端植树:棵数=段数+1=全长÷株距+1;全长=株距⨯(棵数-1);株距=全长÷(棵数-1);直线一端植树:全长=株距⨯棵数;棵数=全长÷株距;株距=全长÷棵数;直线两端都不植树:棵数=段数-1=全长÷株距-1;株距=全长÷(棵数+1);(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数⨯棵距;棵距=总距离÷棵数.四、方阵问题在方阵问题中,横的排叫做行,竖的排叫做列,如果行数和列数都相等,则正好排成一个正方形,就是所谓的“方阵”。
小升初数学难题应用题100例附答案(完整版)
小升初数学难题应用题100例附答案(完整版)1. 小明家养了5只鸡和3只鸭,鸡比鸭多多少?答案:鸡比鸭多2只。
2. 一个长方形的长是12厘米,宽是8厘米,求它的面积。
答案:96平方厘米。
3. 一辆汽车从甲地开往乙地,每小时行驶60千米,用了4小时到达。
如果速度提高到每小时80千米,需要多少小时才能到达?答案:3小时。
4. 小红有20个苹果,小明给她一半,小红又给了小华3个,最后小红还剩多少个苹果?答案:14个。
5. 一个正方形的边长增加了10%,新的面积比原来增加了多少?答案:21%。
6. 小华买了一本书,书原价100元,书店打八折出售,小华实际支付了多少元?答案:80元。
7. 一个圆形的半径增加了50%,新的周长比原来增加了多少?答案:75%。
8. 一辆火车从A站出发,以每小时80千米的速度行驶,经过3小时到达B站。
如果火车速度提高到每小时100千米,还需要多少小时到达B站?答案:2小时。
9. 小明和小华一起买了一个篮球,小明付了60元,小华付了40元,后来小华又给小明10元,现在每人各付了多少元?答案:小明70元,小华30元。
10. 一个班级有男生25人,女生30人,全班共有多少人?答案:55人。
11. 一个长方形的长是15厘米,宽是10厘米,求它的周长。
答案:50厘米。
12. 一辆自行车以每小时15千米的速度行驶,行驶了6小时后,距离起点多少千米?答案:90千米。
13. 小明有一盒铅笔,他每天用掉3支,10天后他还剩多少支?答案:7支。
14. 一个圆的直径是14厘米,求它的面积。
答案:153.86平方厘米。
15. 一辆汽车从城市A出发,以每小时60千米的速度行驶,行驶了5小时后到达城市B。
如果汽车速度提高到每小时80千米,还需要多少小时到达城市B?答案:3.75小时。
16. 小华有50元,她买了5个苹果,每个苹果5元,她还剩多少元?答案:15元。
17. 一个长方形的长是20厘米,宽是15厘米,求它的对角线长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程问题【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
例2 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
正反比例问题
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例应用题是反比例的意义和解比例等知识的综合运用。
【数量关系】判断正比例或反比例关系是解这类应用题的关键。
许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
例1 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
例2 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?
按比例分配问题
【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。
总份数=比的前后项之和
例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?
例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?
百分数问题。
【数量关系】掌握“百分数”、“标准量”“比较量”三者之间的数量关系:百分数=比较量÷标准量
标准量=比较量÷百分数
【解题思路和方法】一般有三种基本类型:
(1)求一个数是另一个数的百分之几;
(2)已知一个数,求它的百分之几是多少;
(3)已知一个数的百分之几是多少,求这个数。
(4)求一个数比另一个数多(少)百分之几。
例1 仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?
例2 红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?
例3 红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?
列4 一堆沙子,第一次运走40%。
第二次运走30%,还剩下48吨。
这堆沙子有多少吨?
例5 常见的百分率有:
增长率=增长数÷原来基数×100% 合格率=合格产品数÷产品总数×100%
出勤率=实际出勤人数÷应出勤人数×100% 出勤率=实际出勤天数÷应出勤天数×100%
缺席率=缺席人数÷实有总人数×100% 发芽率=发芽种子数÷试验种子总数×100%
成活率=成活棵数÷种植总棵数×100% 出粉率=面粉重量÷小麦重量×100%
出油率=油的重量÷油料重量×100% 废品率=废品数量÷全部产品数量×100%
命中率=命中次数÷总次数×100% 烘干率=烘干后重量÷烘前重量×100%
及格率=及格人数÷参加考试人数×100%
鸡兔同笼问题
【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
例1 长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?
例2李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本元。
问作业本和日记本各买了多少本?
例3(鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
存款利率问题
【含义】把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。
利率一般有年利率和月利率两种。
年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。
【数量关系】年(月)利率=利息÷本金÷存款年(月)数×100%
利息=本金×存款年(月)数×年(月)利率
本利和=本金+利息
=本金×[1+年(月)利率×存款年(月)数]例1 李大强存入银行1200元,月利率%,到期后连本带利共取出1488元,求存款期多长。
例2 银行定期整存整取的年利率是:二年期%,三年期%,五年期9%。
如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。
五年后二人同时取出,那么,谁的收益多?多多少元?
溶液浓度问题
【数量关系】溶液=溶剂+溶质
浓度=溶质÷溶液×100%
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?
列方程问题
【含义】把应用题中的未知数用字母Χ代替,根据等量关系列出含有未知数的等式——方程,通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。
【数量关系】方程的等号两边数量相等。
【解题思路和方法】可以概括为“审、设、列、解、验、答”六字法。
(1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。
(2)设:把应用题中的未知数设为Χ。
(3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。
(4)解;求出所列方程的解。
(5)验:检验方程的解是否正确,是否符合题意。
(6)答:回答题目所问,也就是写出答问的话。
例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?
例2仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?
解第一种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。
圆柱圆锥问题
例1一个圆柱和一个圆锥等底等高,体积相差立方分米。
圆柱和圆锥的体积各是多少?
例2把一个底面半径是6厘米,高是10厘米的圆锥形容器灌满水,然后把水倒入一个底面半径是5厘米的圆柱形容器里,求圆柱形容器内水面的高度?
例3 一个圆柱,侧面展开后是一个边长分米的正方形。
这个圆柱的底面直径是多少分米?
例4一根长4米,底面直径4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?
例5一个圆柱高为15厘米,把它的高增加2厘米后表面积增加平方厘米,求原来圆柱的体积。
练习习题精选
1、把一个底半径为5厘米的圆柱铁块放入一个底半径10厘米,高14厘米的容器里,水面上升了3厘米,求这个圆柱铁块的体积。
2、一个圆柱体和一个圆锥体等底等高,它们的体积相差立方厘米。
如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?
3、一个圆锥与一个圆柱的底面积相等。
已知圆锥与圆柱的体积的比是 1:6,圆锥的高是厘米,圆柱的高是多少厘米?
4、一个圆锥形沙堆,高是米,底面半径是5米,每立方米沙重吨。
这堆沙约重多少吨?(得数保留整数)
5、在一个直径是20厘米的圆柱形容器里,放入一个底面半径3里米的圆锥形铁块,全部浸没在水中,这是水面上升厘米。
圆锥形铁块的高是多少厘米?
6、一个底面半径是4厘米,高是9厘米的圆柱体木材,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?削去部分的体积是多少?
7、一个没有盖的圆柱形铁皮桶,底面周长是分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(留整十数)
8、一个圆柱形玻璃缸,底面直径20厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积。