剪力方程和弯矩方程 剪力图和弯矩图§4-5 载荷集度、剪力和
《材料力学》课程讲解课件第四章弯曲内力
![《材料力学》课程讲解课件第四章弯曲内力](https://img.taocdn.com/s3/m/65603ba933687e21ae45a91b.png)
x
∴ 弯曲构件内力:Fs -剪力,M -弯矩。
若研究对象取m - m 截面的右段:
Y 0, Fs F FBY 0.
mC 0,
FBY
FBY (l x) F(a x) M 0.
Fs
F (l a) l
,
M F (l a) x 18 l
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
由 Fy 0, 得到:
A
FAy
a
Mc
C FSc
FAy q 2a FSc 0
FSc FAy q 2a qa
(剪力FS 的实际方向与假设方
向相反,为负剪力)
由 MC 0, 得到:
MC FAy 2a 2qa a M1 0
MC FAy 2a 2qa a M1 2qa2
F
M (x) FAY x M A
F(x L) (0 x l)
x
③根据方程画内力图
FL
x
41
§4-4 剪力方程和弯矩方程 剪力图和弯矩图
q
例题4-2
悬臂梁受均布载荷作用。
x
试写出剪力和弯矩方程,并
q
l
x
FS
M x
FS x
画出剪力图和弯矩图。
解:任选一截面x ,写出
剪力和弯矩方程
ql FS x=qx
变形特点——杆轴线由直线变为一条平面的曲线。
P
主要产生弯曲变形的杆--- 梁。
q
M
二、平面弯曲的概念:
RA
NB
3
F1
q
F2
M
纵向对称面
平面弯曲 受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在
材料力学(刘鸿文)第四章-弯曲内力
![材料力学(刘鸿文)第四章-弯曲内力](https://img.taocdn.com/s3/m/b5ab1618a6c30c2259019ed5.png)
练习:计算下列各图中特殊截面上的内力
P a q
a
P
a
a
a M=qa2
q
a a
P=2qa
练习:计算下列各图中特殊截面上的内力
q
a
2a
P=qa
a
a M=qa2
a
§4-4
剪力方程和弯矩方程、剪力图和弯矩
一、内力方程: 任意截面处的内力表示为截面位置的函数; q x q x 例1、悬臂梁上作用均布载荷 写内力方程,并作内力图
M ( x) m Pa
x
(0 x a )
BC段:
Fs ( x) P
M ( x) m P( x a) 2 Pa Px
( a x 2a )
Fs ( x) 0
m=Pa
P
B C
M ( x) m Pa
(0 x a )
A
Fs ( x) P
弯矩图上凸;
总结3 3、梁上没有均布载荷时:
剪力的图 弯矩图
FS
Fb / l
F C
x
水平;
斜直线;
M
Fa / l
Fab / l
且剪力大于零时, 弯矩图上升; 剪力小于零时, 弯矩图下降;
x
总结4 4、集中力的作用点处
FS
Fb / l
F
C
Fa / l
剪力图 突变; 突变量 =集中力的大小; 突变的方向 弯矩图 顺集中力的方向
固定端截面处;
FS max=ql
M max=ql 2 / 2
M
ql 2 / 2
x
仔细观察内力图的特点 1885年,俄国人别斯帕罗夫开 始使用弯矩图;
试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯...
![试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯...](https://img.taocdn.com/s3/m/3a0b319fbe1e650e52ea99ed.png)
4-2 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。
4-3 试利用载荷集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。
4-4 试作下列具有中间铰的剪力图和弯矩图。
4-14 一根搁在地基上的梁承受载荷如图所示。
假设地基的反力按直线规律
连续变化。
试求反力在两端A点和B点处的集度q A和q B,并作梁的剪力图和弯矩图。
4-15 试作图示刚架的剪力图、弯矩图和轴力图。
4-22 厚度为h=1.5mm的钢带,卷成直径为D=3m的圆环,试求钢带横截面上的最大正应力。
已知钢的弹性模量E=210GPa。
4-25 矩形截面的悬臂梁受集中力和集中力力偶作用,如图所示。
试求截面m-m和固定端截面n-n上A、B、C、D四点处的正应力。
4-32 简支梁的荷载情况及尺寸如图所示,试求梁的下边缘的总伸长。
4-39 一矩形截面简支梁由圆柱形木料锯成。
已知F =5kN ,a =1.5m ,[σ]=10MPa 。
试确定弯曲截面系数为最大时矩形截面的高宽比h /b ,以及梁所需木料的最小直径d 。
4-48 一矩形截面木梁,其截面尺寸及载荷如图,q =1.3kN/m 。
已知[σ]=10MPa ,[τ]=2MPa 。
试校核梁的正应力和切应力强度。
4-52 图示木梁受一可移动的载荷F =40kN 作用。
已知[σ]=10MPa ,[τ]=
3MPa 。
木梁的横截面为矩形,其高宽比23=b h 。
试选择梁的截面尺寸。
《材料力学》课程讲解课件第四章第五节载荷集度、剪力和弯矩间的关系
![《材料力学》课程讲解课件第四章第五节载荷集度、剪力和弯矩间的关系](https://img.taocdn.com/s3/m/a104f487a45177232e60a21b.png)
平面刚架的内力
例题4-6
B
已知平面刚架上的均布载荷集度q,长度l。
ql
试:画出刚架的内力图。
y
2
解:1、确定约束力
2、写出各段的内力方程
ql 2
B FN(y)
ql
M(y)
FS(y) q
y
ql
ql
2
竖杆AB:A点向上为y
Fx 0 FS y qy ql 0
FS y ql qy 0 y l
2
FN y ql / 2 FS y ql qy M y qly qy2 / 2
ql
2
ql
-
2
横杆CB:
FN x 0 FS x ql / 2 M x qlx / 2
ql 2 2
+
FS
M
ql
目录
例4-6-1 作出该曲杆的内力图。
F
F 解:写出曲杆的内力方程
m
FS
FN F sin
a
a
qa
FBy
qa/2
qa
MA FAy
FDy
q
(+)
(+)
(-)
Fs
qa/2 M
(-)
(-)
FDy FBy
FDy qa / 2 FBy 3qa / 2
FAy qa / 2 M A qa2 / 2
qa2/2
qa2/2
平面刚架和曲杆的内力图
1、刚架
用刚性接头连接的杆系结构
刚性接头的特点: 约束-限制相连杆端截面间的相对线位移与角位移 受力-既可传力,也可传递力偶矩
q(x) 0 q C 0 q C 0 F 载荷
剪力、弯矩方程与剪力、弯矩图
![剪力、弯矩方程与剪力、弯矩图](https://img.taocdn.com/s3/m/87964862657d27284b73f242336c1eb91a373336.png)
截面位置对剪力和弯矩的影响
总结词
截面位置对剪力和弯矩具有显著影响。不同的截面位置会导致剪力和弯矩的大小和方向发生变化。
详细描述
在结构分析中,截面位置是影响剪力和弯矩的重要因素之一。不同的截面位置会导致剪力和弯矩的大小和方向发 生变化,从而影响结构的整体受力性能。例如,在梁中选取不同的截面位置进行支撑或固定,会对梁的剪力和弯 矩产生显著影响。
05 剪力、弯矩与材料力学性 能的关系
材料弹性对剪力和弯矩的影响
弹性材料在剪力和弯矩作用下会发生弹性变形,变形量与外力成正比,当外力去 除后,材料能够恢复原状。
弹性材料的剪切模量和弯曲刚度决定了剪力和弯矩的大小,剪切模量越大,材料 抵抗剪切变形的能力越强;弯曲刚度越大,材料抵抗弯曲变形的能力越强。
根据绕顺时针方向观察确定,使上侧 纤维受拉时为正。
02 剪力方程与弯矩方程
剪力图与弯矩图的绘制
1
剪力图和弯矩图是表示梁上剪力和弯矩随截面位 置变化的图形。
2
这些图的绘制基于剪力方程和弯矩方程的计算结 果,通过将计算得到的剪力和弯矩值标在图中相 应的位置上,并连接成线。
3
剪力图和弯矩图的绘制有助于直观地了解梁在不 同截面位置的受力状态和应力分布情况。
弯矩
在梁或结构中,由于弯曲而产生 的力矩,表示弯曲变形的大小。
剪力与弯矩在力学中的作用
剪力
主要影响结构的剪切变形,对梁的剪切承载能力有重要影响 。
弯矩
主要影响结构的弯曲变形,对梁的弯曲承载能力有重要影响 。
剪力与弯矩的符号规定
剪力正方向
根据右手定则确定,从杆件的受压一 侧指向受拉一侧。
弯矩正方向
02
材料强度越高,抵抗剪力和弯矩等外力的能力越强, 所能承受的剪力和弯矩越大。
梁的剪力和弯矩.剪力图和弯矩图
![梁的剪力和弯矩.剪力图和弯矩图](https://img.taocdn.com/s3/m/aaa6db385727a5e9856a61f7.png)
突变,顺下逆上,大小与M 同,FS图不发生变化。
例题
4.9
作图示梁的内力图
3kN 4.5kN m
2kN m
D
A
C
B
FA 10kN
1m 2m
2m
7
3
x 1.56 2
3
2
2.44 2
E FB 2kN 1m
kN
kNm
例题
4.10
4kN m
6kN
1m
1m
4.5
kN
FL
0 xL 0x L
kNm
例题 4.6
图示外伸梁,,试作剪力图和弯矩图.
20kN 40kN m
X1 A 1m 35kN
15
20
kN
20
10kN m
4m
2.5
FS x1 20kN
X2
B
0 x1 1
25kN
M x1 20x1
0 x1 1
FS x2 25 10x2
2Fl
lC
l
FCs
l
C MC
2Fl
FCs
MC
C
l
F
B D
FCs F FCs F
MC Fl MC Fl
MC 2Fl Fl 0
F
B
D
FDs
MD
F
DB
FDs F MD 0
截开后取左边为示力对象:
❖向上的外力引起正剪力,向下的外力引起负剪力; ❖向上的外力引起正弯矩,向下的外力引起负弯矩; ❖顺时针引起正弯矩,逆时针引起负弯矩。
剪力图是斜直线. 弯矩图是二次抛物线.
刘鸿文材料力学 I 第6版_4_弯取内力
![刘鸿文材料力学 I 第6版_4_弯取内力](https://img.taocdn.com/s3/m/ca46c824cf84b9d528ea7ac8.png)
(3) 在剪力Q为零处, 弯矩M取极值。
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
44
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
2
AC段: N 1 qa Q qa qy 2
M qa y 1 qy2
2
(3) 轴力图
(4) 剪力图
35
(4) 剪力图
(5) 弯矩图
BC段:
M 1 qa x
2
qa
AC段:
M qa y 1 qy2
特点: 2
在刚节点处,弯矩值连续 ;
Q
1 qa 2
36
特点: 在刚节点处,弯矩值连续; 可以利用刚节点的平衡, 对内力图进行校核。
(2) 求剪力方程和弯矩方程
需分段求解。
分为两段:AC和CB段。 AC段 取x截面,左段受力如图。
由平衡方程,可得:
Q(x) Pb l
(0 x a)
M (x) Pb x
(0 x a)
l
CB段 取x截面,
x
Q
M
17
CB段 取x截面, 左段受力如图。 由平衡方程,可得:
外侧均可,但需标出正 负号; (3) 弯矩画在受压侧。
32
例 5 刚架
已知:q,a。
求:内力图。
解:(1) 求支反力 结果如图。
(2) 求内力 BC段:
X 0
MQ
N Dx
N 0
剪力、弯矩方程与剪力、弯矩图
![剪力、弯矩方程与剪力、弯矩图](https://img.taocdn.com/s3/m/bff74eefaef8941ea66e0502.png)
(0 x 1m)
(1m x 2m) (1m x 2m)
FS3 1 2x (2m x 4m)
M3 x2 x 10 (2m x 4m)
22
DE段:
FS4 2kN (4m x 5m)
M4 2x 10 (4m x 5m)
例:试建立图示梁的剪力、弯矩方程,并画剪力、弯矩图。
F1=10kN
q=2kN/m
AB FA
C M0=4kN.m
F2=2kN
DE FD
解: (1) 求支反力,
由梁的平衡: FA=7kN
FD=9kN
1m 1m
2m
1m (2) 建立剪力方程和弯矩
方程(由载荷形式将梁分
AB段:
成四个区域)
M1
FA FS1 0 FS1 FA 7kN
F[(4
x)
A
1]
M3 x FS3
0
q
M
FD
3
F2 D
x2
E
x
10
FS3 1 2x (2m x 4m) M3 x2 x 10 (2m x 4m)
郭德伟 6
§5-4 剪力、弯矩方程与剪力、弯矩图
F1=10kN
q
AB FA
1m
C
M0=4kN.m
1m
7
| FS |max 7kN
(kN.m)
| M |max 8kN m
2
郭德伟 8
§5-4 剪力、弯矩方程与剪力、弯矩图
•剪力、弯矩方程:剪力、 弯矩沿梁轴(x轴)变化的
解析表达式。
AC段(0<x1<a):
剪力和弯矩图关系平衡微分方程
![剪力和弯矩图关系平衡微分方程](https://img.taocdn.com/s3/m/cf94e162a5e9856a561260f4.png)
M-x中。
目录
§4-5
A
FAy
9qa/4
Fs (+)
载荷集度、剪力和弯矩间的关系
q
D 解法2:1.确定约束力
B
4a
a FBy
qa
FAy=
9 4
qa
,
FBy=
3 4
qa
(-) qa
7qa/4
2.确定控制面,即A 、B、D两侧截面。
3.从A截面左测开始画
剪力图。
目录
§4-5 载荷集度、剪力和弯矩间的关系
1kN.m
A CD EF B
FAY
1.5m
1.5m
2kN
1.5m FBY
例题4-6 简支梁受力的大 小和方向如图示。
试画出其剪力图和弯矩图。
解:1.确定约束力 根据力矩平衡方程
M A=0, MB=0
求得A、B 二处的约束力 FAy=0.89 kN , FBy=1.11 kN
从左到右,顺(逆)时针集中力偶作用处,弯矩图向上 (下)突变,突变幅度为集中力偶的大小。剪力图在该点没 有变化。
5、也可通过积分方法确定剪力、 弯矩图上各点处的数值。
dFS q dx
dFS qdx
b
b
a dFS
qdx
a
dM dx
FS
dM FSdx
b
b
dM a
a FSdx
FS
b
FS
a
B点的弯矩为
-1/2×7qa/4×7a/4 +81qa2/32=qa2
目录
作业
4-4 (a). (c) .(e). (g). (i). (k)
剪力和弯矩图关系_平衡微分方程
![剪力和弯矩图关系_平衡微分方程](https://img.taocdn.com/s3/m/3edab8b8647d27284b7351e7.png)
1kN.m
A
CD E F B
3.建立坐标系
0.89 kN= FAY
FS (kN)
O
0.89
M (kN.m)
1.5m
2kN
1.5m
1.5m
1.11
(+)
(-)
建立 FS-x 和 M-x
FBY
坐标系
=1.11 kN
4.应用截面法确定控
x 制面上的剪力和弯矩
值,并将其标在
FS- x和 M-x 坐标
系中。
O (-)
的剪力和弯矩值标在相应的坐标系中。 应用平衡微分方程确定各段控制面之间 的剪力图和弯矩图的形状,进而画出剪力图 与弯矩图。
目录
§4-5 载荷集度、剪力和弯矩间的关系
1kN.m
A CD EF B
FAY
1.5m
1.5m
2kN
1.5m FBY
例题4-6 简支梁受力的大 小和方向如图示。
试画出其剪力图和弯矩图。
解:1.确定约束力 根据力矩平衡方程
M A = 0, M B = 0
求得A、B 二处的约束力 FAy=0.89 kN , FBy=1.11 kN
2.确定控制面
在集中力和集中力偶作用处的两侧截面以及支座反力
内侧截面均为控制面。即A、C、D、E、F、B截面。
目录
§4-5 载荷集度、剪力和弯矩间的关系
0.89
3.从A截面左测开始画
剪力图。
目录
§4-5 载荷集度、剪力和弯矩间的关系
1kN.m
4.从A截面左测开始画
A
C D B 弯矩图。
FAY
1.5m
1.5m
2kN
1.5m
梁的剪力、弯矩方程和剪力、弯矩图
![梁的剪力、弯矩方程和剪力、弯矩图](https://img.taocdn.com/s3/m/96ea0d51bed5b9f3f80f1c47.png)
5.4.1 梁的剪力、弯矩方程和剪力、弯矩图梁在外力作用下,各个截面上的剪力和弯矩一般是不相等的。
若以横坐标表示横截面沿梁轴线的位置,则剪力Q 和弯矩M 可以表示为坐标的函数,即它们分别称为梁的剪力方程和弯矩方程。
与绘制轴力图或扭矩图一样,可用图线表明梁的各截面上剪力和弯矩沿梁轴线的变化情况。
作图时,取平行于梁轴线的直线为横坐标轴,值表示各截面的位置;以纵坐标表示相应截面上的剪力、弯矩的大小及其正负,这种表示梁在各截面上剪力和弯矩的图形,称为剪力图和弯矩图。
例5-1 简支梁AB 承受承受均布荷载作用,如图 5 - 10a 所示。
试列出剪力方程和弯矩方程,并绘制剪力图和弯矩图。
图5-10解:(1) 计算支反力以整梁为研究对象,利用平衡条件计算支反力。
由于简支梁上的载荷对于跨度中央截面是对称的,所以 A 、 B 两端的支反力应相等,即(1)方向如图。
(2) 建立剪力、弯矩方程以梁左端A 为的坐标原点,取坐标为的任意横截面的左侧梁段为研究对象。
设截面上的剪力Q () 、弯矩M () 皆为正,如图5-10b 所示。
由平衡方程将(1) 式代入上面两式,解得( 2 )( 3 )(2) 、(3) 两式分别为剪力方程和弯矩方程。
(3) 绘制剪力图、弯矩图由式(2) 可知,剪力图为一直线。
只需算出任意两个截面的剪力值,如A 、B 两截面的剪力,即可作出剪力图,如图5 - 10c 所示。
由式(3) 可知,弯矩图为一抛物线,需要算出多个截面的弯矩值,才能作出曲线。
例如计算下列五个截面的弯矩值:当时, M =0 ;当时,;当时,。
由此作出的弯矩图,如图5-10d 所示。
由剪力图和弯矩图可知,在靠近A 、B 支座的横截面上剪力的绝对值最大,其值为在梁的中央截面上,剪力Q =0 ,弯矩为最大,其值为例5-2 简支梁AB 承受集中力偶M0作用,如图 5 - 11a 所示。
试作梁的剪力图、弯矩图。
图5-11解:(1) 计算支反力由平衡方程分别算得支反力为反力R A的方向如图,R B为负值,表示其方向与图 5 - 11a 中假设的方向相反。
梁的内力图剪力图和弯矩图(共16张PPT)
![梁的内力图剪力图和弯矩图(共16张PPT)](https://img.taocdn.com/s3/m/8dba2f2aa22d7375a417866fb84ae45c3b35c2e9.png)
V Rqx qlqx 作3、此依梁方的程剪x作力剪图力和图弯和矩A弯图矩。图
(0<x<l)
2、判断各段V、M图形状:
快速绘制剪力图和弯矩图
突变大小等于集中荷载的大小。
弯矩图出现转折,转折方向与
3、依方程作剪力图和弯矩图
Vmax= 1 ql 2
Mmax 1 ql 2 8
例2 简支梁受集中荷载作用,如图示,
斜率的大小等于对应梁段上剪力的大小。V>0时向右下方斜斜,
V<0时向右上方倾斜,V=0时为水平线。
在均布荷载作用的梁段上:剪力图为斜直线,斜率等于荷载 集度,q<0〔 〕向右下方倾斜,反之,向右上方倾斜。 弯矩图为二次抛物线,q<0,向下凸起;q>0〔 〕向上凸。 遇到集中荷载:剪力图突变,突变方向与集中荷载方向相同, 突变大小等于集中荷载的大小。弯矩图出现转折,转折方向与 集中力的方向相反。 遇到集中力偶:剪力图不变,弯矩图突变,突变方向由力偶的
弯矩图为二次抛物线,q<0,向下凸起;
V>0时向右下方斜斜,
v
而变化的,如果将x轴建立在梁的轴线上,原点建立在梁
q>0〔 〕向上凸。
q>0〔 〕向上凸。
v 1、可以检查剪力图和弯矩图是否正确。
集度,q<0〔 〕向右下方倾斜,反之,向右上方倾斜。
作此梁的剪力图和弯矩图。
作此梁的剪力图和弯矩图。
〔4〕逐段绘制出V和M图即梁的V和M图
极值弯矩:集中力作用截面、集中力偶截面或弯矩为零的截面。
v
利用上述规律:
1、可以检查剪力图和弯矩图是否正确。
2、可以快速的绘制剪力图和弯矩图,步骤如下:
〔1〕将梁正确分段 〔2〕根据各段梁上的荷载情况,判断剪力图和弯矩图的 形状
剪力方程和弯矩方程及剪力图和弯矩图
![剪力方程和弯矩方程及剪力图和弯矩图](https://img.taocdn.com/s3/m/5fe91d35a22d7375a417866fb84ae45c3b35c29d.png)
FS
(
x)
FRA
qx
ql 2
qx
(0 x l)
M(
x)
FRA
x
qx
x 2
qlx 2
qx2 2
(0 x l)
§5-4 剪力方程和弯矩方程 剪力图和弯矩图
q
FS
(
x)
ql 2
qx
(0 x l)
A
剪力图为一倾斜直线
x
FRA
l
x=0
处
, FS
ql 2
x= l 处 ,
FS
ql 2
ql/2
+
绘出剪力图
l
突变值等于集中力偶矩的数值.此处
M /l
剪力图没有变化.
+
Ma
+l
Mb l
§5-4 剪力方程和弯矩方程 剪力图和弯矩图
小结
1.取梁的左端点为坐标原点,x 轴向右为正:剪力图向上为正;弯矩 图向上为正. 2.以集中力、集中力偶作用处、分布荷载开始或结束处,及支座截 面处为界点将梁分段.分段写出剪力方程和弯矩方程,然后绘出剪 力图和弯矩图. 3.梁上集中力作用处左、右两侧横截面上,剪力(图)有突变,突 变值等于集中力的数值.在此处弯矩图则形成一个尖角.
§5-4 剪力方程和弯矩方程 剪力图和弯矩图
小结
4.梁上集中力偶作用处左、右两侧横截面上的弯矩(图) 有突变,其突变值等于集中力偶矩的数值.但在此处剪力图 没有变化.
5.梁上的FSmax发生在全梁或各梁段的边界截面处;梁上的Mmax发 生在全梁或各梁段的边界截面,或FS = 0 的截面处.
x
l
l
l
AC,CB 两梁段的弯矩图各是一条倾斜直线.
载荷集度、剪力和弯矩间的关系分析
![载荷集度、剪力和弯矩间的关系分析](https://img.taocdn.com/s3/m/487e048576c66137ef06191d.png)
目录
§4-5 载荷集度、剪力和弯矩间的关系
q
C D 3.建立坐标系
A
9 qa 4
FAy
FS
9qa / 4
4a
(+)
O 9a/ 4
M
81qa2 /32
B
a qa
FBy= 3 qa 4
建立FS-x和M-x
坐标系 4.确定控制面上的
(-)
qa
7qa/ 4
x 剪力值,并将其标
在FS-x中。
O
(+)
qa 2
FBY
坐标系
=1.11 kN
4.应用截面法确定控
x 制面上的剪力和弯矩
值,并将其标在
FS- x和 M-x 坐标
系中。
O (-)
(-)
0.335
1.335
1.67
x 5.根据微分关系连图 线
目录
§4-5 载荷集度、剪力和弯矩间的关系
1kN.m
解法2:1.确定约束力
A
CD B
FAY
1.5m
1.5m
2kN
1kN.m
A CD EF B
FAY
1.5m
1.5m
2kN
1.5m FBY
例题4-6 简支梁受力的大 小和方向如图示。
试画出其剪力图和弯矩图。
解:1.确定约束力 根据力矩平衡方程
M A = 0, M B = 0
求得A、B 二处的约束力 FAy=0.89 kN , FBy=1.11 kN
2.确定控制面
B点的弯矩为
-1/2×7qa/4×7a/4 +81qa2/32=qa2
目录
5、也可通过积分方法确定剪力、 弯矩图上各点处的数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M (x) Fx
FS
F
| FS |max F
|笃行
例 试画出如图示简支梁AB的剪力图和弯矩图。
解:1.求支反力,由 Fx 0, mA 0
Fb
Fa
得 FA l , FB l
2.列剪力、弯矩方程
在AC段内,
FS1 ( M1(
x) x)
FA FA
对称弯曲时和特定条件下的非对称弯曲时,梁的挠曲线与 外力所在平面相重合,这种弯曲称为平面弯曲。
明德 砺志 博学 笃行
弯 曲 实 例
明德 砺志 博学 笃行
§4-2 受弯构件的简化
梁的计算简图:梁轴线代替梁,将荷载和支座加到轴线上。
吊车大梁简化实例
明德 砺志 博学 笃行
§4-2 受弯构件的简化
一、梁支座的简化
超静定梁——仅用静力平衡方程不能求得所有反力的梁。
§4-3 剪力和弯矩
明德 砺志 博学 笃行
C M
Fy
0:
FA
FA
FS 0
l
l
aF
FS
FA
FA
x
FS
MC 0 : M FAx 0 M FAx
F
MC
FB
a l
F
FS
FB Fy 0 : FS FB F 0 FS F FB FA
MC 0: M FBx Fl x 0 M FBx Fl x FAx
明德 砺志 博学 笃行
①剪力:平行于横截面的内力
符号规定:
FS
FS
剪力为正
FS
FS
剪力为负
②弯矩:绕截面转动的内力
符号规定:
M
M
M
M
弯矩为正
弯矩为负
明德 砺志 博学 笃行
例如图所示的简支梁,试求1-1及C左右截面上的内力。
明德 砺志 博学 笃行
第四章 弯曲内力
§4-1 弯曲的概念和实例 §4-2 受弯构件的简化 §4-3 剪力和弯矩 §4-4 剪力方程和弯矩方程 剪力图和弯矩图 §4-5 载荷集度、剪力和弯矩间的关系 §4-6 平面曲杆的弯曲内力
明德 砺志 博学 笃行
§4-1 弯曲的概念和实例
一、弯曲的概念
受力特点: 变形特点:
1 1 1.5m
q=12kN/m
2
B
2
1.5m
FB
3m
解: 1、求支反力
MB
0
FA
6
F
4.5
q 3
3 2
0
FA
15kN
Fy 0 FA FB F q 3 0 FB 29kN
(也可由 M A 0求FB或校核FB的正误)
明德 砺志 博学 笃行
2、计算1-1截面的内力
FS1 FA F 7kN M1 FA 2 F (2 1.5) 26kN m FA
明德 砺志 博学 笃行
M 3ql2 / 32
3ql2 / 32
M x=qlx / 2 qx2 / 2 0 x l
x
明德 砺志 博学 笃行
总结
❖在某一段上若无载荷作用,剪力图为一水平线,弯矩图为一 斜直线。 ❖在某一段上作用分布载荷,剪力图为一斜直线,弯矩图为 一抛物线。且弯矩M最大值发生于FS=0处。 ❖集中力作用处剪力图有突变,变化值等于集中力的大小; 弯矩图上无突变,但斜率发生突变,弯矩图上为折角点。 ❖在集中力偶作用处,弯矩图上发生突变,突变值为该集中力 偶的大小而剪力图无改变。
FSC右
FA
F
F 3
M C右
FA
l 3
2 9
Fl
FSC左 FSC右, MC左=MC右
在集中力作用处,左右截面上剪力发生突变,突变值为该集 中力的大小;而弯矩保持不变。
负号表示假设方向与实际方向相反。
明德 砺志 博学 笃行
例 求下图所示简支梁1-1与2-2截面的剪力和弯矩。
F=8kN
A 2m
FA 1.5m
a)滑动铰支座
b)固定铰支座
c)固定端
MR
FRx
FRx
FR
FRy
FRy
二、载荷的简化
(a)集中荷载
F1
集中力
M
明德 砺志 博学 笃行
(b)分布荷载
q(x)
q
集中力偶
任意分布荷载
均布荷载
明德 砺志 博学 笃行
三、静定梁的基本形式
静定梁——仅用静力平衡方程即可求得反力的梁。
(a)悬臂梁
(b)简支梁
(c)外伸梁
明德 砺志 博学 笃行
例 简支梁受均布载荷作用试写出剪力和弯矩方程,并画
出剪力图和弯矩图。
y
q
解:1.确定约束力
M A=0, MB=0
FAy= FBy= ql/2
A
B
xC
x
FAY
l
FBY
FS ql / 2
2.写出剪力和弯矩方程
FS x=ql / 2 qx 0 x l
x
ql /
ql 2 / 8
以弯曲变形为主要变形的杆件称为梁。 ① 轴线是直线的称为直梁,轴线是曲线的称为曲梁。 ② 有对称平面的梁称为对称梁,没有对称平面的梁称 为非对称梁。
明德 砺志 博学 笃行
对称弯曲:若梁上所有外力都作用在纵向对称面内,梁变形 后轴线形成的曲线也在该平面内的弯曲。
q F
纵向对称面
FA
FB
非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上 但外力并不作用在纵向对称面内的弯曲。
F=8kN
M1
FS1
3、计算2-2截面的内力
q=12kN/m
FS2 q 1.5 FB 11kN
M2
M2
FB
1.5
q 1.5 1.5 2
30 kN
m
FS2
FB
明德 砺志 博学 笃行
建议:求截面FS和M时,均按规定正向假设,这 样求出的剪力为正号即表明该截面上的剪力为正 的剪力,如为负号则表明为负的剪力。对于弯矩 正负号也作同样判断。
明德 砺志 博学 笃行
§4-4 剪力方程和弯矩方程 剪力图和弯矩 图
剪力、弯矩方程:
MFS
FS ( x) M (x)
剪力、弯矩图:剪力、弯矩方程的图形,横轴 沿轴线方向表示截面的位置,纵轴为内力的大 小。
明德 砺志 博学 笃行
例 作图示悬臂梁AB的剪力图和弯矩图。
剪力、弯矩方程:
Fx A
B
l
FS (x) F
解:1.求支座反力
Fy M
0, FA
A (F ) 0,
FB FB
l
F
0 Fl
3
0
得
FA
2 3
F, FB
1 3
F
2.求截面1-1上的内力
FS D
FA
2 3
F
MD
FA
a
2 3
Fa
明德 砺志 博学 笃行
同理,对于C左截面:
FSC左
FA
2 3
F
M
C左=
2 3
F
l 3
2 9
Fl
对于C右截面:
x
Fb ,0 x
l
Fb
x, 0
l
a
x
a
在BC段内,
FS2 (x)
FB
Fa l
, a
x
l
M
2 ( x)
FB
l
x
Fa l
l
x,
a
x
l
明德 砺志 博学 笃行
在某一段上若无载荷作用,剪力 图为一水平线,弯矩图为一斜直 线。 集中力作用处剪力图有突变,变 化值等于集中力的大小;弯矩图 上无突变,但斜率发生突变,折 角点。