2019江苏省南通市高三二模数学试卷含答案

合集下载

【2019南通二模】江苏省南通市2019届高三第二次调研数学试卷(解析版)

【2019南通二模】江苏省南通市2019届高三第二次调研数学试卷(解析版)

2019届江苏南通高三第二次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ . 【答案】4 2. 复数2i2i z =+(i 为虚数单位)的实部为 ▲ . 【答案】23. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y 的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,, 则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<.(1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()0αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分。

江苏省南通市2019-2020学年高考数学二模考试卷含解析

江苏省南通市2019-2020学年高考数学二模考试卷含解析

江苏省南通市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .163【答案】D 【解析】 【分析】根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积. 【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为1122223⨯⨯⨯+11622223⨯⨯⨯⨯=.故选D. 【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题. 2.已知集合{|24}A x x =-<<,集合2560{|}B x x x =-->,则A B =I A .{|34}x x << B .{|4x x <或6}x > C .{|21}x x -<<- D .{|14}x x -<<【答案】C 【解析】 【分析】 【详解】由2560x x -->可得1)60()(x x -+>,解得1x <-或6x >,所以B ={|1x x <-或6}x >, 又{|24}A x x =-<<,所以{|21}A B x x ⋂=-<<-,故选C .3.已知集合A {}0,1,2=,B={}(2)0x x x -<,则A∩B= A .{}1 B .{}0,1C .{}1,2D .{}0,1,2【答案】A 【解析】 【分析】先解A 、B 集合,再取交集。

【详解】()2002x x x -<⇒<<,所以B 集合与A 集合的交集为{}1,故选A【点睛】一般地,把不等式组放在数轴中得出解集。

江苏省南通、泰州、扬州及苏北四市2019届高三二模联考数学试题及答案

江苏省南通、泰州、扬州及苏北四市2019届高三二模联考数学试题及答案

绝密★启用前江苏省南通、泰州、扬州及苏北四市2019届高三毕业班第二次模拟联合考试数学试题(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={1,3,a},B ={4,5},若A ∩B ={4},则实数a 的值为________.2. 复数z =2i 2+i(i 为虚数单位)的实部为________. 3. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为________.4. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为________.5. 执行如图所示的伪代码,则输出的S 的值为________.i ←1S ←2While i<7S ←S ×ii ←i +2End WhilePrint S6. 函数y =4x -16的定义域为________.7. 将函数y =2sin 3x 的图象向左平移π12个单位长度得到y =f(x)的图象,则f ⎝⎛⎭⎫π3的值为________.8. 在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右顶点A(2,0)到渐近线的距离为2,则b 的值为________.9. 在△ABC 中,已知C =120°,sin B =2sin A,且△ABC 的面积为23,则AB 的长为________.10. 设P,A,B,C 为球O 表面上的四个点,PA,PB,PC 两两垂直,且PA =2m ,PB =3m ,PC =4m ,则球O 的表面积为________m 2.11. 定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上,f (x )=⎩⎪⎨⎪⎧2-x ,2≤x <3,x -4,3≤x <4,则函数y =f (x )-log 5|x |的零点的个数为________.12. 已知关于x 的不等式ax 2+bx +c>0(a,b,c ∈R ) 的解集为{x |3<x <4},则c 2+5a +b 的最小值为________.13. 在平面直角坐标系xOy 中,已知点A,B 在圆x 2+y 2=4上,且AB =22,点P(3,-1),PO →·(PA →+PB →)=16,设AB 的中点M 的横坐标为x 0,则x 0的所有值为________.14. 已知集合A ={x|x =2k -1,k ∈N *},B ={x |x =8k -8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若S +T ≤967,则m +2n 的最大值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos α,sin α),b =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,cos ⎝⎛⎭⎫α+π6,其中0<α<π2. (1) 若a ∥b ,求α的值;(2) 若tan2α=-17,求a ·b 的值.16. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D,B 1C 与BC 1交于点E.求证:(1) DE ∥平面ABB 1A 1;(2) BC 1⊥平面A 1B 1C.。

江苏省南通中学2019—2020学年度第二次调研测试高三数学含附加题(教师版详解)(PDF版) (1)

江苏省南通中学2019—2020学年度第二次调研测试高三数学含附加题(教师版详解)(PDF版) (1)

由方程组

x
2
4

y2 3
1,
消去
y
,整理得 (4k 2
3)x 2
16k 2 x
16k 2
12
0,
( ) 解得 x 2 或 x 8k 2 6 ,所以 B 点坐标为 8k2 6,12k . …………………9 分
4k 2 3
4k2 3 4k2 3
【解】(1)在△ABC 中,因为 a 3,b 2 6 ,B 2A ,
故由正弦定理得
3 sin A

2 sin
6 2A
,于是
2sin Acos sin A
A

26 3

所以 cos A 6 .………………………………………………………………………6 分 3
(2)由(1)知 cos A 6 ,所以 sin A 1 cos2 A 3 .
8
且 x1 x3 x2 x4 ,则实数 a 的取值范围是 ▲ .
6
【答案】 (, 2)
4
【方法
1】函数
f
(x)
有两个零点即方程
a

x

2 x
1有
2
a
25
20
15
10
两个根 x1 ,x2 ,同理方程 a ln x 2x 有两个根 x3 ,x4 ,
5
C1 2
A
5
10
即直线
y

2(x0
1)
y02 x0 2

2(x0
1)(x0 2) x0 2
y02
0,
所以 y02 2(x0 1)(x0 2) ②,………………………………………………………11 分

江苏省南通市南通市通州区、海门市2019届高三第二次质量调研数学试题(解析版)

江苏省南通市南通市通州区、海门市2019届高三第二次质量调研数学试题(解析版)

南通市通州区、海门市2019届高三第二次质量调研数学试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.若复数为纯虚数,则实数的值为_____________________.【答案】2【解析】【分析】先化简复数z,再根据纯虚数的定义求实数a的值.【详解】由题得=,因为复数z是纯虚数,所以故答案为:2【点睛】本题主要考查复数的除法运算和纯虚数的概念,意在考察学生对这些知识的掌握水平和分析推理能力.2.从1,3,5,7这五个数中任取两个数,则这两个数之和是奇数的概率为_____________.【答案】【解析】试题分析:利用枚举法可知:从这五个数中任取两个数共有10种基本事件,其中和为奇数包含6种基本事件,故概率为考点:古典概型概率3.设且集合若则______.【答案】【解析】【分析】由题得=,=-1,解之即得a,b的值,即得a+b的值.【详解】因为A B,所以=,=-1,所以b=-2,a=。

故答案为:【点睛】本题主要考查集合的关系,考查对数指数方程的解法,意在考查学生对这些知识的掌握水平和分析推理能力.4.函数的定义域为_____________.【答案】【解析】【分析】解不等式>0即得函数的定义域.【详解】由题得>0,所以.所以函数的定义域为故答案为:【点睛】本题主要考查函数的定义域的求法,考查指数不等式的解法,意在考查学生对这些知识的掌握水平和分析推理计算能力.5.若抛物线的焦点恰好是双曲线的右焦点,则实数的值为_____________.【答案】8【解析】【分析】先求出双曲线的右焦点,即得抛物线的焦点,再求出p的值.【详解】由题得双曲线的右焦点为(4,0),所以抛物线的焦点为(4,0),所以故答案为:8【点睛】本题主要考查双曲线和抛物线的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理能力.6.将函数的图像向右平移个单位,得到函数的图像,则函数在区间上的值域为_____________.【答案】【解析】【分析】先求出函数g(x)的解析式,再求函数在区间[0,]上的值域.【详解】由题得y=g(x)=,因为,所以.所以函数y=g(x)的值域为.故答案为:【点睛】本题主要考查图像的变换,考查利用三角函数的图像和性质求三角函数在区间上的值域,意在考查学生对这些知识的掌握水平和分析推理能力.7.已知实数满足则的最大值为_____________.【答案】7【解析】【分析】先作出不等式组对应的可行域,再利用数形结合求出z=2x+y的最大值.【详解】由题得不等式组对应的可行域如图所示,联立得A(2,3),由题得y=-2x+z,当直线经过点A(2,3)时,直线的纵截距z最大,此时z最大=2×2+3=7,所以z=2x+y的最大值为7.故答案为:7【点睛】本题主要考查线性规划,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.8.在公比不等于1的等比数列中,已知且成等差数列,则数列的前10项的和的值为_______________.【答案】【解析】【分析】先根据已知的条件求出等比数列的的值,再求数列的前10项和的值.【详解】由题得所以数列的前10项和为.故答案为:【点睛】本题主要考查等比数列的通项和等差中项的运用,考查等比数列的前n项和的计算,意在考查学生对这些知识的掌握水平和分析推理能力.9.设椭圆的左顶点为上顶点为且椭圆的离心率为则过椭圆的右焦点且与直线平行的直线的方程为______________.【答案】【解析】【分析】先根据已知条件求出椭圆的标准方程,再求出椭圆的右焦点的坐标和直线AB的斜率,再写出直线l的方程. 【详解】由题得所以椭圆的右焦点坐标为,由题得直线AB的斜率为.故答案为:【点睛】本题主要考查直线和椭圆的方程的求法,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理能力.10.已知函数,则不等式的解集为_________.【答案】【解析】【分析】先判断函数的奇偶性,再利用导数判断函数在(0,+∞)上的单调性,再利用函数的奇偶性和单调性解不等式.【详解】由题得f(-x)=,所以函数f(x)是奇函数.设x>0,则,所以上恒成立,所以函数f(x)在(0,+∞)上单调递增,因为函数f(x)是定义在R上的奇函数,所以函数f(x)是R上的增函数,所以,所以.故答案为:【点睛】本题主要考查函数的奇偶性的判定,考查函数的单调性的判定,考查函数的奇偶性和单调性的运用,意在考查学生对这些知识的掌握水平和分析推理能力.11.在平面四边形中,若为的中点,则______.【答案】-5【解析】【分析】由题意结合平面向量的四则运算和平面向量数量积的运算法则整理计算即可求得最终结果.【详解】由题意可得:,,故.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12.已知函数若函数存在5个零点,则实数的取值范围为________.【答案】【解析】【分析】先作出函数y=2f(x)的图像,再令=0,则存在5个零点,再作函数y=的图像,数形结合分析得到a的取值范围.【详解】先作出函数y=2f(x)的图像如图所示(图中黑色的曲线),当a=1时,函数y=|2f(x)-1|的图像如图所示(图中红色的曲线),它与直线y=1只有四个交点,即函数存在4个零点,不合题意.当1<a<3时,函数y=|2f(x)-a|的图像如图所示(图中红色的曲线),它与直线y=1有5个交点,即函数存在5个零点,符合题意.当a=3时,函数y=|2f(x)-3|的图像如图所示(图中红色的曲线),它与直线y=1有6个交点,即函数存在6个零点,不符合题意.所以实数a的取值范围为.故答案为:【点睛】本题主要考查指数对数函数的图像,考查函数图像的变换,考查函数的零点问题,意在考查学生学这些知识的掌握水平和数形结合分析推理能力.解答本题的关键是画图和数形结合分析图像.13.在平面直角坐标系中,已知点为圆上的两动点,且若圆上存在点使得则正数的取值范围为________.【答案】【解析】【分析】先求出BC中点D的轨迹方程,再化简得到利用向量的坐标化简得利用数形结合分析得到m的取值范围.【详解】设BD的中点为D,所以所以点D在以原点为圆心,以1为半径的圆上,所以点D的轨迹方程为,因为,所以设所以所以m表示动点到点(1,1)的距离,由于点在圆上运动,所以,所以正数m的取值范围为.故答案为:【点睛】本题主要考查直线与圆的位置关系,考查向量的坐标运算,考查动点的轨迹方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.14.在中,设角的对边分别是若成等差数列,则的最小值为________.【答案】【解析】【分析】先根据,,成等差数列求出再求出再得到,最后利用基本不等式求其最小值.【详解】由题得,所以,所以因为所以故答案为:【点睛】本题主要考查正弦定理余弦定理解三角形,考查基本不等式,意在考查学生对这些知识的掌握水平和分析推理计算能力,属于难题.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,在直三棱柱中,分别为棱的中点,且(1)求证:平面平面(2)求证:∥平面【答案】(1)见证明;(2)见证明【解析】【分析】(1)先证明,即证平面BMN⊥平面ACC1A1.(2)取的中点,连接和,证明,再证明MN∥平面BCC1B1.【详解】(1)证明:因为为棱的中点,且,所以,因为是直三棱柱,所以,因为,所以,又因为,且,所以,因为,所以平面.(2)取的中点,连接和,因为为棱的中点,所以,且,因为是棱柱,所以,因为为棱的中点,所以,且,所以,且,所以是平行四边形,所以,又因为,所以.【点睛】本题主要考查空间几何元素的平行垂直关系的证明,意在考查学生对这些知识的掌握水平和空间想象转化能力.16.在中,已知(1)求内角的大小(2)若求的值.【答案】(1);(2)。

江苏省南通市2019-2020学年第二次高考模拟考试数学试卷含解析

江苏省南通市2019-2020学年第二次高考模拟考试数学试卷含解析

江苏省南通市2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞⎪⎝⎭ C .1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭U D .1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭U【答案】C 【解析】 【分析】()f x 恰有两个极值点,则()0f x ¢=恰有两个不同的解,求出()f x ¢可确定1x =是它的一个解,另一个解由方程e 02x t x -=+确定,令()()e 02xg x x x =>+通过导数判断函数值域求出方程有一个不是1的解时t 应满足的条件. 【详解】由题意知函数()f x 的定义域为()0,+?,()()221e 121x x f x t x xx -⎛⎫'=-+-⎪⎝⎭()()21e 2xx t x x ⎡⎤--+⎣⎦=()()2e 122x x x t x x⎛⎫-+- ⎪+⎝⎭=. 因为()f x 恰有两个极值点,所以()0f x ¢=恰有两个不同的解,显然1x =是它的一个解,另一个解由方程e 02x t x -=+确定,且这个解不等于1. 令()()e 02xg x x x =>+,则()()()21e 02xx g x x +'=>+,所以函数()g x 在()0,+?上单调递增,从而()()102g x g >=,且()13e g =.所以,当12t >且e3t ≠时,()e 2ln x f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,即实数t 的取值范围是1,,233e e ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U . 故选:C 【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题. 2.已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{a n}中,若a2>a1,则d>0,即数列{a n}为单调递增数列,若数列{a n}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{a n}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.3.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B.83C.822+D.842+【答案】D【解析】【分析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以112222222822S =⨯+⨯⨯⨯+⨯⨯⨯=+, 故选:D 【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题. 4.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( ) A .45 B .42C .25D .36【答案】D 【解析】 【分析】由等差数列的性质可知1928a a a a +=+,进而代入等差数列的前n 项和的公式即可. 【详解】 由题,192899()9()9(210)36222a a a a S ++⨯-+====. 故选:D 【点睛】本题考查等差数列的性质,考查等差数列的前n 项和.5.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u r u u u r u u u r,x ,y R ∈,则23x y +=( ) A .2 B .53C .43D .32【答案】B 【解析】 【分析】首先根据题中条件和三角形中几何关系求出x ,y ,即可求出23x y +的值. 【详解】如图所示过O 做三角形三边的垂线,垂足分别为D ,E ,F , 过O 分别做AB ,AC 的平行线NO ,MO ,由题知222294cos 607212AB AC BC BC BC AB AC +-++︒==⇒=⋅⋅,则外接圆半径212sin 603BC r ==⋅︒, 因为⊥OD AB ,所以22212319OD AO AD =-=-=, 又因为60DMO ∠=︒,所以2133DM AM =⇒=,43MO AN ==, 由题可知AO xAB y AC AM AN =+=+u u u r u u u r u u u r u u u u r u u u r,所以16AM x AB ==,49AN y AC ==, 所以5233x y +=. 故选:D. 【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题. 6.某几何体的三视图如图所示,则此几何体的体积为( )A .23B .1C .43D .83【答案】C 【解析】该几何体为三棱锥,其直观图如图所示,体积114222323V ⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭.故选C .7.已知3log 74a =,2log b m =,52c =,若a b c >>,则正数m 可以为( ) A .4 B .23C .8D .17【答案】C 【解析】 【分析】首先根据对数函数的性质求出a 的取值范围,再代入验证即可; 【详解】解:∵3333log 27log 74log 814a =<=<=,∴当8m =时,2log 3b m ==满足a b c >>,∴实数m 可以为8. 故选:C 【点睛】本题考查对数函数的性质的应用,属于基础题.8.双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,那么它的离心率为( )A 3B .5C 6D 5 【答案】D 【解析】 【分析】根据双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,列出方程,求出m 的值即可.【详解】∵双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,可得12m =,∴4m =, ∴双曲线的离心率5c e a ==. 故选:D. 【点睛】本小题主要考查双曲线离心率的求法,属于基础题.9.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12【答案】D 【解析】 【分析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数. 【详解】由茎叶图知,甲的中位数为8086x +=,故6x =; 乙的平均数为78828089919397887y +++++++=,解得6y =,所以12x y +=. 故选:D. 【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.10.已知双曲线22221x y C a b-=:的一条渐近线与直线350x y -+=垂直,则双曲线C 的离心率等于( )A 2?B .103C 10D .2【答案】B 【解析】由于直线的斜率k 3=,所以一条渐近线的斜率为13k '=-,即13b a =,所以21()b e a=+=10,选B. 11.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元【答案】D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可. 【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=1.解得x =2. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题. 12.已知集合{}2|320M x x x =-+≤,{}|N x y x a ==-若M N M ⋂=,则实数a 的取值范围为( ) A .(,1]-∞ B .(,1)-∞C .(1,)+∞D .[1,)+∞【答案】A 【解析】 【分析】解一元二次不等式化简集合M 的表示,求解函数y x a =-的定义域化简集合N 的表示,根据M N M ⋂=可以得到集合M 、N 之间的关系,结合数轴进行求解即可.【详解】{}{}2|320|12M x x x x x =-+≤=≤≤,{}{}||N x y x a x x a ==-=≥.因为M N M ⋂=,所以有M N ⊆,因此有1a ≤. 故选:A 【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。

江苏省南通市2019-2020学年高考数学二模试卷含解析

江苏省南通市2019-2020学年高考数学二模试卷含解析

江苏省南通市2019-2020学年高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 【答案】D 【解析】 【分析】利用对数函数的单调性可得235log 5log 5log 3>>,再根据()f x 的单调性和奇偶性可得正确的选项. 【详解】因为33log 5log 31>=,5550log 1log 3log 51=<<=, 故35log 5log 30>>.又2233log 5log 42log 9log 50>==>>,故235log 5log 5log 3>>. 因为当[)0,x ∈+∞时,函数()f x 是单调递减函数, 所以()()()235log 5log 5log 3f f f <<. 因为()f x 为偶函数,故()()3331log log 5log 55f f f ⎛⎫== ⎪⎝⎭-, 所以()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭<. 故选:D. 【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.2.已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩L …()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =( )A .16B .17C .18D .19【答案】B 【解析】 【分析】计算2226716...5n n a a a a a n ++++=-+-,故2221211...161k k k a a a a k a +++++=+-=+,解得答案.【详解】当6n ≥时,()1211111n n n n n a a a a a a a +--==+-L ,即211n n n a a a +=-+,且631a =.故()()()222677687116......55n n n n a a a a a a a a a n a a n +++++=-+-++-+-=-+-,2221211...161k k k a a a a k a +++++=+-=+,故17k =.故选:B . 【点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.3.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于A ,B 两点,交y 轴于点M ,若1F 、M 是线段AB 的三等分点,则椭圆的离心率为( )A .12B .C D 【答案】D 【解析】 【分析】根据题意,求得,,A M B 的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果. 【详解】由已知可知,M 点为1AF 中点,1F 为BM 中点, 故可得120F A M x x x +==,故可得A x c =;代入椭圆方程可得22221c y a b +=,解得2b y a =±,不妨取2A b y a=,故可得A 点的坐标为2,b c a ⎛⎫⎪⎝⎭,则202b M a ⎛⎫ ⎪⎝⎭,,易知B 点坐标22,2b c a ⎛⎫-- ⎪⎝⎭,将B 点坐标代入椭圆方程得225a c =,所以离心率为5故选:D. 【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得,,A B M 点的坐标,属中档题. 4.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b <<【答案】C 【解析】 【分析】可设[]0,1x ∈,根据()f x 在R 上为偶函数及(2)()f x f x +=-便可得到:()()(2)f x f x f x =-=-+,可设1x ,[]20,1x ∈,且12x x <,根据()f x 在[]1,2上是减函数便可得出12()()f x f x <,从而得出()f x 在[]0,1上单调递增,再根据对数的运算得到a 、b 、c 的大小关系,从而得到()()(),,f a f b f c 的大小关系. 【详解】解:因为ln1ln 2ln e <<,即01a <<,又12124b -⎛⎫== ⎪⎝⎭,12log 21c ==-设[]0,1x ∈,根据条件,()()(2)f x f x f x =-=-+,[]21,2x -+∈; 若1x ,[]20,1x ∈,且12x x <,则:1222x x -+>-+;()f x Q 在[]1,2上是减函数;12(2)(2)f x f x ∴-+<-+;12()()f x f x ∴<;()f x ∴在[]0,1上是增函数;所以()()()20f b f f ==,()()()11f c f f =-=∴()()()f b f a f c <<故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设12x x <,通过条件比较1()f x 与2()f x ,函数的单调性的应用,属于中档题.5.如图是函数sin()R,A 0,0,02y A x x πωφωφ⎛⎫=+∈>><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin (R)y x x =∈的图象上的所有的点( )A .向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 B .向左平移3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 D .向左平移6π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 【答案】A 【解析】 【分析】由函数的最大值求出A ,根据周期求出ω,由五点画法中的点坐标求出ϕ,进而求出sin()y A x ωφ=+的解析式,与sin (R)y x x =∈对比结合坐标变换关系,即可求出结论. 【详解】由图可知1,A =T π=,2ω∴=,又2()6k k πωϕπ-+=∈z ,2()3k k πϕπ∴=+∈z ,又02πφ<<,3πϕ∴=,sin 23y x π⎛⎫∴=+⎪⎝⎭, ∴为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上的所有向左平移3π个长度单位, 得到sin 3y x π⎛⎫=+⎪⎝⎭的图象, 再将sin 3y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标变为原来的12(纵坐标不变)即可.故选:A 【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.6.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>【答案】B 【解析】 【分析】利用指数函数和对数函数的单调性,将数据和0,1做对比,即可判断. 【详解】由于0.2110122⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,120.2-==, 1133log 2log 10<=故b a c >>. 故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.7.若1nx ⎫⎪⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85 B .84C .57D .56【答案】A 【解析】 【分析】先求n ,再确定展开式中的有理项,最后求系数之和.【详解】解:31nx x ⎛⎫+ ⎪⎝⎭的展开式中二项式系数和为256 故2256n =,8n =88433188r r r rr r T C xxC x---+==要求展开式中的有理项,则258r =,,则二项式展开式中有理项系数之和为:258888++=85C C C 故选:A 【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题. 8.设a R ∈,0b >,则“32a b >”是“3log a b >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据对数的运算分别从充分性和必要性去证明即可. 【详解】若32a b >, 0b >,则3log 2a b >,可得3log a b >; 若3log a b >,可得3a b >,无法得到32a b >, 所以“32a b >”是“3log a b >”的充分而不必要条件. 所以本题答案为A. 【点睛】本题考查充要条件的定义,判断充要条件的方法是:① 若p q ⇒为真命题且q p ⇒为假命题,则命题p 是命题q 的充分不必要条件; ② 若p q ⇒为假命题且q p ⇒为真命题,则命题p 是命题q 的必要不充分条件; ③ 若p q ⇒为真命题且q p ⇒为真命题,则命题p 是命题q 的充要条件;④ 若p q ⇒为假命题且q p ⇒为假命题,则命题p 是命题q 的即不充分也不必要条件. ⑤ 判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系. 9.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( )A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)【答案】B 【解析】,,∴.故选.10.已知x ,y R ∈,则“x y <”是“1xy<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】x y <,不能得到1x y <, 1xy<成立也不能推出x y <,即可得到答案. 【详解】 因为x ,y R ∈,当x y <时,不妨取11,2x y =-=-,21x y=>,故x y <时,1xy<不成立, 当1xy<时,不妨取2,1x y ==-,则x y <不成立, 综上可知,“x y <”是“1xy<”的既不充分也不必要条件, 故选:D 【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.11.已知函数()log (|2|)(0a f x x a a =-->,且1a ≠),则“()f x 在(3,)+∞上是单调函数”是“01a <<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】先求出复合函数()f x 在(3,)+∞上是单调函数的充要条件,再看其和01a <<的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案. 【详解】()log (|2|)(0a f x x a a =-->,且1a ≠),由20x a -->得2x a <-或2x a >+,即()f x 的定义域为{2x x a <-或2}x a >+,(0,a >且1a ≠) 令2t x a =--,其在(,2)a -∞-单调递减,(2,)a ++∞单调递增,()f x 在(3,)+∞上是单调函数,其充要条件为2301a a a +≤⎧⎪>⎨⎪≠⎩即01a <<. 故选:C. 【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.12.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .【答案】B 【解析】根据题意,确定函数()y f x =的性质,再判断哪一个图像具有这些性质.由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B .二、填空题:本题共4小题,每小题5分,共20分。

南通市2019届高三第二次调研数学试卷与答案(word)

南通市2019届高三第二次调研数学试卷与答案(word)

2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ . 【答案】4 2. 复数2i2i z =+(i 为虚数单位)的实部为 ▲ . 【答案】253. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为 49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ . 【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306.函数y 的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则π3f 的值为 ▲ .【答案】8. 在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为,则AB 的长为 ▲ .【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2. 【答案】29π11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,, 则函数5()log y f x x =-| |的零点的个数为 ▲ . 【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b++的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =,点P (3,-1),()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ .【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ . 【答案】44二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量a =(cos sin )αα,,b = ()ππsin()cos()66αα++,,其中π02α<<.(1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值.【解】(1)因为a ∥b ,所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分 因为π02α<<,所以ππ7π2666α<+<.于是ππ262α+=, 解得π6α=. ………………………………………………………6分 (2)因为π0α<<,所以02πα<<,又1tan 20α=-<,故π2πα<<.因为sin 21tan 2cos 27ααα==-,所以cos 27sin 20αα=-<, 又22sin 2cos 21αα+=,解得sin 2cos2αα=.……………………………………………………10分 因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+ …………………………12分ππsin 2cos cos2sin 66αα=+(12⋅. ……………………………………14分16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于 点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以侧面ACC 1 A 1为平行四边形.又A 1C 与AC 1交于点D ,所以D 为AC 1的中点,同理,E 为BC 1的中点.所以DE ∥AB .………………3分 又AB ⊂平面ABB 1 A 1,DE ⊄平面ABB 1 A 1,所以DE ∥平面ABB 1A 1. ………………………………………………………………6分 (2)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以BB 1⊥平面A 1B 1C 1.ABCA 1B 1C 1ED(第16题)又因为A 1B 1⊂平面A 1B 1C 1,所以BB 1⊥A 1B 1. ………………………………………8分 又A 1B 1⊥B 1C 1,BB 1,B 1C 1⊂平面BCC 1B 1,BB 1∩B 1C 1 = B 1,所以A 1B 1⊥平面BCC 1B 1. ……………………………………………………………10分 又因为BC 1⊂平面BCC 1B 1,所以A 1B 1⊥BC 1.………………………………………12分 又因为侧面BCC 1B 1为正方形,所以BC 1⊥B 1C . 又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C ,所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<.(1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为 何值时,总造价最低?【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM . …………2分 在Rt △FHM 中,HM = 5,FMH θ∠=, 所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=.①(第17题)②ABC DE F HMθ A BC DE F HMθ从而屋顶面积22=+V 梯形FBC ABFE S S S 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分(2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分 所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k k θθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k k θθ…………………………………………10分记2sin ()-=f θθθ,π0θ<<,所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分列表:所以当π6=θ时,()f θ有最小值.答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c,由题意,a =,c a =,222a b c =+,解得b =,因此椭圆C 2的标准方程为221y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA,1PB,则3PA PB ==- ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y=代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P x 从而||||3||||PA P A PB P A x x x x PA PB x x x x --====--+所以3PA PB =- ……………………………………………………………8分②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根, 从而20122014y k k x -⋅=-.……………………………………………………………………14分(第18题)又点在00()P x y ,椭圆C 2:22182y x +=上,所以220012y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 19.(本小题满分16分)已知函数21()2ln 2f x x x ax a =+-∈,R . (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由. 【解】(1)当3a =时,函数21()2ln 32f x x x x =+-的定义域为()0+∞,.则2232()3x x f x x x x-+'=+-=, 令()f x '0=得,1x =或2x =. ………………………………………………………2分 列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0000()()()(0)y f x x x f x x '=-+>, 从而0000()()()()(0)g x f x x x f x x '=-+>, 记()()()p x f x g x =-,则000()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数, 所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立, 即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()002()0x x x x --≥在()0+∞,上恒成立 ,所以002x x =,又00x >,所以0x = ………………………………………………10分法二:变形得0022x x ++≥在()0+∞,上恒成立 ,因为2x x +=≥x =,所以002x x +,从而(200x ≤,所以0x =10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,, 不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-.因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .x a x a x x x x ax x x a x x ax x x a ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln022x x x +-=.① 令212x t =,由120x x <<与122x x =,得(01)t ∈,, 记1()2ln p t t t t =+-,则222(1)21()10t p t t t -'=--=-<, 所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=. 从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}n a 的各项均不为零.设数列{}n a 的前n 项和为S n ,数列{}2n a 的前n 项和为T n ,且2340n n n S S T -+=,n *∈N . (1)求12a a ,的值;(2)证明:数列{}n a 是等比数列;(3)若1()()0n n na na λλ+--<对任意的n *∈N 恒成立,求实数λ的所有值. 【解】(1)因为2340n n n S S T -+=,*n ∈N .令1n =,得22111340a a a -+=,因为10a ≠,所以11a =. 令2n =,得()()()22222314110a a a +-+++=,即22220a a +=,因为20a ≠,所以212a =-.……………………………………………………………3分 (2)因为2340n n n S S T -+=, ① 所以2111340n n n S S T +++-+=, ② ②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分 所以()1340(2)n n n S S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n n n n a a a a ++++-=,即112n n a a +=-,因为0n a ≠,所以112n n a a +=-. 又由(1)知,11a =,212a =-,所以2112aa =-,所以数列{}n a 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n n a -=-.因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立, 所以λ的值介于()112n n --和()12nn -之间.因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分 若0λ>,当n 为奇数时,()()11122n n n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212n n ≤,所以12nn n ≤(*), 从而当25n n λ≥且≥时,有122n n n λ-≥≥,所以0λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2nn λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12nn n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分 矩阵M 的特征多项式()212()14021f λλλλ--==--=--, 解得矩阵M 的另一个特征值为1λ-=.…………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t=+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分 所以AB =10分 C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤. 【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥ ……………5分因为222416x y z ++=,所以()2916364x y z ++⨯=≤, 所以,6x y z ++≤,当且仅当“2x y z ==”时取等号.…………………………10分 【必做题】第22题、第23题,每小题10分,共计20分. 22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2. (1)求直线PB 与平面PCD 所成角的正弦值;(2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置. 【解】(1)由题意知,AB ,AD ,AP 两两垂直.以{}AB AD AP u u u r u u u r u u u r ,,为正交基底,建立如图所示的空间 直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,.从而(102)(122)(022)PB PC PD =-=-=-,,,,,,,,u u r u u u r u u u r 设平面PCD 的法向量()x y z =n ,,,则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u r uu u r,,即220220x y z y z +-=⎧⎨-=⎩,, 不妨取1y =,则01x z ==,. 所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分 (第22题)设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉=⋅n n nuu ruu ruu r, 即直线PB 与平面PCD.……………………………………5分(2)设(00)M a ,,,则(00)MA a =-,,,u u u r设PN PC λ=,u u u r u u u r 则()22PN λλλ=,,-,u u u r而(002)AP =,,,u u u r 所以(222)MN MA AP PN a λλλ=++=--u u u r u u u r u u u r u u u r,,. ……………………………………8分 由(1)知,平面PCD 的一个法向量为(011)=n ,,, 因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,.所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N ≥,,,,均为非负实数,且122n a a a +++=.证明:(1)当4n =时,12233441+++1a a a a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a a a a +++=, 所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分 23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分 (2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,k x 均为非负实数,且12+++2k x x x =L ,则122311++++1k k k x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,. 令()1122311+k k k k x a a x a x a x a -+====,,,,则12+++2k x x x =…. 由归纳假设,知122311++++1k k k x x x x x x x x -≤.………………………………………8分因为123a a a ,,均为非负实数,且+11k a a ≥, 所以121123112+()()k k x x x x a a a a a a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k k k k k x x x x x x x x a a a a a a a a a a -+++++++≥≥,即1223+1+11++++1k k k a a a a a a a a ≤,也就是说,当+1n k =时命题也成立.所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。

2019江苏省南通市高三二模数学试卷含答案

2019江苏省南通市高三二模数学试卷含答案

南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。

2019届江苏省南通市高考模拟(二)数学(文)试题(解析版)

2019届江苏省南通市高考模拟(二)数学(文)试题(解析版)

2019届江苏省南通市高考模拟(二)数学(文)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。

将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6.保持卡面清洁,不折叠,不破损。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、填空题1.已知集合,则______.【答案】【解析】【分析】求集合和的交集即可【详解】故答案为【点睛】本题主要考查了集合的交集运算法则,属于基础题。

2.设复数(为虚数单位),则的共轭复数为______.【答案】【解析】【分析】利用复数的乘法运算法则化简求解即可得到答案【详解】则的共轭复数为【点睛】本题主要考查了复数代数形式的乘法运算,属于基础题。

3.函数的定义域为______【答案】【解析】【分析】根据函数定义域的定义,列出函数有意义的条件,即可求解函数的定义域.【详解】由题意,函数满足,解得,奇函数的定义域为.【点睛】本题主要考查了函数的定义域的求解,其中根据函数定义域的定义,列出函数解析式有意义的条件是解答的关键,着重考查了推理与计算能力,属于基础题.4.阅读下面的伪代码,由这个算法输出的结果为______【答案】36【解析】【分析】根据上述算法,逐项计算即可得到计算的结果.【详解】由题意,可得,,输出的结果.【点睛】本题主要考查了算法的结果输入,其中正确理解题意,明确算法的计算方法是解答的关键,着重考查了分析问题和解答问题的能力.5.如图是甲、乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为____.【答案】【解析】试题分析:由于甲、乙两位同学的平均数均为,所以甲、乙两位同学的方差分别为故成绩较稳定(方差较小)的那一位同学的方差为【考点】方差6.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为______【答案】【解析】分析:先求黑白两个球随机放入编号为的三个盒子的所有放法,再求出黑白两球均不在一号盒的放法,利用古典概型概率公式可得到结果.详解:黑白两个球随机放入编号为的三个盒子中,每个球都有三种放法,故共有种放法在,黑白两球均不在一号盒,都有两种放法,共有,所以黑白两球均不在一号盒的概率为,故答案为.点睛:本题主要考查分步计数乘法原理与古典概型概率公式的应用,属于中档题.7.在平面直角坐标系xOy中,将函数的图象向右平移个单位得到的图象,则的值为______【答案】【解析】【分析】根据三角函数的图象变换,求解函数,即可求解答案.【详解】由题意得,将函数的图象向右平移个单位,得的图象,所以.【点睛】本题主要考查了三角函数的图象变换及其应用,其中解答中根据三角函数的图象变换得到函数的解析式是解答的关键,着重考查了推理与计算能力.8.在平面直角坐标系中,双曲线的一条渐近线与准线的交点到另一条渐近线的距离为______【答案】【解析】【分析】由题意,根据双曲线的几何性质,求得双曲线的一条渐近线与准线的交点,利用点到直线的距离公式,即可求解.【详解】由题意,双曲线的一条渐近线与右准线的交点为,其到另一条渐近线的距离为.【点睛】本题主要考查了双曲线的几何性质及其应用,其中熟记双曲线的几何性质是解答的关键,着重考查了推理与运算能力,属于基础题.9.若,则的值为______【答案】【解析】【分析】根据两角和与差的正切函数的公式,求得,进而利用三角函数的基本关系式,即可求得答案.【详解】由,得.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记两角和与差的三角函数的基本公式以及三角函数的基本关系式的合理应用是解答的关键,着重考查了推理与运算能力.10.已知函数是定义在上的偶函数,且对于任意的都有,,则的值为______.【答案】4【解析】【分析】令,可以求得,从而可得是以为周期的函数,结合,即可求得的值【详解】函数是定义在上的偶函数,,,令,可得,则则,,是以为周期的函数,,则故答案为【点睛】本题主要考查了抽象函数及其基本性质的应用,重点考查了赋值法,求得是解答本题的关键,着重考查了分析问题和解答问题能力,属于中档题。

江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题(解析版)

江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试数学试题(解析版)

2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A(2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C = 120°,sinB = 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA = 2 m,PB = 3 m,PC = 4 m,则球O的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA = 2 m,PB = 3 m,PC = 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(3, 1),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量=,= ,其中.(1)若∥,求的值;(2)若,求的值.【答案】(1);(2)【解析】【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥,所以,所以.因为,所以.于是解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题16.如图所示,在直三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)证明A1B1⊥平面BCC1B1,进而A1B1⊥BC1,进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB⊂平面ABB1 A1,DE⊄平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1 = B1,所以A1B1⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C = B1,A1B1,B1C ⊂平面A1B1C,所以BC1⊥平面A1B1C.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH = .(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ⊂平面ABCD,得FH⊥HM.在Rt△FHM中,HM = 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.① 射线与椭圆C1依次交于点,求证:为定值;② 过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。

江苏省南通、泰州、扬州及苏北四市2019届高三二模联考数学答案

江苏省南通、泰州、扬州及苏北四市2019届高三二模联考数学答案
故当θ为 时该别墅总造价最低.(14分)
18.(1)设椭圆C2的焦距为2c,由题意,得a=2 ,
= ,a2=b2+c2,
解得b= ,
所以椭圆C2的标准方程为 + =1.(3分)
(2)①1°当直线OP的斜率不存在时,
PA= -1,PB= +1,则
= =3-2 .(4分)
2°当直线OP的斜率存在时,设直线OP的方程为y=kx,
所以主体高度为h=6-5tanθ,(8分)
所以别墅总造价为
y=S·k+h·16k
= ·k+(6-5tanθ)·16k
= k- k+96k
=80k· +96k(10分)
记f(θ)= ,0<θ< ,
所以f′(θ)= ,
令f′(θ)=0,得sinθ= .
又0<θ< ,所以θ= .(12分)
列表:
所以当θ= 时,f(θ)有最小值.
记t=k1y0-x0,则l1的方程为y=k1x+t,
代入椭圆C1的方程,消去y,得(4k +1)x2+8k1tx+4t2-4=0.
因为直线l1与椭圆C1有且只有一个公共点,
所以Δ=(8k1t)2-4(4k +1)(4t2-4)=0,
即4k -t2+1=0,
将t=k1y0-x0代入上式,整理得,
(x -4)k -2x0y0k1+y -1=0,(12分)
所以A1B1⊥平面BCC1B1.(10分)
又因为BC1⊂平面BCC1B1,
所以A1B1⊥BC1.(12分)
又因为侧面BCC1B1为正方形,所以BC1⊥B1C.
又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,
所以BC1⊥平面A1B1C.(14分)
17.(1)由题意得FH⊥平面ABCD,FM⊥BC,

2019-2020学年南通市、扬州市、泰州市高考数学二模试卷(有答案)

2019-2020学年南通市、扬州市、泰州市高考数学二模试卷(有答案)

江苏省南通市、扬州市、泰州市高考数学二模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为______.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为______.3.如图是一个算法流程图,则输出的k的值是______.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是______.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是______.6.已知函数f(x)=loga(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是______.7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为______.8.在等比数列{an }中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是______.9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为______.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为______.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为______.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,,则的最大值是______.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是______.14.若存在α,β∈R,使得,则实数t的取值范围是______.二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.18.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,A为椭圆上异于顶点的一点,点P满足=2.(1)若点P的坐标为(2,),求椭圆的方程;(2)设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积为﹣,求实数m的值.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.20.设数列{an }的各项均为正数,{an}的前n项和,n∈N*.(1)求证:数列{an}为等差数列;(2)等比数列{bn}的各项均为正数,,n∈N*,且存在整数k≥2,使得.(i)求数列{bn}公比q的最小值(用k表示);(ii)当n≥2时,,求数列{bn}的通项公式.[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.[附加题]22.在平面直角坐标系xOy 中,已知直线(t 为参数)与曲线(θ为参数)相交于A ,B 两点,求线段AB 的长.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k 倍的奖励(k ∈N *),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元. (1)求概率P (X=0)的值;(2)为使收益X 的数学期望不小于0元,求k 的最小值. (注:概率学源于赌博,请自觉远离不正当的游戏!)24.设S 4k =a 1+a 2+…+a 4k (k ∈N *),其中a i ∈{0,1}(i=1,2,…,4k ).当S 4k 除以4的余数是b (b=0,1,2,3)时,数列a 1,a 2,…,a 4k 的个数记为m (b ). (1)当k=2时,求m (1)的值; (2)求m (3)关于k 的表达式,并化简.江苏省南通市、扬州市、泰州市高考数学二模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+2i)•z=3,得,∴复数z的实部为.故答案为:.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为 1 .【考点】交集及其运算.【分析】由A,B,以及两集合的交集确定出a的值即可.【解答】解:∵A={﹣1,0,1},B={a﹣1,a+},A∩B={0},∴a﹣1=0或a+=0(无解),解得:a=1,则实数a的值为1,故答案为:13.如图是一个算法流程图,则输出的k的值是17 .【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的k的值,当k=17时满足条件k>9,退出循环,输出k的值为17.【解答】解:模拟执行程序,可得k=0不满足条件k>9,k=1不满足条件k>9,k=3不满足条件k>9,k=17满足条件k>9,退出循环,输出k的值为17.故答案为:17.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400 .【考点】频率分布表.【分析】利用频率、频数与样本容量的关系进行求解即可.【解答】解:根据题意,估计该批灯泡使用寿命不低于1100h的灯泡的只数为5000×=1400.故答案为:1400.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,由“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,利用对立事件概率计算公式能求出“立德树人”主题被该队选中的概率.【解答】解:电视台组织中学生知识竞赛,共设有5个版块的试题,某参赛队从中任选2个主题作答,基本事件总数n==10,“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,∴“立德树人”主题被该队选中的概率p=1﹣=.故答案为:.(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是.6.已知函数f(x)=loga【考点】对数函数的图象与性质;函数的图象.【分析】由函数f(x)=log(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,构造方a程组,解得答案.(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,【解答】解:∵函数f(x)=loga∴,解得:∴a+b=,故答案为:7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为 2 .【考点】正弦函数的图象.【分析】根据题意,得出ω+=+2kπ,k∈Z,求出ω的值即可.【解答】解:∵函数,且0<x<π,ω>0,∴<ωx+<ωπ+,又当且仅当时,y取得最大值,∴<ωx+<ωπ+<,∴ω+=,解得ω=2.故答案为:2.8.在等比数列{an }中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是.【考点】等比数列的通项公式.【分析】由题意和等差数列可得q的方程,解方程由等比数列的通项公式可得.【解答】解:∵在等比数列{an }中a2=1,公比q≠±1,a1,4a3,7a5成等差数列,∴8a3=a1+7a5,∴8×1×q=+7×1×q3,整理可得7q4﹣8q2+1=0,分解因式可得(q2﹣1)(7q2﹣1)=0,解得q2=或q2=1,∵公比q≠±1,∴q2=,∴a6=a2q4=故答案为:9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为.【考点】棱锥的结构特征.【分析】由已知求得△BCD的面积,再由面积公式求得sinB,进一步求得cosB,再由余弦定理求得CD长度.【解答】解:如图,在四面体ABCD中,∵AB⊥平面BCD,∴AB为以BCD为底面的三棱锥的高,∵,AB=1,∴由,得.又BC=2,BD=3,得,得sinB=,∴cosB=.当cosB=时,CD2=22+32﹣2×2×3×=7,则CD=;当cosB=﹣时,CD2=22+32﹣2×2×3×()=19,则CD=.∴CD长度的所有值为,.故答案为:,.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为 4 .【考点】直线与圆的位置关系.【分析】设过点P(﹣2,0)的直线方程为y=k(x+2),由直线与圆相切的性质得k=,不妨取k=,由勾股定理得PT=RS=,再由圆心(a,)到直线y=(x+2)的距离能求出结果.【解答】解:设过点P(﹣2,0)的直线方程为y=k(x+2),∵过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,∴=1,解得k=,不妨取k=,PT==,∴PT=RS=,∵直线y=(x+2)与圆相交于点R,S,且PT=RS,∴圆心(a,)到直线y=(x+2)的距离d==,由a>0,解得a=4.故答案为:4.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为7 .【考点】函数零点的判定定理.【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.【解答】解:如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x∈[﹣2,0)上的图象.x∈[0,2)时,g(0)=g(1)=0,x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0.x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0.指数可得:函数g(x)共有7个零点.故答案为:7.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,,则的最大值是.【考点】平面向量数量积的运算.【分析】建立如图所示的坐标系,得到点A、B、C的坐标,由,求得a+b=±3,分类讨论,利用二次函数的性质求得的最大值.【解答】解:由点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3,可得平行线m、n间的距离为2,以直线m为x轴,以过点A且与直线m垂直的直线为y轴建立坐标系,如图所示:则由题意可得点A(0,1),直线n的方程为y=﹣2,设点B(a,0)、点C(b,﹣2),∴=(a,﹣1)、=(b,﹣3),∴+=(a+b,﹣4).∵,∴(a+b)2+16=25,∴a+b=3,或a+b=﹣3.当a+b=3时, =ab+3=a(3﹣a)+3=﹣a2+3a+3,它的最大值为=.当a+b=﹣3时, =ab+3=a(﹣3﹣a)+3=﹣a2﹣3a+3,它的最大值为=.综上可得,的最大值为,故答案为:.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是6+4.【考点】双曲线的简单性质.【分析】设出双曲线的参数方程,代入所求式,运用切割化弦,可得+= [(1﹣sinα)+(1+sinα)](+),展开再由基本不等式即可得到所求最小值.【解答】解:由﹣y2=1,可设x=2secα,y=tanα,则3x2﹣2xy=12sec2α﹣4secαtanα=﹣==+,其中﹣1<sinα<1,[(1﹣sinα)+(1+sinα)](+)=12++≥12+2=12+8,当且仅当=,解得sinα=3﹣2(3+2舍去),取得最小值.则3x2﹣2xy的最小值是6+4.故答案为:6+4.14.若存在α,β∈R,使得,则实数t的取值范围是[,1] .【考点】三角函数中的恒等变换应用.【分析】由α≤α﹣5cosβ,得到cosβ<0,由已知α≤t,即,令,则f′(t)=,令f′(t)=0,则sinβ=0,当sinβ=0时,f(t)取得最小值,然后由t≤α﹣5cosβ,即,令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.【解答】解:∵α≤α﹣5cosβ,∴0≤﹣5cosβ.∴cosβ<0.∵α≤t,∴,即.令,则f′(t)==,令f′(t)=0,则sinβ=0.∴当sinβ=0时,f(t)取得最小值.f(t)=.∵t≤α﹣5cosβ,∴α≥t+5cosβ.∴即.令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.f(t)=.则实数t的取值范围是:[,1].故答案为:[,1].二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.【考点】两角和与差的正切函数;正弦定理.【分析】(1)由条件利用两角和差的正切公式,诱导公式求得tanC的值可得C的值.(2)由条件利用正弦定理、两角和差的正弦公式求得a、b的值,可得△ABC的周长.【解答】解:(1)斜三角形ABC中,∵tanA+tanB+tanAtanB=1,∴tanA+tanB=1﹣tanAtanB,∴tan(A+B)==1,即﹣tanC=1,tanC=﹣1,∴C=135°.(2)若A=15°,则B=30°,∵,则由正弦定理可得===2,求得a=2sin(45°﹣30°)=2(sin45°cos30°﹣cos45°sin30°)=,b=•2=1,故△ABC的周长为a+b+c=+1+=.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)推导出四边形AMC 1P 为平行四边形,从而AP ∥C 1M ,由此能证明AP ∥平面C 1MN . (2)连结AC ,推导出MN ⊥BD ,DD 1⊥MN ,从而MN ⊥平面BDD 1B 1,由此能证明平面B 1BDD 1⊥平面C 1MN . 【解答】证明:(1)在正方体ABCD ﹣A 1B 1C 1D 1中, ∵M ,N ,P 分别为棱AB ,BC ,C 1D 1的中点, ∴AM=PC 1,又AM ∥CD ,PC 1∥CD ,故AM ∥PC 1, ∴四边形AMC 1P 为平行四边形, ∴AP ∥C 1M ,又AP ⊄平面C 1MN ,C 1M ⊂平面C 1MN , ∴AP ∥平面C 1MN .(2)连结AC ,在正方形ABCD 中,AC ⊥BD , 又M 、N 分别为棱AB 、BC 的中点,∴MN ∥AC , ∴MN ⊥BD ,在正方体ABCD ﹣A 1B 1C 1D 1中,DD 1⊥平面ABCD , 又MN ⊂平面ABCD ,∴DD 1⊥MN , 而DD 1∩DB=D,DD 1、DB ⊂平面BDD 1B 1, ∴MN ⊥平面BDD 1B 1,又MN ⊂平面C 1MN ,∴平面B 1BDD 1⊥平面C 1MN .17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m 的围墙.现有两种方案: 方案①多边形为直角三角形AEB (∠AEB=90°),如图1所示,其中AE+EB=30m ; 方案②多边形为等腰梯形AEFB (AB >EF ),如图2所示,其中AE=EF=BF=10m . 请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.【考点】定积分在求面积中的应用;基本不等式.【分析】设方案①,②的多边形苗圃的面积分别为S 1,S 2,根据基本不等式求出S 1的最大值,用导数求出S 2的最大值,比较即可.【解答】解:设方案①,②的多边形苗圃的面积分别为S 1,S 2, 方案①,设AE=x ,则S 1=x (30﹣x )≤ []2=,当且仅当x=15时,取等号, 方案②,设∠BAE=θ,则S 2=100sinθ(1+cosθ),θ∈(0,),由S 2′=100(2cos 2θ+cosθ﹣1)=0得cosθ=(cosθ=﹣1舍去), ∵θ∈(0,),∴θ=,当S 2′>0,解得0<x <,函数单调递增, 当S 2′<0,解得<x <,函数单调递减, ∴当θ=时,(S 2)max=75,∵<75,∴建立苗圃时用方案②,且∠BAE=.18.如图,在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的离心率为,A 为椭圆上异于顶点的一点,点P 满足=2.(1)若点P 的坐标为(2,),求椭圆的方程;(2)设过点P 的一条直线交椭圆于B ,C 两点,且=m ,直线OA ,OB 的斜率之积为﹣,求实数m 的值.【考点】椭圆的简单性质. 【分析】(1)由已知得A (﹣1,﹣),代入椭圆,得,再由椭圆离心率为,得=,由此能求出椭圆方程.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),推导出P (﹣2x 1,﹣2y 1),(﹣2x 1﹣x 2,﹣2y 1﹣y 2)=m (x 3﹣x 2,y 3﹣y 2),从而得到()+()﹣()=1,由直线OA ,OB 的斜率之积为﹣,得到=0,由此能求出实数m 的值.【解答】解:(1)∵A 为椭圆上异于顶点的一点,点P 满足=2,点P 的坐标为(2,),∴A (﹣1,﹣),代入椭圆,得,①∵椭圆+=1(a >b >0)的离心率为,∴=,②联立①②,解得a 2=2,b 2=1, ∴椭圆方程为.(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), ∵=2,∴P (﹣2x 1,﹣2y 1),∵=m,∴(﹣2x 1﹣x 2,﹣2y 1﹣y 2)=m (x 3﹣x 2,y 3﹣y 2),∴,∴,代入椭圆,得=1,即()+()﹣()=1,③∵A,B在椭圆上,∴+=1, =1,④∵直线OA,OB的斜率之积为﹣,∴=﹣,结合②,知=0,⑤将④⑤代入③,得=1,解得m=.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.【考点】根的存在性及根的个数判断.【分析】(1)若k=0,先化简不等式即可解不等式•f(x)≥•g(x);(2)若k≥0,化简方程f(x)=x•g(x),然后讨论k的取值范围即可得到结论.【解答】解:(1)若k=0,f(x)=(x+1),g(x)=,则不等式•f(x)≥•g(x)等价为•(x+1)≥•,此时,即x≥0,此时不等式等价为(x+1)x≥(x+3),即2x2+x﹣3≥0,得x≥1或x≤﹣,∵x≥0,∴x≥1,即不等式的解集为[1,+∞).(2)若k≥0,由f(x)=x•g(x)得(x+k+1)=x,①.由得,即x ≥k ,∴当x ≥0时x ﹣k+1>0,方程①两边平方整理得(2k ﹣1)x 2﹣(k 2﹣1)x ﹣k (k+1)2=0,(x ≥k ),② 当k=时,由②得x=,∴方程有唯一解, 当k ≠时,由②得判别式△=(k+1)2(3k ﹣1)2, 1)当k=时,判别式△=0,方程②有两个相等的根x=,∴原方程有唯一解.2)0≤k <且k ≠时,方程②整理为[(2k ﹣1)x+k (k+1)](x ﹣k ﹣1)=0, 解得x 1=,x 2=k+1,由于判别式△>0,∴x 1≠x 2,其中x 2=k+1>k ,x 1﹣k=≥0,即x 1≥k ,故原方程有两解,3)当k >时,由2)知,x 1﹣k=<0,即x 1<k ,故x 1不是原方程的解,而x 2=k+1>k ,则原方程有唯一解,综上所述,当k ≥或k=时,原方程有唯一解, 当0≤k <且k ≠时,原方程有两解.20.设数列{a n }的各项均为正数,{a n }的前n 项和,n ∈N *.(1)求证:数列{a n }为等差数列; (2)等比数列{b n }的各项均为正数,,n ∈N *,且存在整数k ≥2,使得.(i )求数列{b n }公比q 的最小值(用k 表示); (ii )当n ≥2时,,求数列{b n }的通项公式.【考点】数列的求和;等差关系的确定. 【分析】(1)数列{a n }的前n 项和,n ∈N *.利用递推关系可得:a n ﹣a n ﹣1=2,再利用等差数列的通项公式即可得出.(2)(i )由(1)可得:a n =2n ﹣1,S n =n 2.根据存在整数k ≥2,使得.可得b 1=.b n =k 2•.由,n ∈N *,可得:q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k+1时,可得:(n ﹣k )lnq=2,利用导数研究其单调性可得:的最大值为k ,q ≥.当n ≤k ﹣1时,q ≤.可得q 的最小值为(整数k ≥2). (ii )由题意可得:q ∈N *,由(i )可知:q ∈,(k ≥2),可得:q ≥>1,q ≤≤4,q ∈{2,3,4},分类讨论即可得出.【解答】(1)证明:∵数列{a n }的前n 项和,n ∈N *.∴当n=1时,,解得a 1=1. 当n ≥2时,a n =S n ﹣S=﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0,∵数列{a n }的各项均为正数,∴a n +a n ﹣1>0(n ≥2),a n ﹣a n ﹣1=2, ∴数列{a n }是等差数列,公差为2.(2)解:(i )由(1)可得:a n =1+2(n ﹣1)=2n ﹣1,S n =n 2. ∵存在整数k ≥2,使得.∴,可得b 1=.∴b n ==k 2•,∵,n ∈N *,∴k 2•q n ﹣k ≥n 2,∴q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k+1时,可得:(n ﹣k )lnq=2,∴≥,令f (x )=,(x >1),则f′(x )=,令g (t )=1﹣t+lnt ,(0<t <1),则g′(t )=>0,因此函数g (t )在(0,1)内单调递增,∴g (t )<g (1)=0,∴f′(x )<0,∴函数f (x )在(1,+∞)为减函数,∴的最大值为k,∴≥k,∴q≥.当n≤k﹣1时,q≤.∴q的最小值为(整数k≥2).(ii)由题意可得:q∈N*,由(i)可知:q∈,(k≥2),∴q≥>1,q≤≤4,=,舍去.∴q∈{2,3,4},当q=2时,≤2≤,只能取k=3,此时bn=4,舍去.当q=3时,≤3≤,只能取k=2,此时bn=22n﹣3,符合条件.当q=4时,≤4≤,只能取k=3,此时bn=22n﹣3.综上可得:bn[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.【考点】几种特殊的矩阵变换.【分析】设B′(x,y),=,求得A′的坐标,写出向量,,=,即可求得x和y,求得点B′的坐标.【解答】解:设B′(x,y),由题意可知:=,得A′(1,2),则=(2,2),=(x﹣1,y﹣2),即旋转矩阵N=,则=,即=,解得:,所以B′的坐标为(﹣1,4).[附加题]22.在平面直角坐标系xOy中,已知直线(t为参数)与曲线(θ为参数)相交于A,B两点,求线段AB的长.【考点】参数方程化成普通方程.【分析】直线(t为参数),消去参数t化为普通方程.由曲线(θ为参数),利用倍角公式可得y=1﹣2sin2θ,联立解出,再利用两点之间的距离公式即可得出.【解答】解:直线(t为参数)化为普通方程:y=2x+1.由曲线(θ为参数),可得y=1﹣2sin2θ=1﹣2x2(﹣1≤x≤1),联立(﹣1≤x≤1),解得,或,.∴A(﹣1,﹣1),B(0,1),∴|AB|==.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.(1)求概率P(X=0)的值;(2)为使收益X的数学期望不小于0元,求k的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!)【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,由此能求出P(X=0).(2)依题意,X的可能取值为k,﹣1,1,0,分别求出相应的概率,由此求出E(X),进而能求出k的最小值.【解答】解:(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,则P (X=0)=3×=.(2)依题意,X 的可能取值为k ,﹣1,1,0,且P (X=k )=()3=, P (X=﹣1)=()3=, P (X=1)=3×=, P (X=0)=3×=,∴参加游戏者的收益X 的数学期望为:E (X )==,为使收益X 的数学期望不小于0元,故k ≥110,∴k 的最小值为110.24.设S 4k =a 1+a 2+…+a 4k (k ∈N *),其中a i ∈{0,1}(i=1,2,…,4k ).当S 4k 除以4的余数是b (b=0,1,2,3)时,数列a 1,a 2,…,a 4k 的个数记为m (b ).(1)当k=2时,求m (1)的值;(2)求m (3)关于k 的表达式,并化简.【考点】整除的定义.【分析】(1)当k=2时,由题意可得数列a 1,a 2,…,a 8中有1个1或5个1,其余为0,可得m (1)=;(2)依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,或(4k ﹣1)个1,其余为0,然后用组合数表示m (3),同理用组合数表示m (1),结合m (1)=m (3),求出m (1)+m (3),即可求得m (3).【解答】解:(1)当k=2时,数列a 1,a 2,…,a 8中有1个1或5个1,其余为0,∴m (1)=;(2)依题意,数列a 1,a 2,…,a 4k 中有3个1,或7个1,或11个1,或(4k ﹣1)个1,其余为0, ∴m (3)=, 同理得:m (1)=, ∵, ∴m (1)=m (3).又m (1)+m (3)==24k ﹣1,∴m (3)=24k ﹣2=42k ﹣1.。

江苏省南通市2019届高三第二次调研测试-数学

江苏省南通市2019届高三第二次调研测试-数学

·1·(第4题)南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 命题“x ∃∈R ,20x >”的否定是“ ▲ ”.【答案】x ∀∈R ,20x ≤2. 设1i i 1ia b +=+-(i 为虚数单位,a ,b ∈R ),则ab 的值为 ▲ .【答案】03. 设集合{}11 0 3 2A =-,,,,{}2 1B x x =≥,则A B = ▲ .【答案】{}1 3-,4. 执行如图所示的伪代码,则输出的结果为 ▲ .【答案】115. 一种水稻试验品种连续5年的平均单位面积产量(单位:t/hm 2) 如下:9.8,9.9,10.1,10,10.2,则该组数据的方差为 ▲ .【答案】0.026. 若函数()π()2sin 3f x x ω=+(0)ω>的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为 ▲ .【答案】π27. 在平面直角坐标系xOy 中,若曲线ln y x =在e x =(e 为自然对数的底数)处的切线与直线 30ax y -+=垂直,则实数a 的值为 ▲ .【答案】e -8. 如图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD - 的体积为 ▲ cm 3.【答案】19. 已知等差数列{}n a 的首项为4,公差为2,前n 项和为n S . 若544k k S a +-=(k *∈N ),则k 的值为 ▲ .【答案】7AA 1 B不CB 1不C 1不D 1不D不(第8题)·2·BDC(第12题)AA B CDMNQ(第15题) 10.设32()4(3)f x x mx m x n =++-+(m n ∈R ,)是R 上的单调增函数,则m 的值为 ▲ .【答案】611.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,则线段AC 的长为 ▲ .12.如图,在△ABC 中,3AB =,2AC =,4BC =,点D 在边BC 上,BAD ∠=45°,则tan CAD ∠的值为 ▲ .13.设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg lg 4lg lg z zx y+的最小值为 ▲ . 【答案】9814.在平面直角坐标系xOy 中,圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA AB =, 则半径r 的取值范围是 ▲ . 【答案】[]5 55,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤. 15.(本小题满分14分)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,BAD ∠=90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证://CD 平面MNQ ; (2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以//MQ CD , …… 2分 又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故//CD 平面MNQ . …… 6分 (2)因为M ,N 分别为棱AD ,BD 的中点,所以//MN AB ,又90BAD ∠=°,故MN AD ⊥. …… 8分 因为平面BAD ⊥平面CAD ,平面BAD平面CAD AD =, 且MN ⊂平面ABD ,·3·所以MN ⊥平面ACD . …… 11分又MN ⊂平面MNQ ,平面MNQ ⊥平面CAD . …… 14分(注:若使用真命题“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面”证明“MN ⊥平面ACD ”,扣1分.)16.(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下: (1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;(2)测试成绩为“优”的3名男生记为1a ,2a ,3a ,2名女生记为1b ,2b .现从这5人中 任选2人参加学校的某项体育比赛. ① 写出所有等可能的基本事件; ② 求参赛学生中恰有1名女生的概率.解:(1)记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件1A ,“测试成绩为中” 为事件2A ,事件1A ,2A 是互斥的. …… 2分 由已知,有121923()()5050P A P A ==,. …… 4分因为当事件1A ,2A 之一发生时,事件A 发生, 所以由互斥事件的概率公式,得1212192321()()()()505025P A P A A P A P A =+=+=+=. …… 6分(2)① 有10个基本事件:12()a a ,,13()a a ,,11()a b ,,12()a b ,,23()a a ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,,12()b b ,. …… 9分 ② 记“参赛学生中恰好有1名女生”为事件B .在上述等可能的10个基本事件中,事件B 包含了11()a b ,,12()a b ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,. 故所求的概率为63()105P B ==.答:(1)这名学生的测试成绩为“良”或“中”的概率为2125;(2)参赛学生中恰有1名女生的概率为35. ……14分(注:不指明互斥事件扣1分;不记事件扣1分,不重复扣分;不答扣1分.事件B 包含的6种基本事件不枚举、运算结果未化简本次阅卷不扣分.)17.(本小题满分14分)在平面直角坐标系xOy 中,已知向量=a (1,0),=b (0,2).设向量=+x a (1cos θ-)b , k =-y a 1sin θ+b ,其中0πθ<<.(1)若4k =,π6θ=,求x ⋅y 的值;(2)若x //y ,求实数k 的最大值,并求取最大值时θ的值.解:(1)(方法1)当4k =,π6θ=时,(12=,x ,=y (44-,), …… 2分则⋅=x y (1(4)244⨯-+⨯=- …… 6分(方法2)依题意,0⋅=a b , …… 2分则⋅=x y (()(22142421⎡⎤+⋅-+=-+⨯⎢⎥⎣⎦a b a b a b(421443=-+⨯⨯= . …… 6分(2)依题意,()122cos θ=-,x ,()2sin k θ=-,y , 因为x //y ,所以2(22cos )sin k θθ=--,整理得,()1sin cos 1kθθ=-, …… 9分令()()sin cos 1f θθθ=-,则()()cos cos 1sin (sin )f θθθθθ'=-+-()()2cos 1cos 1θθ=+-. …… 11分令()0f θ'=,得1cos 2θ=-或cos 1θ=,又0πθ<<,故2π3θ=.列表:故当θ=…… 14分·5·(注:第(2)小问中,得到()122cos θ=-,x ,()2sin k θ=-,y ,及k 与θ的等式,各1分.)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222 1 ( 0 )y x a b a b+=>>的左顶点为A ,右焦点为(0)F c ,.00( )P x y ,为椭圆上一点,且PA PF ⊥.(1)若3a =,b =0x 的值; (2)若00x =,求椭圆的离心率;(3)求证:以F 为圆心,FP 为半径的圆与椭圆的右准线2a x c=相切.解:(1)因为3a =,b =2224c a b =-=,即2c =, 由PA PF ⊥得,0000132y y x x ⋅=-+-,即22006y x x =--+, …… 3分 又2200195x y +=,所以204990x x +-=,解得034x =或03x =-(舍去) . …… 5分 (2)当00x =时,220y b =, 由PA PF ⊥得,001y y a c⋅=--,即2b ac =,故22a c ac -=, …… 8分 所以210e e +-=,解得e =. …… 10分 (3)依题意,椭圆右焦点到直线2a x c =的距离为2a c c -,且2200221x y a b+=,① 由PA PF ⊥得,00001y y x a x c⋅=-+-,即2200()y x c a x ca =-+-+, ② 由①②得,()2002()0a b ac x a x c ⎡⎤-⎢⎥++=⎢⎥⎣⎦, 解得()2202a a ac c x c --=-或0x a =-(舍去). …… 13分所以PF ==0c a x a=-()222a a ac c c a a c --=+⋅2a c c =-,(第18题)·6·所以以F 为圆心,FP 为半径的圆与右准线2a x c=相切. …… 16分(注:第(2)小问中,得到椭圆右焦点到直线2a x c =的距离为2a c c-,得1分;直接使用焦半 径公式扣1分.) 19.(本小题满分16分)设a ∈R ,函数()f x x x a a =--. (1)若()f x 为奇函数,求a 的值;(2)若对任意的[2 3]x ∈,,()0f x ≥恒成立,求a 的取值范围; (3)当4a >时,求函数()()y f f x a =+零点的个数.解:(1)若()f x 为奇函数,则()()f x f x -=-, 令0x =得,(0)(0)f f =-,即(0)0f =,所以0a =,此时()f x x x =为奇函数. …… 4分(2)因为对任意的[2 3]x ∈,,()0f x ≥恒成立,所以min ()0f x ≥.当0a ≤时,对任意的[2 3]x ∈,,()0f x x x a a =--≥恒成立,所以0a ≤; …… 6分 当0a >时,易得22 () x ax a x a f x x ax a x a ⎧-+-<⎪=⎨--⎪⎩,,,≥在(2a ⎤-∞⎥⎦,上是单调增函数,在 2a a ⎡⎤⎢⎥⎣⎦,上 是单调减函数,在[) a +∞,上是单调增函数, 当02a <<时,min ()(2)2(2)0f x f a a ==--≥,解得43a ≤,所以43a ≤;当23a ≤≤时,min ()()0f x f a a ==-≥,解得0a ≤,所以a 不存在;当3a >时,{}{}min ()min (2)(3)min 2(2)3(3)0f x f f a a a a =----,=,≥,解得92a ≥, 所以92a ≥;综上得,43a ≤或92a ≥. …… 10分(3)设[]()()F x f f x a =+, 令()t f x a x x a =+=-则()y f t ==t t a a --,4a >,·7·第一步,令()0f t =t t a a ⇔-=,所以,当t a <时,20t at a -+=,判别式(4)0a a ∆=->,解得1t =2t =; 当t a ≥时,由()0f t =得,即()t t a a -=,解得3t =第二步,易得12302a t t a t <<<<<,且24a a <,① 若1x x a t -=,其中2104a t <<, 当x a <时,210x ax t -+=,记21()p x x ax t =-+,因为对称轴2a x a =<,1()0p a t =>,且21140a t ∆=->,所以方程210t at t -+=有2个不同的实根; 当x a ≥时,210x ax t --=,记21()q x x ax t =--,因为对称轴2a x a =<,1()0q a t =-<,且22140a t ∆=+>,所以方程210x ax t --=有1个实根, 从而方程1x x a t -=有3个不同的实根;② 若2x x a t -=,其中2204a t <<,由①知,方程2x x a t -=有3个不同的实根;③ 若3x x a t -=,当x a >时,230x ax t --=,记23()r x x ax t =--,因为对称轴2a x a =<,3()0r a t =-<,且23340a t ∆=+>,所以方程230x ax t --=有1个实根; 当x a ≤时,230x ax t -+=,记23()s x x ax t =--,因为对称轴2a x a =<,3()0s a t =>,且2334a t ∆=-,2340a t ->⇔324160a a --<, …… 14分记32()416m a a a =--,则()(38)0m a a a '=->,故()m a 为(4 )+∞,上增函数,且(4)160m =-<,(5)90m =>, 所以()0m a =有唯一解,不妨记为0a ,且0(45)a ∈,,·8·若04a a <<,即30∆<,方程230x ax t -+=有0个实根; 若0a a =,即30∆=,方程230x ax t -+=有1个实根; 若0a a >,即30∆>,方程230x ax t -+=有2个实根,所以,当04a a <<时,方程3x x a t -=有1个实根; 当0a a =时,方程3x x a t -=有2个实根; 当0a a >时,方程3x x a t -=有3个实根.综上,当04a a <<时,函数[]()y f f x a =+的零点个数为7; 当0a a =时,函数[]()y f f x a =+的零点个数为8;当0a a >时,函数[]()y f f x a =+的零点个数为9. …… 16分(注:第(1)小问中,求得0a =后不验证()f x 为奇函数,不扣分;第(2)小问中利用分离参数法参照参考答案给分;第(3)小问中使用数形结合,但缺少代数过程的只给结果分.)20.(本小题满分16分)设{}n a 是公差为d 的等差数列,{}n b 是公比为q (1q ≠)的等比数列.记n n n c a b =+. (1)求证:数列{}1n n c c d +--为等比数列; (2)已知数列{}n c 的前4项分别为4,10,19,34. ① 求数列{}n a 和{}n b 的通项公式;② 是否存在元素均为正整数的集合A ={1n ,2n ,…,} k n (4k ≥,k *∈N ),使得数列 1n c ,2n c ,…,k n c 为等差数列?证明你的结论. 解:(1)证明:依题意,()()111n n n n n n c c d a b a b d +++--=+-+-(1)0n b q =-≠, …… 3分 从而2111(1)(1)n n n n n n c c d b q q c c d b q ++++---==---,又211(1)0c c d b q --=-≠,所以{}1n n c c d +--是首项为1(1)b q -,公比为q 的等比数列. …… 5分(2)① 法1:由(1)得,等比数列{}1n n c c d +--的前3项为6d -,9d -,15d -, 则()29d -=()()615d d --,·9·解得3d =,从而2q =, …… 7分 且11114 3210 a b a b +=⎧⎨++=⎩,,解得11a =,13b =,所以32n a n =-,132n n b -=⋅. …… 10分法2:依题意,得1111211311410219334a b a d b q a d b q a d b q +=⎧⎪++=⎪⎨++=⎪⎪++=⎩,,,, …… 7分 消去1a ,得1121132116915d b q b d b q b q d b q b q +-=⎧⎪+-=⎨⎪+-=⎩,,,消去d ,得2111321112326b q b q b b q b q b q ⎧-+=⎪⎨-+=⎪⎩,,消去1b ,得2q =,从而可解得,11a =,13b =,3d =,所以32n a n =-,132n n b -=⋅. …… 10分 ② 假设存在满足题意的集合A ,不妨设l ,m ,p ,r A ∈()l m p r <<<,且l c ,m c , p c ,r c 成等差数列, 则2m p l c c c =+,因为0l c >,所以2m p c c >, ① 若1p m >+,则2p m +≥,结合①得,112(32)32(32)32m p m p --⎡⎤-+⋅>-+⋅⎣⎦13(2)232m m ++-+⋅≥, 化简得,8203m m -<-<, ②因为2m ≥,m *∈N ,不难知20m m ->,这与②矛盾, 所以只能1p m =+, 同理,1r p =+,所以m c ,p c ,r c 为数列{}n c 的连续三项,从而122m m m c c c ++=+, 即()11222m m m m m m a b a b a b +++++=+++,故122m m m b b b ++=+,只能1q =,这与1q ≠矛盾,所以假设不成立,从而不存在满足题意的集合A . …… 16分·10·(注:第(2)小问②中,在正确解答①的基础上,写出结论“不存在”,就给1分.)南通市2019届高三第二次调研测试数学Ⅱ(附加题)A .[选修4-1:几何证明选讲](本小题满分10分)如图,从圆O 外一点P 引圆的切线PC 及割线PAB ,C 为切点. 求证:AP BC AC CP ⋅=⋅. 证明:因为PC 为圆O 的切线,所以PCA CBP ∠=∠,3分 又CPA CPB ∠=∠,故△CAP ∽△BCP , …… 7分 所以AC AP BC PC=,即AP BC AC CP ⋅=⋅. …… 10分 B .[选修4-2:矩阵与变换](本小题满分10分)设23⎡⎤⎢⎥⎣⎦是矩阵232a ⎡⎤=⎢⎥⎣⎦M 的一个特征向量,求实数a 的值. 解:设23⎡⎤⎢⎥⎣⎦是矩阵M 属于特征值λ的一个特征向量,则232a ⎡⎤⎢⎥⎣⎦23λ⎡⎤=⎢⎥⎣⎦23⎡⎤⎢⎥⎣⎦, …… 5分 故262 123 a λλ+=⎧⎨=⎩,,解得4 1. a λ⎧⎨=⎩=,…… 10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,设直线π3θ=与曲线210cos 40ρρθ-+=相交于A ,B 两点,求线段AB 中点的极坐标.解:(方法1)将直线π3θ=化为普通方程得,y =,将曲线210cos 40ρρθ-+=化为普通方程得,221040x y x +-+=, …… 4分 联立221040y x y x ⎧=⎪⎨+-+=⎪⎩,并消去y 得,22520x x -+=, P(第21 - A 题)·11·解得112x =,22x =,所以AB 中点的横坐标为12524x x +=…… 8分 化为极坐标为()5π 23,. …… 10分 (方法2)联立直线l 与曲线C 的方程组2π310cos 40θρρθ⎧=⎪⎨⎪-+=⎩,, …… 2分 消去θ,得2540ρρ-+=,解得11ρ=,24ρ=, …… 6分 所以线段AB 中点的极坐标为()12π 23ρρ+,,即()5π 23,. …… 10分 (注:将线段AB 中点的极坐标写成()5π 2π ()23k k +∈Z ,的不扣分.) D .[选修4-5:不等式选讲](本小题满分10分)设实数a ,b ,c 满足234a b c ++=,求证:22287a b c ++≥.证明:由柯西不等式,得()()222222123a b c ++++≥()223a b c ++, …… 6分 因为234a b c ++=,故22287a b c ++≥, …… 8分当且仅当123a b c ==,即27a =,47b =,67c =时取“=”. …… 10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中,点(84)A -,,(2)P t ,(0)t <在抛物线22y px =(0)p >上. (1)求p ,t 的值;(2)过点P 作PM 垂直于x 轴,M 为垂足,直线AM 与抛物线的另一交点为B ,点C 在直线 AM 上.若PA ,PB ,PC 的斜率分别为1k ,2k ,3k ,且1232k k k +=,求点C 的坐标. 解:(1)将点(84)A -,代入22y px =,得1p =, …… 2分 将点(2)P t ,代入22y x =,得2t =±,(第22题)·12·因为0t <,所以2t =-. …… 4分 (2)依题意,M 的坐标为(20),, 直线AM 的方程为2433y x =-+,联立224332y x y x⎧=-+⎪⎨⎪=⎩,并解得B ()112,, …… 6分 所以113k =-,22k =-,代入1232k k k +=得,376k =-, …… 8分从而直线PC 的方程为7163y x =-+,联立24337163y x y x ⎧=-+⎪⎨⎪=-+⎩,并解得C ()823-,. …… 10分23.(本小题满分10分)设A ,B 均为非空集合,且AB =∅,AB ={ 123,,,…,}n (n ≥3,n *∈N ).记A ,B 中元素的个数分别为a ,b ,所有满足“a ∈B ,且b A ∈”的集合对(A ,B )的个数为n a . (1)求a 3,a 4的值; (2)求n a .解:(1)当n =3时,AB ={1,2,3},且AB =∅,若a =1,b =2,则1B ∈,2A ∈,共01C 种;若a =2,b =1,则2B ∈,1A ∈,共11C 种,所以a 3=01C 11+ C 2=;…… 2分 当n =4时,A B ={1,2,3,4},且A B =∅,若a =1,b =3,则1B ∈,3A ∈,共02C 种; 若a =2,b =2,则2B ∈,2A ∈,这与AB =∅矛盾;若a =3,b =1,则3B ∈,1A ∈,共22C 种,所以a 4=02C 22+ C 2=. …… 4分(2)当n 为偶数时,A B ={1,2,3,…,n },且A B =∅,·13·若a =1,b 1n =-,则1B ∈,1n -A ∈,共02C n -(考虑A )种; 若a =2,b 2n =-,则2B ∈,2n -A ∈,共12C n -(考虑A )种; ……若a =12n -,b 12n =+,则12n -B ∈,12n +A ∈,共222C n n --(考虑A )种; 若a =2n ,b 2n =,则2n B ∈,2n A ∈,这与A B =∅矛盾;若a 12n =+,b 12n =-,则12n +B ∈,12n -A ∈,共22C nn -(考虑A )种; ……若a =1n -,b 1=,则1n -B ∈,1A ∈,共(考虑A )22C n n --种,所以a n =02C n -+12C n -+…+222C n n --+22C nn -+…+122222C 2C n n n n n -----=-; …… 8分当n 为奇数时,同理得,a n =02C n -+12C n -+…+222C 2n n n ---=, 综上得,122222C 2 .n n n n n n a n ----⎧⎪-=⎨⎪⎩,为偶数,,为奇数 …… 10分。

2019-2020学年江苏省南通市高考第二次调研数学模拟试卷有答案

2019-2020学年江苏省南通市高考第二次调研数学模拟试卷有答案

南通市高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲. 2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲.4.如图是一个算法流程图,则输出的S 的值为▲.5.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积 大于32 cm 2的概率为▲.6.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲./分(第3题)7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()23P -,,则双曲线C 的焦距为▲.8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.9.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲.11.在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组3330330x x y x y ⎧⎪-+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲.12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数 m 的取值范围是▲.13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.14.已知a 为常数,函数22()1xf x a x x =---的最小值为23-,则a 的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()312=-,c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC A 1B 1C 1中,AB AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于端点),且∠ABE∠ACF ,AE ⊥BB 1,AF ⊥CC 1.求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .AA 1B 1C 1B C FE(第16题)l 1l 2 AB C(第18题)17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为42. (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案:方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆 柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形 (各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由.(第17题)0B 1B 2PQOP xy20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市高三第二次调研测试数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)1T ,2T 在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.ABDOC(第21—A 题)D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张 如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元, 点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖总金额为X 元. (1)求概率(600)P X =;(2)求X 的概率分布及数学期望()E X .23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除.南通市高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲.【答案】{}13,2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 【答案】433.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图 所示,则成绩不低于60分的人数为▲.【答案】304.如图是一个算法流程图,则输出的S 的值为▲./分(第3题)【答案】1255.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为▲. 【答案】136.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲.【答案】8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.【答案】979.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 【答案】6-10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲. 【答案】811.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪-+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲. 【答案】22(1)4x y -+=12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点, 则实数m 的取值范围是▲. 【答案】()1+∞,13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.【答案】1014.已知a为常数,函数()f x =23-,则a 的所有值为▲.【答案】144,二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b , ()3122=-,c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.解:(1)因为()cos sin αα=,a ,()sin cos ββ=-,b ,()3122=-,c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . ……3分因为+=a b c ,所以22+=a bc ,即a22a ⋅b b 21,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.……6分(2)因为5π6α=,所以()312=-,a .依题意,()31sin cos 2ββ+=--+,b c .……8分因为()//+a b c ,所以()()3311cos sin 022ββ--+--=.化简得,311sin cos 22ββ-=,所以()π1sin 32β-=.…… 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.…… 14分16.(本小题满分14分)如图,在三棱柱ABC A 1B 1C 1中,AB AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于端点),且∠ABE∠ACF ,AE ⊥BB 1,AF ⊥CC 1.求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .证明:(1)在三棱柱ABC A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.…… 2分 又AE ⊥BB 1,AE I AF A =,AE ,AF ⊂平面AEF , 所以BB 1⊥平面AEF .…… 5分AA 1B 1C 1B C FE(第16题)又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C .…… 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE ∠ACF ,AB AC ,所以Rt △AEB ≌Rt △AFC . 所以BECF .…… 9分又由(1)知,BE CF .所以四边形BEFC 是平行四边形. 从而BCEF .…… 11分又BC ⊄平面AEF ,EF ⊂平面AEF , 所以BC // 平面AEF .…… 14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为42. (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值. 解:设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b 3.…… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩,得()222319x x a ++=. 所以20269a x a =-+.…… 4分因为()22100032PB x y x =+-=,所以226229a a=+,解得218a =. 所以椭圆的标准方程为221189y x +=.…… 6分 (2)方法一: 直线PB 1的斜率为1003PB y k x -=, 由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033x y x y =-+-. (第17题)0B 1B 2PQO P xy同理,QB 2的方程为:0033x y x y =--+.…… 8分 联立两直线方程,消去y ,得20109y x x -=.…… 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以012x x =-.…… 12分 所以1212012PB B QB B S xS x ∆∆==.…… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221189y x +=,得()2221120k x kx ++=, 因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.…… 8分 因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-.…… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x k y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+.…… 12分 所以1212201212212621PB B QB B k S xk S x kk ∆∆-+===+.…… 14分18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿 虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(第18题)(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大? 解:(1)设所得圆柱的半径为r dm ,则()2π24100r r r +⨯=, …… 4分解得r =6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤,…… 9分方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,,……11分记函数304()400x x p x x x⎧<⎪=⎨⎪>⎩≤,, 则()p x 在(0,上单调递增,在)⎡+∞⎣上单调递减, 所以当x =max ()px =所以当x =a =max V =3.…… 14分 方法二:202a x a≤≤,从而a 11分所得正四棱柱的体积()222020V a x a a a ==≤≤.所以当a =x=max V =3.…… 14分答:(1dm;(2)当x 为 16分 【评分说明】①直接“由()21002x x x ⋅+=得,x =2分;②方法一中的求解过程要体现()p x V ≤≤,凡写成()p x V =≤5分, 其它类似解答参照给分.19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由. 解:(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+.……2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列.……4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,……6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.……8分 (3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,,……10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥……12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠. 由⑤⑥得1q q =,从而11a c =.……14分 代入①得10b =.再代入②,得0d =,与0d ≠矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.……16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c c c c ==.……10分 所以32432132c c c c c c c c --=--,即32432132a ad a a d a a d a a d -+-+=-+-+.两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+.……12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+. 又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. ……14分这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列.……16分20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <. 解:(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤.……3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x '=-+.若0b <,则存在02b ->,使()()11cos 0222b b g '-=---<,不合题意,所以0b >.……5分 取30e b x -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <.……8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-.……10分因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-.所以212120ln ln x x b x x -->>-.……12分下面证明2121ln ln x x x x ->-1ln t t ->()ln 0t <*.设())ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b ->2124x x b <.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=. 证明:延长AO 交⊙O 于点E ,则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.……5分因为OE OA =,所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=.……10分B .[选修4-2:矩阵与变换](本小题满分10分)ABDC(第21—A 题)EO在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩 阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积. 解:依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……5分则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=.……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.解:以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .则点P 的直角坐标为()1.……2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=.……5分所以()1P 到直线l 40y -+=2=.故所求圆的普通方程为()(2214x y -+=.……8分化为极坐标方程得,()π4sin 6ρθ=+.……10分D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2. 证明:因为a ,b ,c 为正实数,=2=(当且仅当a b c ==取“=”).……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元. (1)求概率()600P X =;(2)求X 的概率分布及数学期望()E X .解:(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形. 则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形. 所以()3111414439C C C C 560021C P X +⋅⋅===.……3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:……8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). ……10分23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除. 解:由二项式定理,得21C i i n a +=(i 0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=;…… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+-()221C n kn n +=+, …… 4分所以()021nn n k k T k a -==+∑()21021C nn kn k k -+==+∑ ()121021C nn k n k k +++==+∑ ()()12102121C nn k n k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn kn knn k k n n ++++===+-+∑∑()()()2212112212C 21222n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. 因为21C n n *-∈N ,所以n T 能被42n +整除.…… 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通市2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}{}31A x x x x =<-≥,则A =R ð ▲ .【答案】{}13x x -<≤.2. 某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为 ▲ . 【答案】18.3. 复数i z =(其中i 为虚数单位)的模为 ▲ ..4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的 方法抽取容量是5的样本,若编号为28的产品在样本中,则 该样本中产品的最大编号为 ▲ . 【答案】76.5. 根据如图所示的伪代码,最后输出的a 的值为 ▲ .【答案】48.6. 若12log 11a a <-,则a 的取值范围是 ▲ .【答案】()4+∞,. 7. 若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-则b 的值为 ▲ . 【答案】3-.8. 设l ,m 表示直线,m 是平面α内的任意一条直线.则“l m ⊥”是“l α⊥”成立的 ▲ 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 【答案】充要.9. 在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲.(第5题)10y +=.10.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 ▲ . 【答案】-36.11.设x ,y ,z 是实数,9x ,12y ,15z 成等比数列,且1x ,1y ,1成等差数列,则x z z x +的值是 ▲ .【答案】3415.12.设π6是函数()()sin 2f x x ϕ=+的一个零点,则函数()f x 在区间()02π,内所有极值点之和为▲ . 【答案】14π313. 若不等式(mx -1)[3m 2-( x + 1)m -1]≥0对任意(0)m ∈+∞,恒成立,则实数x 的值为 ▲ .【答案】114.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 ▲ . 【答案】12-.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求: (1)AB 的值; (2)sin()sin A B C-的值.【解】(1)(方法1)因为916AB AC AB BC ⋅=⋅=-,, …………………………… 4分 所以91625AB AC AB BC ⋅-⋅=+=,即()25AB AC CB +=,亦即225AB =,故5AB =. …………………………… 7分 (方法2)设A ,B ,C 的对边依次为a ,b ,c ,则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 两式相加得(cos cos )91625c b A a B +=+=,即225c =,故5AB c ==. ……………… 7分 (方法3)设A ,B ,C 的对边依次为a ,b ,c ,PABCDE (第16题)PABCDE(第16题)FM 则由条件得cos 9cos 16bc A ac B ==,. …………………………… 3分 由余弦定理得()()2222221191622b c a c a b +-=+-=,,两式相加得225c =,故5AB c ==. …………………………… 7分 (2)sin()sin cos cos sin sin sin A B A B A BC C--=………………………… 10分 由正弦定理得sin()cos cos sin A B a B b A C c--=22cos cos 169725ac B bc A c c --===. ………… 14分16.(本小题满分14分)在四棱锥P -ABCD 中,AB ∥DC ,AB ⊥平面P AD , PD =AD ,AB =2DC ,E 是PB 的中点. 求证:(1)CE ∥平面P AD ;(2)平面PBC ⊥平面P AB .【证】(1)(方法1)取P A 的中点F ,连EF ,DF .…… 2分 因为E 是PB 的中点,所以EF // AB ,且12EF AB =.因为AB ∥CD ,AB =2DC ,所以EF ∥CD ,……………… 4分 EF CD =,于是四边形DCEF 是平行四边形,从而CE ∥DF ,而CE ⊄平面P AD ,DF ⊂平面P AD , 故CE ∥平面P AD . …………………… 7分 (方法2)取AB 的中点M ,连EM ,CM . ……………… 2分 因为E 是PB 的中点,所以EM // P A .因为AB ∥CD ,AB =2DC ,所以CM // AD .……………… 4分 因为EM ⊄平面P AD ,PA ⊂平面P AD , 所以EM ∥平面P AD .同理,CM ∥平面P AD . 因为EMCM M =,EM CM ⊂,平面CEM ,所以平面CEM ∥平面P AD .而CE ⊂平面P AD ,故CE ∥平面P AD .……………………… 7分 (2)(接(1)中方法1)因为PD =AD ,且F 是P A 的中点,所以DF PA ⊥.因为AB ⊥平面P AD ,DF ⊂平面P AD ,所以DF AB ⊥. ……………………… 10分 因为CE ∥DF ,所以CE PA ⊥,CE AB ⊥. 因为PA AB ⊂,平面P AB ,PAAB A =,所以CE ⊥平面P AB .因为CE ⊂平面PBC ,所以平面PBC ⊥平面P AB . ………………………… 14分17.(本小题满分14分)为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中 释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161048154102x xy x x ⎧-⎪-=⎨⎪-<⎩,≤≤,,≤. 若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之 和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用. (1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (14a ≤≤)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.11.4). 【解】(1)因为一次喷洒4个单位的净化剂, 所以浓度644048()4202410x x f x y x x ⎧-⎪-==⎨⎪-<⎩,≤≤,,≤.则当04x ≤≤时,由64448x--≥,解得0x ≥,所以此时04x ≤≤.…………………… 3分 当410x <≤时,由2024x -≥解得8x ≤,所以此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天. …………… 7分 (2)设从第一次喷洒起,经x (610x ≤≤)天,浓度()1161616()25110(14)428(6)1414a a g x x a x a x a x x x ⎡⎤=-+-=-+-=-+--⎢⎥----⎣⎦.…… 10分因为14[48]x -∈,,而14a ≤≤,所以[48],,故当且仅当14x -=y有最小值为4a -.令44a -≥,解得244a -≤,所以a的最小值为24 1.6-.……… 14分18.(本小题满分16分)在平面直角坐标系xOy 中,设曲线C 1:1(0)x ya b a b+=>>所围成的封闭图形的面积为曲线C 1上的点到原点O.以曲线C 1与坐标轴的交点为顶点的椭圆记为C 2.(1)求椭圆C 2的标准方程;(2)设AB 是过椭圆C 2中心O 的任意弦,l 是线段AB 的垂直平分线.M 是l 上的点(与O 不重合).①若MO =2OA ,当点A 在椭圆C 2上运动时,求点M 的轨迹方程; ②若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值.【解】(1)由题意得2ab ⎧=⎪= 又0a b >>,解得28a =,21b =.因此所求椭圆的标准方程为2218x y +=. ………………………… 4分(2)①设()M x y ,,()A m n ,,则由题设知:2OM OA =,0OA OM ⋅=.即22224()0x y m n mx ny ⎧+=+⎨+=⎩,, 解得22221414m y n x ⎧=⎪⎨⎪=⎩,. ………………………8分因为点()A m n ,在椭圆C 2上,所以2218m n +=,即()()222182y x+=,亦即221432x y +=.所以点M 的轨迹方程为221432x y +=. ………………………10分②(方法1)设()M x y ,,则()(0)A y x λλλλ-∈≠R ,,, 因为点A 在椭圆C 2上,所以222(8)8y x λ+=,即22288y x λ+= (i )又2288x y += (ii )(i )+(ii )得()2228119x y λ+=+, ………………………13分所以()228116||()||99AMB S OM OA x y λλλ∆=⋅=+=+≥.当且仅当1λ=±(即1AB k =±)时,()min 169AMB S ∆=. ………………………16分 (方法2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k ≠0). 解方程组2218x y y kx ⎧+=⎪⎨⎪=⎩,,得22818A x k =+,222818A k y k =+,所以22222222888(1)181818A Ak k OA x y k k k +=+=+=+++,222232(1)418k AB OA k+==+. 又22181x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2228+8M k x k =,228+8M y k =,所以2228(1)+8k OM k +=.…………… 12分(解法1)由于22214AMBS AB OM =⋅△2222132(1)8(1)418+8k k k k ++=⨯⨯+222264(1)(18)(+8)k k k +=+ ()2222264(1)18+82k k k +++≥222264(1)2568181(1)4k k +==+, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立,此时△AMB 面积的最小值是S △AMB =169. …………… 15分当k =0,S △AMB 1161=⨯=;当k 不存在时,S △AMB 116229=⨯=>.综上所述,△AMB 面积的最小值为169. …………… 16分(解法2)因为22222211118(1)8(1)18+8k k OA OMk k +=++++22218+898(1)8k k k ++==+, 又22112OA OM OA OM +⋅≥,于是169OA OM ⋅≥, 当且仅当22188k k +=+时等号成立,即k =±1时等号成立.(后同方法1)19.(本小题满分16分)设数列{a n }的首项不为零,前n 项和为S n ,且对任意的r ,t ∈N *,都有()2r t SrS t=.(1)求数列{a n }的通项公式(用a 1表示);(2)设a 1=1,b 1=3,()1*2n n b b S n n -=∈N ≥,,求证:数列{}3log n b 为等比数列; (3)在(2)的条件下,求121nk n k k b T b -==-∑. 【解】(1)因为110a S =≠,令1t =,r n =,则()2r t SrS t=,得21nSn S=,即21n S a n =.… 2分当2n ≥时,11(21)n n n a S S a n -=-=-,且当1n =时,此式也成立.故数列{a n }的通项公式为1(21)n a a n =-. …………… 5分(2)当11a =时,由(1)知1(21)21n a a n n =-=-,S n =n 2.依题意,2n ≥时,121n n b n b S b --==, ……… 7分 于是233131log log 2log (2)n n n b b b n n --==∈N ≥,,且31log 1b =,故数列{}3log n b 是首项为1,公比为2的等比数列. …………… 10分 (3)由(2)得113log 122n n n b --=⨯=,所以12*3()n n b n -=∈N . ……… 12分 于是()()()22121222212222231131113131313+131k k k k k k k k k b b --------+-===------. ……… 15分 所以()211122222111112313131k k n nnk n k k k b T b ----====-=-----∑∑. ……… 16分20.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t ,求(1)(1)a t -- 的值.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.……………………… 2分 所以0a >,令()0f x '=,则ln x a =.当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数; 于是当ln x a =时,()f x 取得极小值. ……………………… 4分 因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ……………………………… 6分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,, 两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x xf s x x s++-+-'⎡⎤=-=--⎣⎦-,…………… 8分 设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而12e02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<. ………………………………………… 11分(3)依题意有e 0i x i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=ABC 中,显然C = 90°,…………………… 13分所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以2100x x y -+=,即122112e ()022x x x xa x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=.因为110x -≠,则()2211111110212x x x a x ----++=-,t ,所以221(1)(1)022a at t t -++-=, …………………………………… 15分即211a t =+-,所以(1)(1) 2.a t --= …………………………………… 16分南通市2019届高三第二次调研测试数学Ⅱ(附加题)(第21—A 题)21A .选修4—1:几何证明选讲如图,△ABC 内接于圆O ,D 为弦BC 上一点,过D 作直线DP // AC ,交AB 于点E ,交圆O 在A 点处的切线于点P .求证:△P AE ∽△BDE .【证明】因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE .又∠PEA =∠BED ,故△P AE ∽△BDE .…………………… 10分21B .选修4—2:矩阵与变换已知二阶矩阵M 有特征值1λ=及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e ,且M 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦.求矩阵M .【解】设a b c d ⎡⎤=⎢⎥⎣⎦M ,则由 1 111ab cd ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11a b c d -=⎧⎨-=-⎩,. 再由1311⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b c d ,得31a b c d +=⎧⎨+=⎩.,联立以上方程组解得a =2,b =1,c =0,d =1,故2101⎡⎤=⎢⎥⎣⎦M .……………………… 10分 21C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d , 求d 的取值范围.【解】由题设可知P ( 1 + 2cos α,2sin α ),Q ( 1 + 2cos2α,sin2α ),………………………… 2分 于是PQ 的中点M ()1cos cos2sin sin 2αααα+++,. ………………………… 4分 从而()()2222cos cos2sin sin222cos d MA ααααα==+++=+ ………………………… 6分 因为0<α<2π,所以-1≤cos α<1, ………………………… 8分 于是0≤d 2<4,故d 的取值范围是[)02,. ………………………… 10分21D .选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3. 证明:因为|m|+|n|≥|m -n|,所以|1|||1()21|x a x a x a x a a -++--+---≥||=|.………………………………………… 8分ABCDD 1A 1B 1C 1E(第22题)又a ≥2,故21|a -|≥3.所以|1|||3x a x a -++-≥.…………………………………………………………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应 写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在长方体ABCD —A 1B 1C 1D 1中,112AD AA AB ==,点E 是棱AB 上一点.且AE EB λ=.(1)证明:11D E A D ⊥;(2)若二面角D 1—EC —D 的大小为π4,求λ的值.【证】(1)以D 为原点,DA 为x 轴,DC 为y 轴, DD 1为z 轴建立空间直角坐标系. 不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以()2101E λλ+,,,于是()112111D E A D λλ=-=+,,,(-1,0,-1). 所以()11211(101)01D E A D λλ⋅=-⋅--=+,,,,.故D 1E ⊥A 1D . ……… 5分 (2)因为D 1D ⊥平面ABCD ,所以平面DEC 的法向量为n 1=(0,0,1). 又()21201CE λλ=+,-,,1CD =(0,-2,1).设平面D 1CE 的法向量为n 2=(x ,y ,z ),则n 2·()220CE x y λλ=+-=,n 2·120CD y z =-+=,所以向量n 2的一个解为()22121λλ-+,.因为二面角D 1—EC —D 的大小为π4,则1212⋅=n n.解得λ=±233-1. 又因E 是棱AB 上的一点,所以λ>0,故所求的λ值为233-1. ……… 10分23.(本小题满分10分)数学试卷设数列{a n }共有n (3n n ∈N ≥,)项,且11n a a ==,对每个i (1≤i ≤1n -,i ∈N ),均有 {}11122i i a a +∈,,. (1)当3n =时,写出满足条件的所有数列{a n }(不必写出过程);(2)当8n =时,求满足条件的数列{a n }的个数.【解】(1)当3n =时,131a a ==. 因为{}211122a a ∈,,,{}321122a a ∈,,,即{}21122a ∈,,,{}211122a ∈,,, 所以212a =或21a =或22a =. 故此时满足条件的数列{a n }共有3个:1112,,; 1,1,1; 1,2,1. ……… 3分 (2)令b i =a i +1a i(1≤i ≤7),则对每个符合条件的数列{a n },满足条件: 77181111i ii i i a a b a a +=====∏∏,且b i ∈{}1122,, (1≤i ≤7). 反之,由符合上述条件的7项数列{b n }可唯一确定一个符合条件的8项数列{a n }.………7分记符合条件的数列{b n }的个数为N . 显然,b i (1≤i ≤7)中有k 个2;从而有k 个12,7-2k 个1. 当k 给定时,{b n }的取法有77C C k k k -种,易得k 的可能值只有0,1,2,3,故1122337675741C C C C C C 393N =+++=.因此,符合条件的数列{a n }的个数为393. ……… 10分。

相关文档
最新文档