新课标版数学必修二(新高考 新课程)(课件)作业2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(二)
1.如图所示的平面结构,绕中间轴旋转一周,形成的几何体形状为( ) A .一个球体
B .一个球体中间挖去一个圆柱
C .一个圆柱
D .一个球体中间挖去一个棱柱 答案 B
2.用一个半径为2 cm 的半圆围成一个圆锥,则圆锥底面圆的半径为( ) A .1 cm B .2 cm C.1
2 cm D.32
cm 答案 A
3.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( ) A .1∶2 B .1∶4 C .2∶1 D .4∶1 答案 B
4.如图所示的各图形中,不是正方体表面展开图的是( )
答案 B
5.一个等腰三角形绕它的底边所在直线旋转360°而形成的曲面所围成的几何体是( ) A .球体 B .圆柱
C .圆台
D .两个共底的圆锥
答案 D
6.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上( ) A .快、新、乐 B .乐、新、快 C .新、乐、快 D .乐、快、新 答案 A
7.如图所示是一个正方体的表面展开图,将其折叠起来,变成正方体后的图形是( )
答案 B
解析在这个正方体的展开图中,与有圆的面相邻的三个面都有一条直线,当折成正方体后,这三条直线应该相互平行,故A,C错误;又D中正方体的三个面内都没有图形,与展开图矛盾,故D错误.所以B正确.
8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.
答案圆柱
9.用长和宽分别为3π和π的矩形硬纸板卷成圆柱的侧面,则圆柱的底面半径是________.
答案1
2或
3
2
10.圆锥的底面半径为1,母线长为4,将圆锥沿一母线剪开去掉底面,把侧面展开铺平,则得到的是一个________形,其圆心角度数为________.
答案扇π2
11.分别将圆柱、圆台去掉两底,沿一母线剪开,展平得到的平面图形依次为________、________.
答案矩形扇环
12.如图,从半径为6 cm的圆形纸片上剪去一个圆心角为120°的扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为________ cm.
答案2 5
解析设圆锥底面圆的半径为r cm,根据题意为2πr=6×240π
180
,解得r=4,所以这个圆锥
的高为62-42=25(cm).
13.将一个边长分别是2 cm和5 cm,两邻边夹角为60°的平行四边形绕其5 cm边所在直线旋转一周形成的几何体的构成为________.
答案一个圆锥,一个圆柱挖去一个圆锥
14.一个圆台的母线长为12 cm,两底面面积分别为4πcm2和25πcm2.求:
(1)圆台的高;
(2)截得此圆台的圆锥的母线长.
解析(1)O1A1=2 cm,OA=5 cm,
∴h=122-32=315 cm.
(2)由SA-12
SA
=2
5
,
得SA=20 cm.
►重点班·选做题
15.如图所示,长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1,在长方体表面上由A 到C1的最短距离是________.
答案3 2
16.有一枚正方体骰子,每一个面都有一个英文字母,如图所示的是从3种不同角度看同一枚骰子的情况,则与H相对的字母是________.
答案O
解析正方体的骰子共有6个面,每个面都有一个字母,从每一个图,都可看到有公共顶点的三个面,与标有S的面相邻的面共有四个,由这三个图知这四个面分别标有字母H,E,O,p,d,因此只能是标有“p”与“d”的面是一个面,p与d是一个字母.翻转图②,使S面调整到正前面,使p转成d,则O为正下面,所以与H相对的是O.
17.如下图,甲为一几何体的展开图,乙为正方体ABCD-A1B1C1D1.
(1)沿图甲中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图;
(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙中的棱长为6 cm 的正方体ABCD-A1B1C1D1中指出这几个几何体的名称.(用字母表示)
解析(1)底面为正方形的四棱锥(如下图).
(2)需3个;A1-ABCD,A1-CDD1C1,A1-BCC1B1.
1.如图所示为一个空间几何体的竖直截面图形,那么这个空间几何体自
上而下可能是()
A.梯形、正方形
B.圆台、正方形
C.圆台、圆柱
D.梯形、圆柱
答案 C
解析空间几何体不是平面几何图形,所以应该排除A,B,D.所以选C.
2.如图,将阴影部分图形绕图示直线l旋转一周所得的几何体是()
A.圆锥
B.圆锥和球组成的简单几何体
C.球
D.一个圆锥内部挖去一个球后组成的简单几何体
答案 D
解析三角形绕轴旋转一周后形成的几何体是圆锥,圆绕直径所在直线旋转一周后形成的几何体是球,故阴影部分旋转一周后形成的几何体是一个圆锥内部挖去一个球后组成的简单几何体.
3.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的轴截面(过圆柱的轴作截面)的面积为()
A.2πB.π
C.2 D.1
答案 C
解析由题意知,圆柱的底面圆的直径为2,母线长为1,所以其轴截面的面积为2×1=2.
4.如图,在三棱锥P-ABC中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°,一只蚂蚁从A点出发沿三棱锥的表面绕一周,再回到A点,问蚂蚁经过的最短路程是________.
答案2 2
解析将三棱锥P-ABC的侧面沿PA剪下,再展开,得五边形PABCA′,如图(1).∵在三棱锥P-ABC中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°,∴图(1)中∠A′PA=3×30°=90°.连接AA′.在Rt△AA′P中,AA′=PA2+PA′2=2 2.如图(2),再将此展开图围成三棱锥P-ABC的侧面,得到折线AD-DE-EA.∵AA′=AD+DE+EA′,∴蚂蚁从A点出发,沿AD-DE-EA的路线行走,即为回到A点的最短路线.因此,蚂蚁从A点出发,回到A点的最短路程为2 2.
5.已知AB是直角梯形ABCD中与底边垂直的一腰,如图.分别以AB,BC,
CD,DA为轴旋转,试说明所得几何体的结构特征.
解析(1)以AB为轴旋转所得旋转体是圆台.如图①所示.
(2)以BC为轴旋转所得的旋转体是一组合体:下部为圆柱,上部为圆锥.如图②所示.
(3)以CD为轴旋转所得的旋转体为一组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图③所示.
(4)以AD为轴旋转所得的旋转体为一组合体:一个圆柱上部挖去一个圆锥.如图④所示.