有限元基本原理与概念
有限元基本概念和原理
![有限元基本概念和原理](https://img.taocdn.com/s3/m/24a0bcd5c1c708a1284a44cc.png)
有限元基本概念和原理有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。
有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
有限元的核心思想和基本概念-精选文档
![有限元的核心思想和基本概念-精选文档](https://img.taocdn.com/s3/m/2368f5a3ec3a87c24028c489.png)
2、更为强大的网格处理能力
(技术难题,
关键步骤) 有限元法求解问题的基本过程主要包括: 分析对象的离散化、有限元求解、计算结 果的后处理三部分。结构离散后的网格质 量直接影响到求解时间及求解结果的正确 性与否,在有些方面一直没有得到改进, 如对三维实体模型进行自动六面体网格划 分和根据求解结果对模型进行自适应网格 划分。
应力:物体横截面上单位面积上的内力。
应力=内力/横截面面积 应变:单位长度上的位移。 应变=位移/构件长度 弹性阶段:去除外力物体还能恢复到外力
作用前的形状。
例:弹簧 弹塑性阶段:去除外力物体不能恢复到外
力作用前的形状。 例:拉面 弹性力学:研究非杆件(板,壳等)物体 在弹性阶段的应力,应变。 例:黑板,鸡蛋壳
MSC-NASTRAN软件在航空航天领域有着
很高的地位,目前世界上规模最大的有限 元分析系统。 ANSYS软件致力于耦合场的分析计算,能 够进行结构、流体、热、电磁四种场的计 算。 ADINA由于其在非线性求解、流固耦合分 析等方面的强大功能,迅速成为有限元分 析软件的后起之秀,现已成为非线性分析 计算的首选软件。
4、由单一结构场求解发展到耦合场问题的
求解 现在用于求解结构线性问题的有限元方法 和软件已经比较成熟,发展方向是结构非 线性、流体动力学和耦合场问题的求解。 例如当流体在弯管中流动时,流体压力会 使弯管产生变形,而管的变形又反过来影 响到流体的流动……这就需要对结构场和 流场的有限元分析结果交叉迭代求解,即 所谓\"流固耦合\"的问题。
目的:在工程设计阶段时期分析应力和应
变是否满足工程的要求。 关键词: 外力(荷载) 内力 位移 杆件 结构力学 应力 应变 弹性力学 强度 刚 度 有限元分析
c++面向对象的有限元程序设计
![c++面向对象的有限元程序设计](https://img.taocdn.com/s3/m/efeaad25f4335a8102d276a20029bd64793e6259.png)
《C++面向对象的有限元程序设计》一、引言在计算机科学和工程中,有限元方法是一种数值分析技术,广泛应用于工程设计和科学研究领域。
C++作为一种流行的编程语言,在有限元程序设计中也扮演了重要角色。
本文将从深度和广度两个方面对C++面向对象的有限元程序设计进行全面评估,并撰写一篇有价值的文章,以帮助读者更全面、深刻地理解这一主题。
二、C++面向对象的有限元程序设计的基本概念1. 有限元方法的基本原理有限元方法是一种数值计算方法,用于求解偏微分方程和积分方程。
通过将求解区域分割为有限个单元,建立单元之间的联系,将连续的问题转化为离散的代数问题,从而得到数值解。
在有限元程序设计中,需要考虑如何有效地表示和处理单元、节点、边界条件等信息。
2. 面向对象的程序设计思想面向对象的程序设计思想强调将现实世界中的问题抽象成对象,通过封装、继承和多态等机制构建模块化、可复用的代码结构。
在C++中,类和对象是面向对象程序设计的核心概念,有限元程序设计可以通过抽象出单元、节点、网格等对象来实现。
三、深入探讨C++面向对象的有限元程序设计1. C++语言特性在有限元程序设计中的应用在C++语言中,有丰富的特性可以用于实现面向对象的有限元程序设计。
类的封装可以用于表示单元和节点对象的属性和行为,继承可以用于构建具体单元类型的层次结构,多态可以实现对不同单元类型的统一处理。
2. 优化设计思路下的C++面向对象有限元程序设计针对大规模的有限元计算,优化的设计思路是必不可少的。
C++中提供了丰富的性能优化手段,如模板元编程、内联函数、移动语义等,可以在面向对象的有限元程序设计中发挥重要作用。
四、总结和回顾在本文中,我们对C++面向对象的有限元程序设计进行了全面评估,并撰写了一篇有价值的文章。
通过深入探讨原理、语言特性和优化设计思路,帮助读者更全面地理解了这一主题。
从我的个人观点看,C++面向对象的有限元程序设计是一个值得深入研究的领域,它不仅涉及到程序设计技术,还涉及到数值计算和工程应用等多个领域的知识。
《有限元基础》课件
![《有限元基础》课件](https://img.taocdn.com/s3/m/70139646f02d2af90242a8956bec0975f565a464.png)
有限元方法可以应用于各种物理问题和工程领域 ,如结构力学、流体力学、热传导、电磁场等。
高效性
有限元方法采用分块逼近的方式,将整体问题分 解为多个子问题,从而大大降低了问题的规模和 复杂度,提高了计算效率。
精度可控制
通过选择足够小的离散元尺寸和足够多的元数目 ,可以控制求解的精度,使得结果更加精确可靠 。
有限元方法对初值和边界条件 的选取比较敏感,不同的初值 和边界条件可能导致截然不同 的结果。
高阶偏微分方程的离散化 困难
对于一些高阶偏微分方程,有 限元方法的离散化过程可能会 变得相当复杂和困难。
有限元方法的发展趋势
并行化和高性能计算
随着计算机技术的发展,有限元方法的计算效率和精度得到了极大的提高。未来,随着并行化和高性能计算技术的进 一步发展,有限元方法的计算效率将会得到进一步提升。
02
有限元的数学基础
线性代数基础知识
向量与矩阵
介绍向量的基本概念、向量的运算、矩阵的表示和基 本运算。
线性方程组
阐述线性方程组的基本概念、解法以及在有限元分析 中的应用。
特征值与特征向量
介绍特征值和特征向量的概念、计算方法以及在有限 元分析中的应用。
变分法基础知识
变分法的基本概念
阐述变分法的基本思想、定义和定理,以及在 有限元分析中的作用。
弱收敛与弱*收敛
03
介绍弱收敛和弱*收敛的概念、性质以及在有限元分析中的应用
。
03
有限元方法的基本步骤
问题的离散化
总结词
将连续的问题离散化,将连续体划分为有限个小的单元,每个单元称为有限元 。
详细描述
在有限元方法中,首先需要对实际问题进行离散化,即将连续的问题划分为有 限个小的单元,每个单元称为有限元。离散化的目的是将连续的物理量近似为 离散的数值,以便进行数值计算。
有限元静力分析基本原理
![有限元静力分析基本原理](https://img.taocdn.com/s3/m/8b852d69bdd126fff705cc1755270722192e5904.png)
此外,随着大数据和人工智能技术的快速发展,有限元分析可以与这 些技术相结合,实现更加智能化、自动化的工程设计和管理。
THANKS
感谢观看
离散化
将连续的物理系统划分为有限个离散的单元, 每个单元具有一定的形状和大小。
集成
将所有单元的数学方程集成为一个整体的有 限元方程组。
单元分析
对每个离散单元进行数学建模,建立单元的 数学方程。
求解
通过求解有限元方程组,得到物理系统的近 似解。
有限元的数学基础
线性代数
01
有限元方法涉及大量的线性代数运算,如矩阵运算、线性方程
定不变的载荷作用下的响应。
它主要关注的是结构的平衡状态 和位移,而不考虑时间因素和动
态效应。
静力分析广泛应用于工程领域, 如建筑、机械、航空航天等,用 于评估结构的强度、刚度和稳定
性。
静力分析的基本步骤
建立数学模型
首先需要建立结构的数学模型,包括对结构的离散化、选 择合适的单元类型和确定边界条件等。
该方法基于离散化的思想,将 复杂的结构分解为简单的、相 互连接的单元,通过求解每个 单元的平衡方程来获得结构的
整体响应。
有限元静力分析在工程领域中 广泛应用于结构强度、刚度、 稳定性等方面的分析,为结构 设计提供了重要的理论依据和 实践指导。
随着计算机技术的发展,有限 元分析软件不断涌现,为工程 师提供了更加高效、精确的数 值分析工具。
施加载荷
根据实际工况,在结构上施加相应的载荷,包括重力、外 部力、压力等。
求解平衡方程
通过有限元方法,将连续的结构离散为有限个单元,并建 立平衡方程组。然后使用数值方法求解这个方程组,得到 各节点的位移和应力等结果。
有限元基础知识归纳
![有限元基础知识归纳](https://img.taocdn.com/s3/m/1807dd2642323968011ca300a6c30c225801f059.png)
有限元基础知识归纳有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处Ni=1,其它节点Ni=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。
有限元入门
![有限元入门](https://img.taocdn.com/s3/m/d4b66ac44431b90d6d85c787.png)
有限差分方法
(Finite Differential Method)
该方法将求解域划分为差分网格,用有限 个网格节点代替连续的求解域。有限差分 法以泰勒级数展开等方法,把控制方程中 的导数用网格节点上的函数值的差商代替 进行离散,从而建立以网格节点上的值为 未知数的代数方程组。该方法是一种直接 将微分问题变为代数问题的近似数值解法, 数学概念直观,表达简单,是发展较早且 比较成熟的数值方法。
三、 塑性加工中的有限元法概述
有限元法与其它塑性加工模拟方法相比,功能最 强、精度最高、解决问题的范围最广。它可以采 用不同形状、不同大小和不同类型的单元离散任 意形状的变形体,适用于任意速度边界条件,可 以方便地处理模具形状、工件与模具之间的摩擦 、材料的硬化效应、速度敏感性以及温度等多种 工艺因素对塑性加工过程的影响,能够模似整个 金属成形过程的流动规律,获得变形过程任意时 刻的力学信息和流动信息,如应力场、速度场、 温度场以及预测缺陷的形成和扩展。
1-7 有限单元法的基本内容
有限元法的力学基础是弹性力学,而方程求解的原理是泛 函极值原理,实现的方法是数值离散技术,最后的技术载 体是有限元分析软件。必须掌握的基本内容应包括: 1、基本变量和力学方程(即弹性力学的基本概念) 2、数学求解原理(即能量原理) 3、离散结构和连续结构的有限元分析实现(有限元分析 步骤) 4、有限元法的应用(即有限元法的工程问题研究) 5、各种分析建模技巧及计算结果的评判 6、学习典型分析软件的使用,初步掌握一种塑性有限元 软件 注意:会使用有限元软件不等于掌握了有限元分析工具
CAE课有限元分析理论基础
![CAE课有限元分析理论基础](https://img.taocdn.com/s3/m/fbf0d457640e52ea551810a6f524ccbff121caab.png)
类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化
有限元法基础
![有限元法基础](https://img.taocdn.com/s3/m/d99755cd76a20029bd642d30.png)
绪论
1.1有限元的基本概念
任何连续体都可以假想地分割成有限个简单形状单元 体的组合,在有限元法中将这些简单形状的单体称为单 元,把单元与单元之间设置的相互连接点,称为节点,如 图1.1所示。从理论上说,单元的分割可以是任意的,不过 在实际计算中必须根据研究对象的特点,使单元分割既满 足力学分析要求,又能使计算简便。
绪论
1.1有限元的基本概念
基本步骤
1 结构离散化 2 单元分析 3 整体分析
绪论
1.2 有限元的发展状况
1960 年, Clough 在他的一篇论文“平面分析的有限元法” 中最先引入了有限元法 (Finite Element Method)这一术语。这 一方法是结构分析专家把杆件结构力学中的位移法推广到求解 连续体介质力学问题而提出来的。这一方法的提出,引起了广 泛的关注,吸引了众多力学﹑数学方面的专家和学者对此进行 研究。数学家的研究表明,有限元法可应用于求解偏微分方程, 可用于具有变分泛函的任何数学问题。而且,数学家对有限元 的思路早就有了,不过没有用“有限单元”这个术语。此后, 大量学者﹑专家开始使用这一离散方法来处理结构分析﹑流体 分析﹑热传导﹑电磁学等复杂问题。
绪论
1.2 有限元的发展状况
从1963年到 1964 年, Besseling﹑B.H.pian 等人的研究工 作表明,有限元方法实际上是弹性力学变分原理中瑞雷—里 兹法的一种形式,从而在理论上为有限元方法奠定了数学基 础。但与变分原理相比,有限元方法更为灵活,适应性更强, 计算精度更高。这一成果也大大刺激了变分原理的研究和发 展,先后出现了一系列基于变分原理的新型有限元模型,如 混合元﹑非协调元﹑广义协调元等。1967年,Zienkiewicz和 Cheung出版了第一本关于有限元分析的专著。
有限元法的基本概念和特点
![有限元法的基本概念和特点](https://img.taocdn.com/s3/m/38cc094c91c69ec3d5bbfd0a79563c1ec5dad7ea.png)
边界条件和载荷对分析结果的影 响
边界条件和载荷的设置直接影响分析结果 的精度和可靠性,因此需要仔细考虑和验 证。
03 有限元法的特点
适应性
有限元法能够适应各种复杂形状和边 界条件,通过将连续的求解域离散化 为有限个小的单元,实现对复杂问题 的近似求解。
有限元法的适应性表现在其能够处理 不规则区域、断裂、孔洞等复杂结构 ,并且可以根据需要自由地组合和修 改单元,以适应不同的求解需求。
降低制造成本。
THANKS FOR WATCHING
感谢您的观看
通过将不同物理场(如结构、流体、电磁等)耦 合在一起,可以更准确地模拟复杂系统的行为。
多物理场耦合分析将为解决复杂工程问题提供更 全面的解决方案面具有重要作用。
通过先进的建模技术和优化 算法,可以更有效地设计出 高性能、轻量化的结构。
有限元法在结构优化方面的应 用将有助于提高产品的性能和
近似性
利用数学近似方法对每个单元体的行 为进行描述,通过求解代数方程组来 获得近似解。
通用性
适用于各种复杂的几何形状和边界条 件,可以处理多种物理场耦合的问题。
高效性
通过计算机实现,能够处理大规模问 题,提高计算效率和精度。
02 有限元法的基本概念
离散化
离散化
将连续的物理系统分割成有限个小的、相互连接的单元,每个单 元称为“有限元”。
随着计算机技术的发展,有限元法的精度不断提高,对于一些高精度要求的问题 ,有限元法已经成为一种重要的数值分析工具。
04 有限元法的应用领域
工程结构分析
01
02
03
结构强度分析
通过有限元法,可以对工 程结构进行强度分析,评 估其在各种载荷条件下的 稳定性。
有限元法和应用总结
![有限元法和应用总结](https://img.taocdn.com/s3/m/ff24602326284b73f242336c1eb91a37f111323a.png)
4.有限元法涉及旳内容有哪些?
有限元法在数学和力学领域所根据旳理论; 单元旳划分原则; 形状函数旳选用及协调性; 有限元法所涉及旳多种数值计算措施及其误
差、收敛性和稳定性; 计算机程序设计技术; 向其他各领域旳推广。
5.有限元法旳分类
• 有限元法能够分为两类,即线弹性有限元 法和非线性有限元法。其中线弹性有限元 法是非线性有限元法旳基础,两者不但在 分析措施和研究环节上有类似之处,而且 后者经常要引用前者旳某些成果。
线弹性有限元
线弹性有限元是以理想弹性体为研究对象旳, 所考虑旳变形建立在小变形假设旳基础上。在 此类问题中,材料旳应力与应变呈线性关系, 满足广义胡克定律;应力与应变也是线性关系, 线弹性问题可归结为求解线性方程问题,所以 只需要较少旳计算时间。假如采用高效旳代数 方程组求解措施,也有利于降低有限元分析旳 时间。
• 一般而言,虚位移原理不但能够合用于线弹性 问题,而且能够用于非线性弹性及弹塑性等非 线性问题。
• 但是否合用全部旳问题呢?
3.虚功原理(续)
——平衡方程和几何方程旳等效积分“弱” 形式
• 虚应力原理旳力学意义:假如位移是协调旳,则虚应 力和虚边界约束反力在他们上面所作旳功旳总和为零。 反之,假如上述虚力系在他们上面所作旳功旳和为零, 则它们一定是满足协调旳。所以,虚应力原理表述了 位移协调旳必要而充分条件。
移,另一部分基本未知量为节点力。
*8.有限元法分析过程(续)
• 有限元位移法计算过程旳系统性、规律性强,尤 其合适于编程求解。一般除板壳问题旳有限元应 用一定量旳混正当外,其他全部采用有限元位移 法。所以,一般不做尤其申明,有限元法指旳是 有限元位移法。
• 有限元分析旳后处理主要涉及对计算成果旳加工 处理、编辑组织和图形表达三个方面。它能够把 有限元分析得到旳数据,进一步转换为设计人员 直接需要旳信息,如应力分布状态、构造变形状 态等,而且绘成直观旳图形,从而帮助设计人员 迅速旳评价和校核设计方案。
有限元分析的力学基础
![有限元分析的力学基础](https://img.taocdn.com/s3/m/79e54ccba1116c175f0e7cd184254b35eefd1ad7.png)
应用场景:流体 动力学分析广泛 应用于航空航天、 汽车、船舶、能 源等领域如飞机 机翼的气动性能 分析、汽车发动 机的流体动力学 分析等。
优势:有限元分 析能够处理复杂 的几何形状和边 界条件提供高精 度和可靠的分析 结果有助于优化 设计和改进产品 性能。
未来发展:随着 计算技术和数值 方法的不断进步 有限元分析在流 体动力学分析中 的应用将更加广 泛和深入有望在 解决复杂流体动 力学问题方面发 挥更大的作用。
特点:适用于大规模复杂问题的求解但需要设置合适的初值和解的精度要求。
有限元分析的精度与收敛性
精度:有限元分析的精度取决于网格划分的大小和形状以及所选择的近似函数。 收斂性:有限元分析的收敛性是指随着网格的细化解的近似值将逐渐接近真实解。 收敛速度:收敛速度取决于所选择的有限元类型和边界条件。 误差估计:通过误差估计可以确定所需的网格细化程度以确保解的精度。
弹性力学的 应用实例
塑性力学基础
定义:塑性力学是研究材料在达到屈服点后发生不可逆变形时行为规律的学科。 特点:塑性变形过程中外力的大小和方向可以发生变化而材料的内部结构保持不变。 塑性力学的基本方程:包括应力-应变关系、屈服准则、流动法则等。 应用:塑性力学在工程领域中广泛应用于金属成型、压力容器设计等领域。
局限性:塑性力 学模型忽略了材 料在塑性变形过 程中的微观结构 和相变行为因此 对于某些特定材 料或极端条件下 的应用可能存在 局限性。
流体动力学模型
简介:流体动力 学模型是有限元 分析中用于描述 流体运动的数学 模型包括流体压 力、速度、密度
等参数。
方程形式:流体 动力学模型通常 由一组偏微分方 程表示如NvierSkes方程描述了 流体的运动规律。
单元分析: 对每个单元 进行力学分 析包括内力、 外力、位移 等
《有限元分析概述》课件
![《有限元分析概述》课件](https://img.taocdn.com/s3/m/1a23ea6de3bd960590c69ec3d5bbfd0a7856d541.png)
如何生成适合于有限元分析的网格,并优 化网格结构。
如何进行杆件的有限元分析,包括轴力、 弯曲和扭转。
3 二维和三维模型的分析
4 不同单元的选择及其特点
如何进行二维和三维模型的有限元分析, 包括平面应力、平面应变和轴对称。
不同类型的有限元单元的选择和应用,以 及它们的特点和限制。
有限元分析软件
ANSYS
有限元分析的应用领域
工程结构分析
有限元分析广泛应用于工程领域,包括建筑、桥梁、船舶、管线等结构的设计和分析。
汽车、航空航天、机械等领域应用
有限元分析在汽车、航空航天、机械等行业中被广泛应用于产品设计和优化。
地震、爆炸等自然灾害分析
有限元分析可以用于模拟和预测地震、爆炸等自然灾害对结构的影响,进而提高结构的抗震 和防爆性能。
COMSOL Multiphysics是一款多物理场耦合的 有限元分析软件,适用于多领域的工程分析。
有限元分析的未来发展
1 超级计算机的运用 2 多物理场耦合
随着计算机性能的提升, 有限元分析可以应用于 更大规模、更复杂的问 题。
有限元分析将更多的物 理场耦合在一起,进行 更全面的分析。
3 计算效率的提高
有限元分析的基本流程
1
,将结构进行建模。
2
离散
将结构分割成小的、简单的单元。
3
材料定义
定义每个单元的材料性质和力学行为。
4
载荷约束条件
对结构施加边界条件和加载条件。
5
求解
通过数值计算方法求解结构的行为特性。
有限元分析的相关问题
1 网格生成及其优化
2 杆件的分析
随着算法和计算技术的 进步,有限元分析的计 算效率将得到提高。
有限元法基础理论
![有限元法基础理论](https://img.taocdn.com/s3/m/2c552e2b3169a4517723a30f.png)
为了表明这个正应力的作用面和作用方向,加上一个角码,例如,正应力σ x 是作用在垂直于 x
轴的面上同时也沿着 X 轴方向作用的。 (2)剪应力τ 加上两个角码,前一个角码表明作用面垂直于哪一个坐标轴,后一个角码表明作用方向沿着哪
一个坐标轴。例如,剪应力τ xy 是作用在垂直于 X 轴的面上而沿着 y 轴方向作用的。
如图 2 所示,将直杆划分成 n 个有限段,有限段之间通过一个铰接点连接。称两段之间的连接
1
点为结点,称每个有限段为单元。 第i个单元的长度为Li,包含第i,i+1 个结点。
2)用单元节点位移表示单元内部位移。我们假设单元内部位移为线性函数。
u(x)
=
ui
+
ui+1 − ui Li
(x
−
xi )
其中 ui 为第 i 结点的位移, xi 为第 i 结点的坐标。第 i 个单元的应变为 ε i ,应力为σ i ,内力为 Ni :
5
或乘积项都可以略去不计,这就使得弹性力学中的微分方程都成为线性方程。 三、基本变量
1.应力的概念 1)外力:面力和体力 作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面
积上的表面力通常分解为平行于坐标轴的三个成分,用记号 Χ、Υ、Ζ
结点 位移
(1)
内部各 点位移
(2)
(3)
(4)
应变
应力
结点力
单元分析
以平面问题的三角形 3 结点单元为例。如图 1-15 所示,单元有三个结点 I、J、M,每个结点有 两个位移 u、v 和两个结点力 U、V。
3
有限元基本原理与概念
![有限元基本原理与概念](https://img.taocdn.com/s3/m/c365c366e3bd960590c69ec3d5bbfd0a7956d584.png)
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
有限元总结
![有限元总结](https://img.taocdn.com/s3/m/e8623be6f8c75fbfc77db282.png)
有限元教学内容总结对知识掌握得如何,可以从他对这些知识的概括能力来判断。
对一门课程学得好,那么可以用一句话对这门课程做一个经典的概括,也可以用一堂课对这门课的内容作一次简练而精彩的报告,也可以用几十个学时对这门课的内容作全面的讲解。
我们的复习,希望能从这门课的核心部分开始,逐步向外展开。
希望抓住核心内容这个节点,就能象一张网一样,将主要内容连接在一起。
一、核心部分有限元的基本思路:化整为零,集零为整。
有限元的基本概念:节点,单元。
有限元的基本方程:结构的整体刚度方程{}[]{}P K δ=[K]为整体刚度矩阵;{P}为节点载荷列阵;{δ}为节点位移列阵。
二、骨干部分(整体刚度方程如何得来?如何解?)(一)如何得来?([K]如何得来?{P}如何得来?)1. [K]如何得来?(e k ⎡⎤⎣⎦如何得来?如何坐标变换?如何组集?) (1)e k ⎡⎤⎣⎦如何得来?(直接法,变分法) Ⅰ. 直接法基本原理:位移法基本步骤:(Ⅰ)由杆件基本变形中的内力与变形间的关系得到单元刚度方程{}{}e e e F k δ⎡⎤=⎣⎦式中:e k ⎡⎤⎣⎦为单元刚度矩阵;{}e δ为单元位移列阵;{}e F为单元节点力列阵。
(Ⅱ)由单元刚度方程得单元刚度矩阵e k ⎡⎤⎣⎦Ⅱ. 变分法基本原理:最小势能原理基本步骤:(Ⅰ)求单元位移函数假设:{}[]{}0δα=Φ,要求具有连续性(单元内位移连续)、协调性(相邻单元间位移连续)、完备性(有刚体位移项和常应变项),收敛的必要条件。
式中:{}δ为单元内任意点的位移列阵;[]0Φ为与单元内任意点坐标相关的矩阵;{}α为待定系数列阵。
将单元各节点坐标代入上式,得:{}[]{}eδα=Φ式中:{}e δ为单元节点位移列阵;[]Φ为与单元节点坐标相关的矩阵。
由上式得:{}[]{}1e αδ-=Φ将上式代入假设的位移插值函数得:{}[]{}e N δδ=式中:[N]为形函数矩阵(Ⅱ)求应变矩阵利用几何方程,对位移函数求导得:{}[]{}e B εδ=式中:[B]为单元应变矩阵;{}ε为单元内任意点的应变列阵。
有限元分析理论基础
![有限元分析理论基础](https://img.taocdn.com/s3/m/2e46fbe30975f46527d3e1e6.png)
2 有限元法的基本原理2.1有限元简介有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
有限元基本概念
![有限元基本概念](https://img.taocdn.com/s3/m/b48d8719c5da50e2524d7fe6.png)
m
ui vi
u u
j j
um
um
y
vm
m
um
vj
vi uj
j
i
ui
o
x
❖ 位移函数 式中:
广义坐标系
将单元内部位移用节点位移表示之 — 将三节点i,j,m坐标代入(1)式:
ui vi
分割子矩阵
Ke
对称、奇异、稀疏矩阵
§8-5 结构刚度矩阵
本节通过单元节点的力的平衡关系来建立结构的平 衡式,包括结构刚度矩阵的建立。
j
j
(1)பைடு நூலகம்
m
i
(2)
n
(1)
i m
i
m (2)
n
取出节点i,列出x,y方向力 的平衡方程式:
该结构共有两个单元,外力只作用于i节点之上。 对于其它节点同样可列出相应的方程式。将这些方程式 合并一齐用矩阵表达,形成整个结构的节点力平衡方程。 其形式如下:
1 0
xi 0
yi 0 0 0 1 xi
0 yi
1 2
u v
j j
1 0
xj 0
yj 0 0 0 1 xj
0 xj
3 4
um
1
xm
ym 0
0
0
5
vm 0 0 0 1 xm ym 6
F P
其中:
P 外力列阵,每一个节点有2行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图(c)的单元是三角形块体(注意:三角
形单元内部仍是连续体)。
第六章 用有限单元法解平面问题
求解方法
2.单元分析
每个三角形单元仍然假定为连续的、均匀的、 各向同性的完全弹性体。因单元内部仍是连续体, 应按弹性力学方法进行分析。
取各结点位移 δi (ui vi )T (i 1,2,) 为基本未 知量。然后对每个单元,分别求出各物理量,并均 用 δi (i 1,2,) 来表示。
• 淬火3.06 min 时的 温度分布
导出方法
• 淬火3.06 min 时的 马氏体分 布
第六章 用有限单元法解平面问题
§6-1 基本量和基本方程的 矩阵表示
采用矩阵表示,可使公式统一、简洁, 且便于编制程序。
本章无特别指明,均表示为平面应力 问题的公式。
第六章 用有限单元法解平面问题
基本物理量:
第六章 用有限单元法解平面问题
FEM
第六章 用有限单元法解平面问题
概述
1.有限元法(Finite Element Method)
简称FEM,是弹性力学的一种近似解法。 首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。
2. FEM的特点
(1)具有通用性和灵活性。
第六章 用有限单元法解平面问题
简史
• 数学家们则发展了微分方程的近似解法,包括有限差分方法, 变分原理和加权余量法。
• 在1963年前后,经过J.F.Besseling, R.J.Melosh, R.E.Jones, R.H.Gallaher, T.H.Pian(卞学磺)等许多人的工作,认识到有限 元法就是变分原理中Ritz近似法的一种变形,发展了用各种不同 变分原理导出的有限元计算公式。
第六章 用有限单元法解平面问题
求解方法
单元分析的主要内容:
(1)应用插值公式, 由单元结点位移
δe (δi
δ j
δ m
)T
,求单元的位移函数
d (u(x, y),v(x, y))T。
这个插值公式称为单元的位移模式,为:
d Νδe。
第六章 用有限单元法解平面问题
求解方法
• (2)应用几何方程,由单元的位移函数d,
第六章 用有限单元法解平面问题
简史
有限元应用实例
• 有限元法已经成功地应用在以下一些领域:
•
固体力学,包括强度、稳定性、震动和瞬态问题的分析;
•
传热学;
•
电磁场;
•
流体力学。
• 转向机构支架的强度分析(用MSC/Nastran完成)
第六章 用有限单元法解平面问题
有限元应用实例
• 金属成形过程的分析(用Deform软件完成) • 分析金属成形过程中的各种缺陷。
• 1954-1955年,J.H.Argyris在航空工程杂志上发表了一组能量 原理和结构分析论文。
• 1960年,Clough在他的名为“The finite element in plane stress analysis”的论文中首次提出了有限元(finite element) 这一术语。
第六章 用有限单元法解平面问题
第六章 用有限单元法解平面问题
三角形单元
•
泰勒级数展开式中,低次幂项是最重要的。
所以三角形单元的位移模式,可取为:
u 1 2 x 3 y, v 4 5 x 6 y。
(a)
插值公式(a)在结点 xi , yi (i, j, m) 应等于结
点位移值
ui , vi (i,
第六章 用有限单元法解平面问题
应用的方程
FEM中应用的方程:
几何方程:
ε (u v u v )T x y x y
(a)
物理方程: σ Dε
(b)
其中D为弹性矩阵,对于平面应力问题是:
D
E 1 μ2
1
μ
0
μ 1 0
0
1
0
μ
(c)
2
第六章 用有限单元法解平面问题
建立结点平衡方程组,求解各结点的位移。
第六章 用有限单元法解平面问题
思考题
• 1.桁架的单元为杆件,而平面体的单元为三角
形块体,在三角形内仍是作为连续体来分析的。 前者可用结构力学方法求解,后者只能用弹性 力学方法求解,为什么?
2. 在平面问题中,是否也可以考虑其它的单 元形状,如四边形单元?
第六章 用有限单元法解平面问题
求出单元的应变,表示为 ε Bδe。
(3)应用物理方程,由单元的应变 ε ,
求出单元的应力,表示为 σ Sδe。
(4)应用虚功方程,由单元的应力 σ ,
求出单元的结点力,表示为
F e (Fi Fj Fm kδe。
第六章 用有限单元法解平面问题
求解方法
• Fi (Fix Fiy T --结点对单元的作用力,作用
•
将连续体变换为离散化结构(图(c)):
即将连续体划分为有限多个、有限大小的单元,
并使这些单元仅在一些结点处用绞连结起来,构
成所谓‘离散化结构’。
(c) 深梁(离散化结构)
第六章 用有限单元法解平面问题
结构离散化
例如:将深梁划分为许多三角形单元,这 些单元仅在角点用铰连接起来。
• 图(c)与图( a)相比,两者都是离
工程问题,从二十世纪六十年代中期以来,有限元法得到了巨大
的发展,为工程设计和优化提供了有力的工具。
第六章 用有限单元法解平面问题
简史
算法与有限元软件
• 从二十世纪60年代中期以来,大量的理论研究不但拓展了有限 元法的应用领域,还开发了许多通用或专用的有限元分析软件。
• 理论研究的一个重要领域是计算方法的研究,主要有: • 大型线性方程组的解法,非线性问题的解法,动力问题计算方
导出方法
• 型材挤压成形的分析。型材在挤 压成形的初期,容易产生形状扭 曲。
• 螺旋齿轮成形过程的分析
第六章 用有限单元法解平面问题
有限元应用实例
• 焊接残余应力分析(用Sysweld完 成)
导出方法
• 结构与焊缝布置
• 焊接过程的温度分布与轴向残余应力
第六章 用有限单元法解平面问题
有限元应用实例
• 1956年M.J.Turner, R.W.Clough, H.C.Martin, L.J.Topp在纽 约举行的航空学会年会上介绍了一种新的计算方法,将矩阵位移 法推广到求解平面应力问题。他们把结构划分成一个个三角形和 矩形的“单元”,利用单元中近似位移函数,求得单元节点力与 节点位移关系的单元刚度矩阵。
于单元,称为结点力,以正标向为正。
Fi (Fix Fiy T
--单元对结点的
作用力,与 Fi 数
值相同,方向相反, 作用于结点。
Fiy vi
Fix i
ui
Fiy
y v j Fjy i
Fix
j
uj
F jx
vm Fmy
um
m Fmx
o
x
第六章 用有限单元法解平面问题
求解方法
• (5)将每一单元中的各种外荷载,按虚 功 等效原则移置到结点上,化为结点荷 载,表示为
第六章 用有限单元法解平面问题
导出方法
•
我国的力学工作者为有限元方法的初期发展做出了许多贡献,
其中比较著名的有:陈伯屏(结构矩阵方法),钱令希(余能原
理),钱伟长(广义变分原理),胡海昌(广义变分原理),冯
康(有限单元法理论)。遗憾的是,从1966年开始的近十年期间,
我国的研究工作受到阻碍。
•
有限元法不仅能应用于结构分析,还能解决归结为场问题的
j, m)。由此可求出1
~
。
6
第六章 用有限单元法解平面问题
应用的方程
虚功方程:
(δ* )T F
y
Fiy ,vi*
(ε* )T σdxdyt A
i
Fix ,ui*
其中:
Fjy , v*j j
Fjx ,u*j
• δ* --结点虚位移; o
图6-1
x
ε* --对应的虚应变。
在FEM中,用结点的平衡方程代替平衡
微分方程,后者不再列出。
第六章 用有限单元法解平面问题
第六章 用有限单元法解平面问题
概述 第一节 基本量及基本方程的矩阵表示 第二节 有限单元法的概念 第三节 单元的位移模式与解答的收敛性 第四节 单元的应变列阵和应力列阵 第五节 单元的结点力列阵与劲度矩阵 第六节 荷载向结点移置 单元的结点荷载列阵
第六章 用有限单元法解平面问题
第七节 结构的整体分析结点平衡方程组 第八节 解题的具体步骤 单元的划分 第九节 计算成果的整理 第十节 计算实例 第十一节 应用变分原理导出有限单元法的基本方程 例题 习题的提示与答案 教学参考资料
通过求解联立方程,得出各结点位移值,从而求
出各单元的应变和应力。
第六章 用有限单元法解平面问题
归纳起来,FEM分析的主要步骤:
求解方法
1.将连续体变换为离散化结构 2.对单元进行分析
(1)单元的位移模式 (2)单元的应变列阵 (3)单元的应力列阵 (4)单元的结点力列阵 (5)单元的等效结点荷载列阵 3.整体分析
简史
(2)对同一类问题,可以编制出通用程序, 应用计算机进行计算。
(3)只要适当加密网格,就可以达到工程 要求的精度。
3. FEM简史
FEM是上世纪中期才出现,并得到迅速发展 和广泛应用的一种数值解法。
1943年柯朗第一次提出了FEM的概念。