初一上册几何概念
人教版七年级数学上册 第六章 几何图形初步(单元解读) PPT
课标解读
5.逐步认识几何图形是有效描述现实世界的重要工具,初步应用图形与几 何的知识解释生活中的现象以及解决简单的实际问题,培养学生对学习图 形和几何的兴趣,通过与其他同学的交流活动,初步形成积极参与数学活 动、主动与他人合作交流的意识.
教材内容
---地位与作用
本章是初中阶段“图形与几何”领域的起始章,介绍图形与几何的一些最基 本的概念和图形.如几何图形、立体图形、平面图形、体、面、线、点等, 要在本章中从现实具体事物中抽象、归纳出来,直线、线段、射线、角及有 关的概念在本章中得到详细的介绍,并被广泛应用于后续的教学中.
编写意图
(一)重视学生的动手操作和参与,让他们在观察、操作、想象、交流等活 动中认识图形,发展空间观念. 通过这些“探究点”,鼓励学生勤思考、勤动手、多交流.其中,动手操 作是学习开始阶段重要的一环,它可以帮助学生认识图形,丰富直观,验 证学生的空间想象.开始阶段,应鼓励学生先动手、后思考,逐步过渡到 先思考、后动手验证.
ቤተ መጻሕፍቲ ባይዱ
教学建议
(三)注重概念间的联系,在对比中加深理解 (2)研究线段的和、差、中点与研究角的和、差、角平分线,其内容方法都 很相似,从定义、数量关系、表示方法、计算中的应用,教学时都可以将 它们进行类比.
教学建议
(四)重视现代信息技术的应用 利用信息技术可以展现丰富多彩的图形世界,丰富学习资源,有助于学生 从中抽象出几何图形;图形的动态演示可以帮助学生认识立体图形与平面 图形的关系,建立空间概念;还可以帮助学生在变化的图形中,寻找不变 的位置关系和数量关系,从而发 现图形的性质.
教学建议
(一)注意与小学知识内容的衔接 了解学生现有的对图形的认知水平,教学中,引导学生站在较高的层面来 看待几何图形,并对学生原有的知识和正在学习的内容做一个信息的整合, 避免不适当的重复.
七年级上册数学资料汇总北师大版立体几何
七年级上册北师大版的数学资料中,涉及到立体几何的主要有以下几个方面:
1. 点、线、面、体的基本概念:点是没有大小和形状的,而线、面、体都是由点组成的。
线有长度但没有宽度和深度,面有长度和宽度但没有深度,体有长度、宽度和深度。
2. 立体图形的分类:立体图形可以分为柱体、锥体和球体等类型。
柱体包括圆柱和棱柱,锥体包括圆锥和棱锥,球体则是指球。
3. 立体图形的展开与折叠:对于一些立体图形,可以通过展开或折叠的方式将其转换为平面图形。
例如,将一个正方体展开成平面图形就是一个正方形。
4. 立体图形的表面积和体积:计算立体图形的表面积和体积是立体几何的一个重要内容。
例如,圆柱体的表面积是由一个侧面和一个底面(或顶面)组成的,其体积是底面积乘以高。
以上是七年级上册北师大版数学资料中涉及到立体几何的主要内容。
在学习立体几何时,可以通过观察实物、制作模型等方式来加深对立体图形的理解。
同时,也需要多做练习题来巩固所学知识。
初一(七年级)上册数学几何图形初步知识点总结
初一(七年级)上册数学几何图形初步知识点总结五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。
射线也没有距离。
因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
讲义-数学-七年级上册-第12讲-几何图形与线
讲义表示方法:(1)用一个小写字母表示直线,如直线l .(2)用直线上的两点来表示直线,如直线AB ,如图1.点与直线的位置关系:(1)一个点在直线上,也可以说这条直线经过这个点;(2)一个点在直线外,也可以说直线不经过这个点.相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点. 7.射线、线段射线和线段是直线的一部分.表示方法:(1)线段AB 或线段a ,如图2. (2)射线OA 或射线l ,如图3.注意:1.把线段向一方无限延伸所形成的图形叫做射线. 2.把线段向两方无限延伸所形成的图形叫做直线. 3.把射段反向延长就得到了一条直线. 【例题精讲】例1. 正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为a cm 的正方体的表面积为 cm 2 【考点】图形的点、线、面、体的计算.【解析】通过图形进行观察面、顶点、棱的个数,然后根据表面积公式进行计算. 【答案】6,8,3,相同, 26a【教学建议】根据所给条件,画出图形进行观察,然后将图形展开计算表面积. 例2. 下面图形中叫圆柱的是( )【考点】几何图形的分类判断.【解析】观察图形,通过圆柱性质来判断. 【答案】D【教学建议】熟悉掌握几何图形的分类和性质,然后根据题目要求进行判断.AB图1ABa图2 OA图3【巩固测试】1.观察下图,分别得它的主视图、左视图和俯视图,请写在对应图的下边.【考点】几何图形的三视图.【解析】对于一些立体图形的问题,常转化为平面图形来研究和处理,一般从立体图形的正面、左面、和上面看立体图形所得到的平面图形.【答案】俯视图左视图主视图【教学建议】根据已知几何体的形状,分别从它的正面、左面和上面看立体图形,从而观察出它的三视图. 2.下列图形中,是正方体表面展开图的是()(A)(B)(C)(D)【考点】几何图形的展开图.【解析】将正方体的表面适当剪开,可以展开成平面图形,通过观察选项可以判断出来.【答案】C【教学建议】根据已知几何体的形状,将它的表面剪开,从而观察出它的展开图.二、尺规作图【知识梳理】8.用圆规作一条线段等于已知线段步骤:1、作一条射线AB;2、用圆规量出已知线段的长度(记作a);3、以A为圆心,在射线AB上截取AC=a,则线段AC就是所求的线段.9.线段的概念及表示:如右图,表示的是一条线段.我们可以用两个大写的英文字母来表示一条线段的两个端点.线段可以用表示端点的两个字母A、B来表示,记作线段AB.我们也可以用一个小写的英文字母来表示,如a ,表示一条线段,记作线段a . 10.线段大小的比较及其方法:通常,把两条线段的长短称作两条“线段的大小的比较”.那么,线段大小的比较方法有:(1)叠合法:比较两条线段AB 、CD 的长短,可把它们移到同一条直线上,使一个端点A 和C 重合,另一端点B 和D 落在直线上A 和C 的同侧,如果点B 和D 重合.则AB CD =;如果点D 在线段AB 上,则AB CD >;如果点D 在线段AB 外,则AB CD <(如下图所示).(2)度量法:分别度量出每条线段的长度,再按长度的大小,比较线段的大小,线段的大小关系和它们长度的大小关系是一致的.【注意】线段是一个几何图形,而线段的长度是一个非负数,二者是有区别的,不能混为一谈. 11.线段的性质:两点之间的所有连线中,线段最短.【注意】(1)线段的这条性质是人们在日常生活中总结得出的,是一条基本事实,也称之为线段公理,所谓“公理”,简而言之就是“公认的真理”.(2)线段的性质在求最短路线问题时是一个重要的依据,在以后我们学习三角形时.还会用它来研究三角形三边关系,是一个很重要的性质. 12.两点之间的距离:两点之间的连线有无数条,它们的长度不一,两点之间线段的长度,叫做这两点之间的距离.【注意】(1)距离是指线段的长度,是一个数值,而不是指线段本身.(2)线段的长度可用刻度尺度量,如图所示,线段AB 的长度是2.2厘米;线段的长度也可以借助于圆规来度量,如图所示,线段AB 的长度也是2.2厘米.13.两条线段的和、差:两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的和(或差). 14.线段的倍分:(1)线段的倍:na (1n >为正整数,a 是一条线段)就是求n 条线段a 相加所得和的意义.na 也可以理1. 如图所示,比较线段AB 与AC ,AD 与AE ,AE 与AC 的大小. 【解析】解法一:用圆规截取可得:,,AB AC AD AE AE AC ><=解法二:用刻度尺测量长度,,,AB AC AD AE AE AC ><=【答案】,,AB AC AD AE AE AC ><=.【教学建议】根据线段的定义,只要两个线段的端点确定了,线段就可以确定. 在两条线段长度相差不大的情况下,目测法不一定可靠.比较线段的长短有两种方法:一是把它们放在同一条直线上比较,先把两条线段的一端重合,再看另一端的位置,从而确定两条线段的长短,这是从“形”的角度来进行比较;二是用刻度尺分别测量每条线段的长度,再根据度量的结果确定两条线段的长短,这是从“数”的角度进行比较.2. 在线段AB 上有一点M ,若6AB =厘米,2AM =厘米,则点M 与点B 之间的距离是多少?【考点】线段长度的计算. 【解析】因为6AB =厘米,2AM =厘米,所以624MB AB AM =-=-=(厘米).即点M 、B 之间的距离为4厘米. 【答案】4厘米.【教学建议】题中要求的是点M 与点B 之间距离,即线段BM 的距离,是指线段BM 的长度,它是一个数值. 3. 已知线段a 、b ,利用尺规比较a 、b 的大小.【考点】用尺规作图比较两条线段的大小. 【解析】如图所示,画图:(1)画射线AH .(2)以点A 为圆心,线段a 的长度为半径画弧,交AH 于B . (3)以点A 为圆心,线段b 的长度为半径画弧,交AH 于C .(4)在射线AH 上截取线段AB =a ,在射线AH 上截取线段AC =b .线段AB 的端点B 落在线段AC外,∴线段a 大于线段b ,即a b >.【答案】a b >.【教学建议】本题是利用叠合法比较线段的大小,若端点B 与C 重合,则a b =;若端点B 落在C 内,则a b <;若端点B 落在C 外,则 a b >.4. 如图所示,已知线段a 、b .(1)画出一条线段,使它的长度等于a b +. (2)画出一条线段,使它的长度等于a b -.【考点】画线段的和、差.【解析】解法一:(1)①画射线OP .①在射线OP 上顺次截取,OA a AB b ==.线段OB 就是所画的线段.(2) ①画射线OP ;①在射线OP 上截取OC a =,在射线CO 上截取CD b =.线段OD 就是所画的线段.解法二:(1)量得线段 2.6a =厘米, 1.5b =厘米, 4.1a b +=厘米. 画线段 4.1OA =厘米.(2)量得线段 2.6a =厘米, 1.5b =厘米. 1.1a b -=厘米.画线段 1.1OB =厘米.【答案】略.【教学建议】引导学生回顾线段和与差的基本画法,并通过本题让学生进一步熟悉用尺规画线段的和与差.课堂练习。
新人教版七年级数学上册《几何图形初步》精品课件(共37张PPT)
四棱柱 五棱柱
六棱柱
圆锥
锥体
三棱锥
棱锥
四棱锥 五棱锥
六棱锥
认识多面体
若围成立体图形的面是平的面,这样的立体图形又称为多面体
著名的欧拉公式:
多面体可以按面数V来+分F类-E,=如2下列图形中:
V:点、 E:棱、 F:面
四面体
六面体
八面体
正视图 从正面看
• 观察 • 立体图
三视图
左视图 从左面看 俯视图 从上面看
D
O
使DB=2CD,延长DC到A,使AC= 1 CB, C
若AB=10,则CD= ______
2
A CD
B
用一个大写字母表示点,1.当角的顶点处只有一个角时,可用表示 用二个大写字母表示线,顶 2.在点顶的点一处个加大上写弧字线母注表上示数; 字; 用三个大写字母表示角,3.在顶点处加上弧线注上希腊字母.
练 习: ⑺在以O为端点的两条射线上,分别取线段OA 、OB二等分OA 、OB,分别得 中点M、N,连结A、B并连结M、N。
• 2.如图:用所给的字母表示图中分别有直线_____,射线
B
______________,线段____
A
DE
CD 、CE、AB
AC DC E
3.填空:⑴如果两条直线有一个公共点,那么这两
A
B
C
o
1
ABC
o
1
1周角=3600 1平角=1800 小于平角的角按角的大小分类
▪ 锐角:小于直角的角; ▪ 直角:平角的一半(900); ▪ 钝角:大于直角且小于平角的角.
角度的转化: 1°=60′ 1′=60 〞 1°=3600 〞
角度的加减: 1.同种形式相加减; 2.度加(减)度;分加(减)分; 秒加(减)秒 3.超60进一;减一成60
2024版人教版数学七年级上册第六章几何图形初步6.3.1 角的概念 教学课件ppt
当堂训练
6.垃圾打捞船 A 和 B 都停驻在湖边观测湖面,从 A 船发现 它的北偏东60°方向有白色漂浮物, 同时,从 B 船也发 现该白色漂浮物在它的北偏西30°方向. (1) 试在图中确定白色漂浮物C的位置;
北 60°
C
北
30°
A
B
当堂训练
(2) 点 C 在点 A 的北偏东60°的方向上,那么点 A在
大
方
西 C
O
45°45°
A东 位
F
G B
南
正东:射线 OA 正南:射线 OB 正西:射线 OC 正北:射线 OD 西北方向:射线 OE 西南方向:射线 OF
东北方向:射线 OH 东南方向:射线 OG
探究新知
说一说 如图,说出下列方位.
(1) 射线 OA 表示的方向为北__偏__东___4_0_°.
角的度量
度、分、秒
1°=60′,1′=60″
课堂小结
方位角
北 西北
45° 45°
西
45°45°
西南 南
东北 八 大 方
东位
东南
点 C 的___D___方向上.
北
A. 南偏东30° B. 南偏西30° C. 南偏东60° D. 南偏西60°
北 60°
A
C 60°
北 30°
B
课堂小结
角的定义
有公共端点的两条射线组成的图形 一条射线绕着它的端点旋转而形成的图形
角的表示 方法
用三个大写字母或一个大写字母表示 用一个数字加弧线表示 用一个小写希腊字母加弧线表示
●
远望一号
●
远望二号
巩固练习
●
60°
●
七年级上册初一数学概念总结
七年级上册初一数学概念总结一、代数概念1、代数式:代数式是由常数、变量以及运算符号组成的数学表达式,表达某种关系。
2、变量:变量既可代表数字,也可代表某种物理量的变化,它是未知的或有待确定的量,可以用字母表示。
3、常数:常数是指同一个表达式中,所有的变量都确定下来后,不随变量变化而变化的数字,一般用数字表示。
4、等价式:等价式是指对等的两个代数式,当两个代数式都成立时,它们之间称为等价的。
5、恒等式:恒等式是指两边的两个代数式相等,它们的值总是相等的。
二、因式分解1、因式分解:因式分解是指将一个多项式拆分成一系列的因数的过程。
2、本原因式:本原因式是指不可继续分解的因式。
3、同类因式:同类因式是指相同的因式,它们可以相加或相减。
4、最简式:最简式是指将一个多项式简化成最简单的形式,即可以用最少的因式表达出来。
三、方程1、一元一次方程:一元一次方程是指一个未知数只出现一次,并且次数是一次的方程。
2、二元一次方程:二元一次方程是指有两个未知数,且只出现一次,并且次数是一次的方程。
3、二元二次方程:二元二次方程是指有两个未知数,且只出现二次,并且次数是二次的方程,也称根的方程。
4、无解方程:无解方程是指求解该方程没有解的方程。
5、负数解:负数解是指方程可以有负数的解的情况。
四、几何概念1、几何体:几何体是指由一组构件共用一个封闭空间组成的三维物体,如立方体、正方体、球体、圆柱体、圆锥体等。
2、平面图形:平面图形是指由一组构件共用一个平面空间组成的二维物体,如正方形、圆形、三角形、多边形等。
3、中心角:中心角是指多边形的一个角,它的两条边的中点分别指向多边形的中心点。
4、中线:中线是指多边形的一条直线,它由每个多边形的顶点构成,并且两个顶点都指向多边形的中心点。
5、面积:面积是指三维物体或者平面图形中内部空间的大小,它用来描述多边形或者几何体的大小。
七年级上册几何初步知识点
七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。
在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。
本文旨在介绍七年级上册几何初步知识点,供学生参考。
一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。
线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。
面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。
1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。
四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。
多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。
多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。
二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。
一个角包含两个部分,即顶点和两条边。
角可以分为锐角、直角、钝角等。
2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。
线段是由两个端点和这两个端点之间的线段组成的线。
射线是由一个端点和一个方向组成的线段。
直线图形具有平移不变性、旋转不变性、翻转不变性等特点。
线段与射线也具有相似的性质。
2.3 物体的转动物体的转动分为旋转和翻折。
旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。
翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。
三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。
坐标系原点是两条直线的交点。
3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。
人教版初中数学七年级上册第四章4.1.1几何图形的概念
4.1.1 第1课时 几何图形的概念
到城雕
从古剪代 纸 到现代 从长城 到立交
从植物 到动物
从四通八达的立交桥 到街头巷尾的交通标志
从日常生活用品 到生产劳动工具
现实世界中有形态各异、丰富多彩的图形,千姿百态的图 形美化了我们的生活空间.
几何------研究图形的形状、大小和位置关系的一门学科.
说一说下面这些几何图形有什么共同特点?
正方体
圆柱体
球体
长方体
三棱柱 圆锥体 四棱锥 六棱柱
三棱锥
这些几何图形的各部分不都在同一平面内,它们
是立体图形.
4.1.1 第1课时 几何图形的概念
知识点 3 平面图形的认识
6. 有下列几何图形:圆、圆柱、球、扇形、等腰三角形、长 方体、正方体、直角,其中平面图形有____4____个.
以半圆的直径所在直线为旋转轴,半圆 面旋转一周形成的旋转体
4.1.1 第1课时 几何图形的概念 4. 在如图 4-1-1 所示的图形中,柱体有_①__②_③__⑦__,锥体有 ___⑤__⑥___,球体有___④_____.(填序号)
图 4-1-1
圆柱 圆锥
圆台
棱柱:
有两个面互相平行,其余各面都是平行四边形,并且每相邻两 个四边形的公共边都互相平行,由这些面所围成的多面体叫做 棱柱。
斜棱柱 直棱柱
长方体和正方体都是特殊的棱柱 (四棱柱)
棱柱
三棱柱
四棱柱 五棱柱 六棱柱
n棱柱
面的个数 顶点个数 棱的条数
圆柱: 棱锥: 圆锥:
一个长方形以一边为轴顺时针或逆时针旋转 一周,所经过的空间叫做圆柱体。
从实物中抽象出的各种图形统称为几何图形.
初一数学几何知识点梳理
初一数学几何知识点梳理七年级上册数学第四章几何图形初步知识点一、几何图形初步认识1、几何图形:把从实物中抽象出来的各种图形的统称。
(长方体、圆柱、球、长方形、正方形、圆、线段、点、以及小学学过的三角形、四边形等,都是从形形色色的物体中外形中得出的,都是几何图形。
)2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
(如线段、角、三角形、长方形、圆等)3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
(长方体、正方体、圆柱、圆锥、球等)4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、点,线,面,体包围着体的是面,面有平的面和曲的面两种。
面和面相交的地方形成线,线和线相交的地方是点。
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线1、线段:线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线只有一个端点。
3、直线:将线段的两端无限延长就形成了直线。
直线没有端点。
4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5、相交:两条不同的直线有一个公共点时,称这两条直线相交。
6、两条直线相交有一个公共点,这个公共点叫交点。
7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8、线段的性质:两点的所有连线中,线段最短。
(两点之间,线段最短)9、距离:连接两点间的线段的长度,叫做这两点的距离。
三、角1、角:有公共端点的两条射线组成的图形叫做角。
角有顶点和两条边。
2、角的度量单位:度、分、秒。
3、角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
两条射线叫做角的两条边。
②一度的1/60是一分,一分的1/60是一秒。
角的度、分、秒是60进制。
七年级上册数学几何
七年级上册数学几何
七年级上册数学几何是一个教学概念,指的是在七年级上学期学习的数学几何知识。
在这个阶段,学生开始接触基础的几何学概念,例如点、线、面、角等,以及学习如何使用基本的几何工具,如直尺和圆规。
具体来说,七年级上册数学几何通常涵盖以下内容:
1.基础概念:这包括理解几何图形的元素(如点、线、面),以及这些元素
之间的关系。
2.测量:学生开始学习如何测量长度、角度等几何量。
3.基础几何图形:学生开始了解和探索基础几何图形,如直线、线段、射线、
角、三角形等。
4.图形的变换:包括平移、旋转和对称等基础图形的变换。
这个阶段的教学目标主要是使学生建立起几何学的基本观念,了解基本的几何原理和技能,并为未来的几何学习打下坚实的基础。
最后总结:七年级上册数学几何是学生在七年级上学期学习的数学几何知识,包括基础概念、测量、基础几何图形以及图形的变换等内容,这是他们几何知识体系的基础构建阶段。
七年级上册第六章几何图形初步6-3角6-3-1角的概念新版新人教版
知4-练
解:如图所示,作∠1= 60°,∠2=30°,两射 线相交于P点,则点P即 为所求.
知4-练
角的概念
定义
度量单位
角
表示方法
角度的换算
方位角
方法 1 方程思想探究角度
例 5 从6 时到7 时,这1 个小时内钟表表面的时针与分针何 时的夹角为60°? 思路引导:
解:时针每分钟转0.5°,分针每分钟转6°,分两种 情况:① 设分针从1 2 出发,在追上时针前的夹角是 60 ° 时的时刻为6 时x 分,如图6.3-7 . 根据题意,得6x+60 =0 .5x+180,
(4)若在∠ AOB 的内部画10 条射线OC,OD,OE,…,OL,则图中 有__6_6__个不同的角; 解题秘方:从OA 边至OB 边按顺序数,可以找出角的个数与角内 部射线的条数的关系. 对于在∠ AOB 的内部画n 条射线的情况,应 从特殊情况总结出一般结论.
解:若在∠ AOB 的内部画1 0 条射线OC,OD,OE, …, OL,则图中有11 +10 +9+8 +… +2 +1 =66(个)不同的角.
知2-讲
角的几何符号为“∠”,角的表示方法有以下几种
表示方法 示例 用三个大写 字母表示
用一个大写 字母表示
用数字表示 用希腊字母 表示
记法方法 解读
∠ AOB 或∠BOA
字母O 表示顶点,要写在中间, A,B 表示角的两边上的点,用 该表示法可以表示任何一个角
当以某一个字母表示的点为顶点 ∠ O 的角只有一个时,可用这个顶点
的字母来表示
∠ 1 在靠近角的顶点处加上弧线,并 标上数字或希腊字母. 该表示法
∠α 形象直观
知2-讲
注意:1 . 角的符号应书写标准,“∠”不可与“<”混 淆.2 . 当以某一点为顶点的角有两个或两个以上时,其中 任何一个角都不能只用一个顶点字母表示.
七年级数学上册 第四章 《几何图形初步》知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
七年级上册数学知识点总结大全(共7篇)
七年级上册数学知识点总结大全第1篇第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
初一上册数学知识点:几何图形初步
初一上册数学知识点:几何图形初步本章的主要内容是图形的初步看法,从生活周围熟习的物体入手,对物体的外形的看法从理性逐渐上升到笼统的几何图形。
经过从不同方向看平面图形和展开平面图形,初步看法平面图形与平面图形的联络。
在此基础上,看法一些复杂的平面图形直线、射线、线段和角。
一、目的与要求1.能从理想物体中笼统得出几何图形,正确区分平面图形与平面图形;能把一些平面图形的效果,转化为平面图形停止研讨和处置,探求平面图形与平面图形之间的关系。
2.阅历探求平面图形与平面图形之间的关系,开展空间观念,培育提高观察、剖析、笼统、概括的才干,培育入手操作才干,阅历效果处置的进程,提高处置效果的才干。
3.积极参与教学活动进程,构成自觉、仔细的学习态度,培育勇于面对学习困难的肉体,感受几何图形的美感;倡议自主学习和小组协作肉体,在独立思索的基础上,能从小组交流中获益,并对学习进程停止正确评价,体集协作学习的重要性。
二、知识框架四、难点平面图形与平面图形之间的转化是难点;探求点、线、面、体运动变化后构成的图形是难点;画一条线段等于线段的尺规作图方法,正确比拟两条线段长短是难点。
五、知识点、概念总结1.几何图形:点、线、面、体这些可协助人们有效的描写扑朔迷离的世界,它们都称为几何图形。
从实物中笼统出的各种图形统称为几何图形。
有些几何图形的各局部不在同一平面内,叫做平面图形。
有些几何图形的各局部都在同一平面内,叫做平面图形。
虽然平面图形与平面图形是两类不同的几何图形,但它们是相互联络的。
2.几何图形的分类:几何图形普通分为平面图形战争面图形。
13.角的种类:角的大小与边的长短没有关系;角的大小决议于角的两条边张开的水平,张开的越大,角就越大,相反,张开的越小,角那么越小。
在静态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。
人教版七年级数学上册《几何图形初步》课件
学习重点: 建立完善的认知结构,体会一些数学思想方法的应用.
课件说明
几点说明: 1.知识结构图的建构过程,可以依此课件在大屏幕进
行,也可以在黑板上随着问题的展开逐步完成. 2.注重渗透数学思想方法:分类讨论(例3)、方程思
谢谢观赏
You made my day!
我们,还在路上……
(3)你能画出几个立体图形和平面图形吗?
(4)分别画出几个简单立体图形的展开图和 从不同方向看得到的平面图形.你能说说立体 图形与平面图形的联系吗?
知识结构图
从不同方向看立体图形
立体图形 平 面 图 形
展开立体图形
平面图形
平面图形
例1 在下列图形中(每个小四边形皆为全等 的正方形),可以是一个正方体表面展开图的是
( C ).
(A)
(B)
(C)
(D)
例2 如图,从正面看A、B、C、D四个立体图形,分别得到a、b、 c、d四个平面图形,把上下两 行相对应立体图形与平面图形用线连接起来.
a
b
c
d
问题2: 在平面图形中,我们学习了哪些简单的平面图形.
知识结构图
从不同方向看立体图形
立体图形 平 面 图 形
展开立体图形 直线、射线、线段
A
BC
A
CB
图①
图②
(2)如图②,因AB=3,BC=1, 所以AC=AB-BC=3-1=2(cm).
问题4:
在本章中,我们学习了有关角的那些 知识?有那些重要结论?
知识结构图
从不同方向看立体图形
立体图形 平 面 图 形
展开立体图形 直线、射线、线段
七年级数学上册. 几何图形立体图形与平面图形几何图形的概念听课
2021/12/10
第五页,共十三页。
第1课时 立体(lìtǐ)图形与平面图形
分类 图例
特征描述
圆 立
锥 体锥 图体 棱 形锥
只有一个底面,且是圆,侧面由曲的面围成
只有一个底面,且是多边形,侧面都是三角 形,按底面多边形的边数分为三棱锥、四棱
锥、…、n 棱锥
2021/12/10
第四章 几何图形初步
4.1 几何图形 4.1.1 立体图形与平面图形
2021/12/10
第一页,共十三页。
第四章 几何图形(jǐhé tú xíng)初步
2021/12/10
第1课时(kèshí)
立体图形与平面图形
知识目标 目标突破 总结反思
第二页,共十三页。
第1课时 立体图形(túxíng)与平面图形(túxíng)
解:(1)不正确.理由:课本类似于长方体,是立体图形,立 体图形中某些部分是平面图形.
(2)不正确.理由:是四棱锥. (3)不正确.理由:是圆锥和圆柱的组合体.
2021/12/10
第十二页,共十三页。
内容(nèiróng)总结
4.1 几何图形。第1课时 立体图形与平面图形。2.通过观察和思考(sīkǎo),能识别常见的平面图形.。在
第六页,共十三页。
第1课时 立体(lìtǐ)图形与平面图形
目标二 能识别平面图形
例 2 教材补充例题 如图 4-1-2 所示,如果将标号为 A,B,
C,D 的正方形沿图中的虚线剪开后得到标号为 P,Q,M,N 的四个图
形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.
填空:A 与___M___对应,
2021/12/10
第十页,共十三页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
走进图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱
柱体
棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
生活中的立体图形球体
(按名称分) 圆锥
椎体
棱锥
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识
点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A
一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB
一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB
点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
(5)线段的比较:1.目测法 2.叠合法 3.度量法
线段的中点:
点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。
M 是线段AB 的中点
AM=BM=2
1AB (或者AB=2AM=2BM )
直线的性质
(1)直线公理:经过两个点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
M A B
角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
角的表示:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
④用三个大写英文字母表示任一个角,如∠BAD ,∠BAE ,∠CAE 等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
用一副三角板,可以画出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°
角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n 度记作“n °”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
OB 平分∠AOC
∠AOB=∠BOC=2
1∠AOC (或者∠AOC=2∠AOB=2∠BOC ) 余角和补角 ①如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中一个角是另一个角的余角。
用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β互
余;反过来,如果∠α与∠β互余,那么∠α+∠β
=90°
②如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。
用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180°
③同角(或等角)的余角相等;同角(或等角)的补角相等。
对顶角
1°=60’,1’=60”
① 一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个角叫做互为对顶角,其中一个角叫做另一个角的对顶角。
注意:对顶角是成对出现的,它们有公共的顶点;只有两条直线相交时才能形成对顶角。
②对顶角的性质:对顶角相等
如图,∠1和∠4是对顶角,∠2和∠3
是对顶角 ∠1=∠4,∠2=∠3
平行线:
在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB ∥CD ”,读作“AB 平行于CD ”。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)在同一平面内,垂直于同一条直线的两直线平行。
(3)平行线的定义。
垂直:
两条直线相交成直角,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB ,CD 互相垂直,记作“AB ⊥CD ”(或“CD ⊥AB ”),读作“AB 垂直于CD ”(或“CD 垂直于AB ”)。
垂线的性质:
性质1:平面内,过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
点到直线的距离:过A 点作l 的垂线,垂足为B 点,线段AB 的长度叫做点A 到直线l 的距离。
同一平面内,两条直线的位置关系:相交或平行。
1 2
3
4。