人教版九年级数学上册24.4 弧长和扇形面积学案
九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计
"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字
人教版-数学-九年级上册 第24-4-1弧长和扇形面积 导学案
24.4.1弧长和扇形面积一、学习目标1.理解并掌握及扇形面积的计算公式2.会利用弧长、扇形面积计算公式计算简单组合图形的周长3. 重点:弧长和扇形面积公式,准确计算弧长和扇形的面积4. 难点:运用弧长和扇形的面积公式计算比较复杂图形的面积二、知识准备1.圆周长的计算公式是:2.圆面积计算公式是:3.弧长是它所对应的的一部分,扇形面积是它所对应的面积的一部分自习自疑文一、阅读教材P107-108内容,思考并回答下面的问题:1.弧长的计算公式为__________________________2. 由组成圆心角的两条和圆心角所对的所围成的图形叫做扇形。
3.扇形面积的计算公式:或二、自习评估:1.如果扇形的圆心角是120°,半径是3cm,则这个扇形的面积等于____________;2.已知圆弧的半径为50厘米,圆心角为60°,圆弧的长度是:我想问:请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决。
等级组长签字自主探究文活动一:如图,某传送带的一个转动轮的半径为Rcm1)转动轮转一周,传送带上的物品A被传送厘米;2)转动轮转1°,传送带上的物品A被传送厘米;3)转动轮转n°,传送带上的物品A被传送厘米。
因此弧长的计算公式为__________________________活动二:如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形(1)右图中扇形有几个?答:(2)思考圆心角为的扇形面积是圆面积的几分之几?答:(3)圆心角的扇形面积圆面积的几分之几?答:(4)如果设圆心角是n°的扇形面积为S,圆的半径为r,那么扇形的面积为 .活动三:1.圆心角为60°的扇形的半径为10厘米,求这个扇形的面积和周长.2.在半径为18cm的圆上有一段长为10cm的弧,求该弧所对的圆周角的度数.自测自结文1.如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的半径是1,顺次连结四个圆心得到四边形ABCD,则图中四个扇形的面积和是多少?2.已知如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点。
人教版九年级数学上册24.4.1《弧长和扇形面积》教学设计
人教版九年级数学上册24.4.1《弧长和扇形面积》教学设计一. 教材分析人教版九年级数学上册第24章《弧长和扇形面积》是中学数学中的重要内容,主要让学生掌握弧长和扇形面积的计算方法。
这一部分内容在教材中占据了重要的位置,是因为它不仅涉及到圆的相关知识,而且与实际生活中的许多问题密切相关。
通过学习这部分内容,学生可以更好地理解圆的性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对圆的相关概念也有了一定的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过已有的知识体系来理解和掌握这部分内容。
三. 教学目标1.让学生掌握弧长和扇形面积的计算方法。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对圆的性质的理解,培养学生的空间想象能力。
四. 教学重难点1.弧长和扇形面积的计算公式的推导。
2.如何将实际问题抽象为弧长和扇形面积的问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过已有的知识体系来理解和掌握弧长和扇形面积的计算方法。
2.使用多媒体辅助教学,帮助学生直观地理解弧长和扇形面积的概念。
3.创设实际问题情境,让学生在解决实际问题的过程中,掌握弧长和扇形面积的计算方法。
六. 教学准备1.多媒体教学设备。
2.弧长和扇形面积的计算公式的教案。
3.与弧长和扇形面积相关的实际问题。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一些与圆相关的实际问题,引导学生关注弧长和扇形面积的概念。
2.呈现(10分钟)教师讲解弧长和扇形面积的定义,并通过多媒体展示弧长和扇形面积的计算公式。
3.操练(10分钟)教师给出一些简单的例题,让学生运用弧长和扇形面积的计算公式进行计算。
4.巩固(10分钟)教师通过一些变式训练,让学生进一步理解和掌握弧长和扇形面积的计算方法。
5.拓展(10分钟)教师引导学生将弧长和扇形面积的计算方法应用于实际问题,培养学生解决实际问题的能力。
人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)
24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
2024年人教版九年级上册教学设计第24章24.4 弧长和扇形面积
第1课时弧长和扇形面积课时目标1.理解弧长和扇形面积公式,并会计算弧长、扇形的面积,发展学生抽象思维能力的核心素养.2.经历探究弧长和扇形面积公式的过程,解决部分与整体的问题,培养学生的探索能力和运用公式解决问题的能力.3.在弧长和扇形面积计算公式的探究过程中,感受转化、类比的数学思想.4.通过用弧长和扇形面积公式解决实际问题,让学生感受数学与实际生活的联系,激发学习数学的兴趣,提高学习数学的积极性,培养学生会用数学知识解决简单几何问题的能力.学习重点弧长及扇形面积公式的推导过程及运用.学习难点运用弧长和扇形面积公式计算组合图形的面积.课时活动设计情境引入在田径200米跑步比赛中,运动员的起跑位置相同吗?为什么?教师通过课件展示图片,提出问题.解:起跑位置不同,为了保证每个人所跑路程为200米.在学生回答的基础上,提出每个跑道应该相距多远呢,关键是应该知道这些弯道的“展直长度”,如何计算呢?设计意图:由现实图片引出,给学生产生视觉上的强烈冲击,产生强烈的求知欲,为下面探究新知识打下基础.让学生感悟数学来源于生活并应用于生活的辨证思想,初步感受弧长的作用.探究新知我们知道,弧是圆的一部分,弧长就是圆周长的一部分.想一想,如何计算圆周长?圆的周长可以看作是多少度的圆心角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角呢?分析:在半径为R 的圆中,因为360°的圆心角所对的弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是2πR360,即πR180.于是n°的圆心角所对的弧长为l =nπR180.典例精讲例1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算如图所示的管道的展直长度L (结果取整数).解:由弧长公式,得AB⏜的长l =100×900×π180=500π≈1 570(mm). 因此所要求的展直长度L =2×700+1 570=2 970(mm).设计意图:由圆的周长和周角的定义分析出1°的圆心角所对的弧长,进而得出n°圆心角所对弧长公式,体现了新旧知识的联系.教师给出扇形图片,学生观察图片,尝试归纳概念.扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形. 思考:由扇形的定义可知,扇形面积就是圆面积的一部分.想一想,如何计算圆的面积?圆面积可以看作是多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n°的圆心角呢?分析:在半径为R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S =πR 2,所以圆心角是1°的扇形面积是πR 2360.于是圆心角为n°的扇形面积是S扇形=nπR2360.比一比:n°的圆心角所对的弧长和扇形面积之间有什么关系?(教师提问,学生讨论交流,得出结论.)S扇形=nπR2360=nπR·R180×2=l·R2=12lR.典例精讲例2如图,圆心角为60°的扇形的半径为10 cm.求这个扇形的面积和周长.(精确到0.01 cm2和0.01 cm)学生独立思考后师生共同解答.解:∵n=60,r=10 cm,∵扇形的面积为S=nπr2360=60×π×102360=50π3≈52.36(cm2).扇形的周长为l=2r+nπr180=20+60×π×10180=20+10π3≈30.47(cm).设计意图:类比弧长公式的研究方法,学生可以自行推倒扇形面积公式并应用,锻炼学生的推理能力.典例精讲例3如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水面高0.3 m.求截面上有水部分的面积(结果保留小数点后两位).解:连接OA,OB,作弦AB的垂直平分线,垂足为D,交AB⏜于点C,连接AC.∵OC=0.6 m,DC=0.3 m,∵OD=OC-DC=0.3(m).∵OD=DC.又AD∵DC,∵AD是线段OC的垂直平分线.∵AC=AO=OC.从而∵AOD=60°,∵AOB=120°.有水部分的面积S=S扇形OAB-S∵OAB=120π360×0.62-12AB·OD=0.12π-12×0.6√3×0.3≈0.22(m2).有水的部分实际上是一个弓形,通过例题我们发现,弓形的面积可以通过扇形的面积与相应三角形面积的和或差求得.设计意图:通过例题总结出弓形的面积.巩固训练1.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧AB⏜,点O是这段弧所在圆的圆心,半径OA=90 m,圆心角∵AOB=80°,则这段弯路AB⏜的长度为(C)A.20π mB.30π mC.40π mD.50π m第1题图第2题图2.如图,在扇形AOB中,AC为弦,∵AOB=140°,∵CAO=60°,OA=6,则BC⏜的长为(B)A.4π3B.8π3C.2√3πD.2π3.如图,∵O经过点A和点B,其半径是√2m,连接AB,若∵AOB=45°,则阴影部分的面积为π4-√22m2(结果保留π).4.某校编排的一个舞蹈需要五把和图1形状大小完全相同的绸扇.学校现有三把符合要求的绸扇,将这三把绸扇完全展开刚好组成如图2所示的一朵圆形的花.请你算一算:再做两把这样的绸扇至少需要多少平方厘米的绸布?(单面制作,不考虑绸扇的折皱,结果用含π的式子表示)解:由三把绸扇完全展开刚好组成了一个圆可知,扇形的圆心角为120°.由题图知,大扇形的半径为18+12=30(cm).S大扇形=120×π×302360=300π(cm2).S小扇形=120×π×122360=48π(cm2).S绸面=S大扇形-S小扇形=300π-48π=252π(cm2).两把绸扇所需的绸布面积是2×252π=504π(cm2).所以再做两把这样的调扇至少需要504π平方厘米的绸布.5.如图,将Rt∵ABC绕点A逆时针旋转90°得到Rt∵AB1C1,阴影部分为线段BC 扫过的区域,已知AB=4,BC=3,求阴影部分的面积.解:∵AB=4,BC=3,∵由勾股定理,得AC=√32+42=5.∵将Rt∵ABC绕点A逆时针旋转90°得到Rt∵AB1C1,∵∵ABC的面积等于∵AB1C1的面积,∵C1AC=∵B1AB=90°.∵阴影部分的面积S=S扇形AC1C +S∵ABC-S扇形AB1B-S△AC1B1=S扇形AC1C-S扇形ABB1=90π×52360-90π×42360=94π.设计意图:通过练习进一步巩固所学.课堂小结本节课我们主要学习了哪些内容? (1)弧长公式l=nπR180.(2)扇形面积S扇形=nπR2360=12 lR.(3)弓形面积S弓形=S扇形-S三角形,S弓形=S扇形+S三角形.设计意图:将课程中的知识点进行整理和归纳,形成结构化的知识体系,便于学生理解和记忆.课堂8分钟.1.教材第113页练习第2,3题,教材第115页习题24.4第7,8题.2.七彩作业.教学反思第2课时圆锥的侧面积和全面积课时目标1.理解圆锥的侧面积和全面积公式,并会利用公式解决圆锥侧面积或全面积的问题,发展学生抽象思维能力的核心素养.2.经历探索圆锥侧面积计算公式的过程,培养学生获取新知的能力,并渗透化曲面为平面的思想,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.通过教学互动培养学生的观察能力和抽象概括能力,掌握解决问题的策略.4.通过运用公式解决实际问题,让学生感受数学与实际生活的联系,激发学生学习数学的兴趣,培养学生会用数学知识解决简单几何问题的能力.学习重点了解圆锥的侧面积和全面积计算公式,并会应用公式解决问题.学习难点经历探索圆锥侧面积和全面积计算公式的过程.课时活动设计观察思考问题:观察下面的物体,你能抽象出什么相同的几何图形?问题:你还能举出一些生活中的圆锥形物体吗?设计意图:通过熟悉的生活中实物图片引入,提高学生的学习兴趣,并让学生感受数学与实际生活的联系,通过举例让学生进一步熟悉圆锥.问题1:观察圆锥,你能说出它是由哪些面围成的几何体吗?解:圆锥是由一个底面和一个侧面围成的几何体.底面是一个圆,侧面是一个曲面.追问1:圆锥中常见的元素有哪些?解:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.圆锥的母线有无数条.连接圆锥顶点和底面圆心的线段叫做圆锥的高.追问2:圆锥的母线、高、半径三者之间有什么关系?解:h2+r2=l2讲完每一部分可以先让学生讨论,最后教师总结给出每部分的所讲内容.设计意图:通过分析得出圆锥的母线、高、半径三者之间的关系,为后面解题作准备,同时进一步培养学生的观察能力和抽象概括能力.问题2:我们知道圆锥的侧面是一个曲面,那么如何求它的侧面积呢?将曲面变成平面,沿一条母线将圆锥侧面剪开并展平.追问:圆锥的侧面展开图是什么图形?扇形教师活动:先让学生动手操作,将扇形纸片折成圆锥再展开,然后提出下面的问题让学生抢答.(1)展开的扇形的半径与圆锥中的哪一条线段相等?母线长.(2)展开的扇形的弧长与底面圆的周长有什么关系?相等.设计意图:通过提问引导学生分析出求侧面积的方法,培养学生获取新知的能力,并渗透化曲面为平面的思想.通过动手操作培养学生的操作实践能力,并让学生熟悉展开的扇形中的弧长和半径与圆锥中元素的关系,为后面推导出圆锥的侧面积公式作铺垫,通过抢答提高学生学习的积极性.问题3:如何计算圆锥的侧面积?分析:由活动3可知圆锥母线长l ,底面圆的半径为r ,那这个扇形半径为l ,弧长为2πr.因此圆锥的侧面积=扇形的面积=12lR =12×2πr ×l =πrl.设计意图:将圆锥的侧面积转化为已学的扇形的面积,让学生掌握解决问题的策略.问题4:如何计算圆锥的全面积呢? 圆锥的全面积=侧面积+底面积=πrl +πr 2. 说明:r 是底面圆的半径,l 是圆锥的母线长.设计意图:通过自主探究交流的方式引导学生推导出圆锥的侧面积公式和全面积公式,培养学生分析问题和解决问题的能力.问题5:还记得前面提到的蒙古包吗?能否利用今天学到的知识求出蒙古包的全面积?蒙古包的全面积=圆锥的侧面积+圆柱的侧面积. 典例精讲例 蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?解:如图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m2,高h2=1.8 m;上部圆锥的高h1=3.2-1.8=1.4(m).≈1.954(m),圆柱的底面圆的半径r=√12π侧面积为2π×1.954×1.8≈22.10(m2).圆锥的母线长l=√1.9542+1.42≈2.404(m),侧面展开扇形的弧长为2π×1.954≈12.28(m),×2.404×12.28≈14.76(m2).圆锥的侧面积为12因此,搭建20个这样的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m2).设计意图:让学生自主分析出求解思路,学会运用数学知识解决实际问题,进一步感受数学与实际生活的联系,并为后面的练习、习题解答作准备.让学生在探究过程中进一步加深对圆锥侧面积公式的理解,培养学生的应用意识.巩固训练1.已知一个圆锥的底面半径为12 cm,母线长为20 cm,则这个圆锥的侧面积为240π cm2,全面积为384π cm2(结果保留π).2.一个圆锥形的冰淇淋纸筒,其底面直径为6 cm,高为4 cm,则围成这样的冰淇淋纸筒所需纸片的面积为15π cm2(结果保留π).3.若圆锥的底面半径r=4 cm,高线h=3 cm,则它的侧面展开图中扇形的圆心角是288度.4.童心玩具厂欲生产一种圣诞老人的帽子,其圆锥形帽身的母线长为15 cm,底面半径为5 cm,生产这种帽身10 000个,你能帮玩具厂算一算至少需多少平方米的材料吗(不计接缝用料和余料,π取3.14)?解:由题意可知,母线长l=15 cm,r=5 cm,∵S侧=πrl=π×5×15≈235.5(cm2).∵235.5×10 000=2 355 000(cm2)=235.5(m2).答:至少需要235.5平方米的材料.设计意图:通过巩固训练及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.课堂小结设计意图:通过课堂小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.课堂8分钟.1.教材第114页练习第1,2题,教材第115页习题24.4第5,9题.2.七彩作业.第2课时圆锥的侧面积和全面积重要图形,重要结论.(1)其侧面展开图扇形的半径=母线的长l;(2)侧面展形图扇形的弧长=底面圆的周长.(1)r2+h2=l2;(2)S侧=πrl;(3)S全=S侧+S底=πrl+πr2.教学反思。
九年级数学上册 24.4 弧长和扇形面积导学案 (新版)新人教版-(新版)新人教版初中九年级上册数学
弧长和扇形面积学习目标:知识技能:掌握弧长和扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算数学思考:通过弧长和扇形面积公式的推导过程,发展学生分析问题、解决问题的能力情感态度:在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想学习重点:弧长,扇形面积公式的推导及应用学习难点:对图形的分析学习过程:一、复习回顾:半径为R的圆,它的周长是:L=半径为R的圆,它的面积是:S=二、合作探究:试探究下列问题:(1)圆的周长可以看作是度的圆心角所对的弧长。
(2)在同圆或等圆中,每一个 1°的圆心角所对的弧长有怎样的关系?(3) 1°的圆心角所对的弧长是圆周长的。
(4) n°的圆心角所对的弧长是圆周长的。
(5)怎样计算半径为R 的圆中,1°的圆心角所对的弧长l?(6)怎样计算半径为R 的圆中,2°的圆心角所对的弧长l?(7)怎样计算半径为R 的圆中,5°的圆心角所对的弧长l?(8)怎样计算半径为R 的圆中,n°的圆心角所对的弧长l?思考:弧长由那些量决定?三、应用新知:例1、制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算图中所示的管道的展直长度L(结果取整数).四、类比探究:(小组合作)1、类比弧长公式的探究过程,试推导半径为R,圆心角为n°的扇形面积S。
根据上面探究的得到的弧长l与扇形面积S的公式,你能用弧长l来表示扇形面积S吗?知识应用:例2:如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水面高 0.3 m,求截面上有水部分的面积(结果保留小数点后两位;π≈3.14,≈).五、小结:弧长和扇形面积公式是什么?你是如何得到这两个公式的?如何运用?2、弧长与圆周长、扇形面积与圆面积之间有什么联系?六、问题与反思:七、课堂检测:(20分)1、(3分)在半径为1的⊙O中,120°的圆心角所对的弧长是2、(3分)在半径为3的⊙O中,120°的圆周角所对的弧长是3、(3分)钟面上的分针长6cm,经过25分钟,分针在钟面上扫过的面积是4、(3分)一个扇形的圆心角是120°,它的面积是3πcm²,那么这个扇形的半径是5、(8分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是多少?。
人教版数学九年级上册24.4.2《弧长和扇形面积》教学设计
人教版数学九年级上册24.4.2《弧长和扇形面积》教学设计一. 教材分析人教版数学九年级上册第24章《弧长和扇形面积》是中学数学的重要内容,它涉及到圆的性质、角度与弧度的转换等基础知识。
本节内容通过对弧长和扇形面积的计算,让学生进一步理解圆的性质,提高他们的几何思维能力。
教材通过实例引入弧长和扇形面积的概念,然后引导学生通过合作探究的方式,推导出计算公式,最后通过大量的练习,使学生熟练掌握计算方法。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对圆的性质有一定的了解。
但是,对于弧长和扇形面积的计算,他们可能还存在一些困难。
因此,在教学过程中,我将会关注学生的学习情况,针对他们的薄弱环节,进行有针对性的教学。
三. 教学目标1.让学生掌握弧长和扇形面积的计算公式。
2.培养学生运用合作探究的方式,解决几何问题的能力。
3.提高学生对圆的性质的理解,培养他们的几何思维能力。
四. 教学重难点1.弧长和扇形面积的计算公式。
2.引导学生运用合作探究的方式,解决几何问题。
五. 教学方法采用问题驱动的教学方法,引导学生通过合作探究,发现和总结弧长和扇形面积的计算公式。
在教学过程中,注重学生的参与,鼓励他们提出问题,解决问题,提高他们的几何思维能力。
六. 教学准备1.准备相关的教学PPT,包括弧长和扇形面积的定义、计算公式等。
2.准备一些实际的例子,用于引导学生理解和应用弧长和扇形面积的计算公式。
3.准备一些练习题,用于巩固学生对弧长和扇形面积计算公式的掌握。
七. 教学过程1.导入(5分钟)通过一个实际例子,引导学生思考如何计算一个扇形的面积。
让学生提出问题,解决问题,从而引出扇形面积的计算公式。
2.呈现(10分钟)通过PPT,呈现弧长和扇形面积的定义和计算公式。
让学生理解弧长和扇形面积的概念,并掌握它们的计算方法。
3.操练(10分钟)让学生分组讨论,运用合作探究的方式,解决一些与弧长和扇形面积相关的问题。
人教版数学九年级上册教学设计24.4《弧长及扇形的面积》
人教版数学九年级上册教学设计24.4《弧长及扇形的面积》一. 教材分析《弧长及扇形的面积》是人教版数学九年级上册第24章的一个内容。
本节内容是在学生掌握了圆的周长、弧长以及扇形的定义等知识的基础上进行学习的。
本节课的主要内容是让学生掌握扇形的弧长和面积的计算方法,并且能够应用这些方法解决实际问题。
教材通过引入生活实例,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的周长、弧长等概念已经有了初步的认识。
但是,对于扇形的面积计算公式的推导和应用,还需要通过实例进行引导和讲解。
此外,学生对于将数学知识应用到实际问题中的能力还需要加强。
三. 教学目标1.知识与技能目标:让学生掌握扇形的弧长和面积的计算方法,能够运用这些方法解决实际问题。
2.过程与方法目标:通过合作交流、探究发现的方式,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:扇形的弧长和面积的计算方法。
2.难点:扇形面积公式的推导和应用。
五. 教学方法采用问题驱动法、合作交流法、探究发现法等教学方法。
通过设置问题,引导学生进行思考和探究,培养学生的数学思维能力和解决问题的能力。
六. 教学准备1.教师准备:备好课件、教具等教学资源。
2.学生准备:预习相关知识,准备进行课堂讨论。
七. 教学过程1.导入(5分钟)通过生活实例,如操场跑道的周长、汽车的里程表等,引导学生回顾圆的周长、弧长的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT呈现扇形的弧长和面积的定义,让学生初步了解这两个概念。
然后,通过动画演示扇形的弧长和面积的计算过程,让学生直观地感受这两个概念的应用。
3.操练(10分钟)学生根据教师提供的信息,运用扇形的弧长和面积的计算方法,解决实际问题。
教师巡回指导,解答学生的疑问。
人教版九年级数学上册24.4弧长和扇形面积(教案)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上一段弧的长度,而扇形面积则是圆心角所对的区域。这些概念在工程、地理和日常生活中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算一个半径为10米的半圆的弧长,我们将学习如何使用弧长公式来求解。
然而,我也注意到在小组讨论环节,有些小组的参与度并不高,可能是因为问题设置不够贴近学生的实际经验,或者是我没有给予足够的引导。在未来的教学中,我需要针对这一点进行改进,设计更具启发性和参与性的讨论主题。
实践活动虽然增加了学生对知识的直观感受,但在时间分配上似乎有些紧张。有些小组没有足够的时间完成讨论和实验操作,导致成果展示不够充分。我考虑在下次课中,适当延长实践活动的时间,确保每个小组都有足够的机会来展示他们的成果。
(3)教学难点中的弧度与角度转换,学生需要记住π弧度等于180°,因此在计算中如遇到角度制,需要先转换为弧度制。例如,一个圆心角为60°的扇形,其对应的弧度为π/3(60° × π/180)。
(4)在实际应用中,学生需要将问题描述转化为数学表达式。例如,如果一个公园的圆形喷泉半径是3米,需要清洁的部分占整个圆的1/6,学生需要计算出这部分扇形的面积(A = 1/2 × 3² × π/3)。这个过程中,学生需要识别出圆心角是π/3弧度,这是解决问题的关键。
人教版九年级数学上册24.4弧长和扇形面积(教案)
一、教学内容
人教版九年级数学上册第24.4节,本节课将重点探讨以下内容:
1.弧长的概念及其计算公式;
2.弧度的概念及其与角度的转换;
3.扇形的定义及扇形面积的计算公式;
4.应用实例:计算给定圆的半径或弧长,求解扇形面积。
《24.4 弧长和扇形面积》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
《弧长和扇形面积》教学设计方案(第一课时)一、教学目标:1. 理解弧长和扇形面积的概念及其计算公式。
2. 能够运用弧长和扇形面积公式进行计算。
3. 培养数学应用意识和解决问题的能力。
二、教学重难点:1. 教学重点:理解弧长和扇形面积的概念及其计算公式。
2. 教学难点:运用公式解决实际问题,理解公式中各个参数的意义。
三、教学准备:1. 准备教学用具:黑板、白板、圆规、尺子等数学教具。
2. 准备教学材料:相关例题和练习题。
3. 设计教学流程:导入新课、讲解概念、演示公式应用、学生练习、总结反馈。
四、教学过程:1. 导入新课:通过回顾圆的周长和面积公式,引出弧长和扇形面积的概念。
2. 讲解新知:讲解弧长和扇形面积公式,并举例说明如何应用该公式。
3. 课堂练习:学生完成相关练习题,教师进行点评和指导。
4. 小组讨论:学生分组讨论弧长和扇形面积公式的应用,提出问题和解决方案。
5. 案例分析:通过具体案例,分析如何利用弧长和扇形面积解决实际问题。
6. 总结回顾:总结本节课的重点内容,回顾弧长和扇形面积公式及应用。
7. 布置作业:学生回家后,通过网络或图书资料预习下一节课的内容,并完成相关作业。
四、教学过程具体内容1. 创设情境:通过展示不同类型的扇形图,引导学生观察扇形图的特点,引出弧长和扇形面积的概念。
2. 讲授新知:教师详细讲解弧长和扇形面积的公式,并通过具体例子说明如何应用该公式。
同时,引导学生思考如何将弧长和扇形面积公式与圆的周长和面积公式联系起来。
3. 课堂活动:学生完成教师布置的有关弧长和扇形面积的练习题,教师进行批改和点评。
同时,鼓励学生通过小组讨论,提出自己在理解和应用弧长和扇形面积公式时遇到的问题和解决方案。
4. 实践活动:设计一个具体案例,引导学生利用弧长和扇形面积公式解决实际问题。
例如,计算公园中圆形喷泉的扇形区域的面积,或者估算某个区域的绿化面积所需要的植物数量等。
通过实践活动,培养学生的实践能力和创新思维。
人教版九年级数学上册24.4弧长和扇形面积 教案
24.4弧长和扇形面积(1)教学设计一、教学目标:1、让学生通过自主探索来认识扇形,掌握弧长和扇形面积的计算公式,并学会运用弧长和扇形面积公式解决一些实际问题。
2、让学生经历弧长和扇形面积公式的推导过程,培养学生自主探索的能力;在利用弧长和扇形面积公式解题中,培养学生应用知识的能力,空间想象能力和动手画图能力,体会由一般到特殊的数学思想。
3、通过视频的欣赏,让学生感受到生活离不开数学,激发学生学习数学的兴趣;通过对弧长和扇形面积公式的自主探究,让学生获得亲自参与研究探索的情感体验;通过同桌的讨论、交流和解决问题的过程,让学生更多的展示自己,建立自信,树立正确的价值观。
二、教学重难点:重点:让学生经历弧长和扇形面积公式的推导,通过计算弧长和扇形面积来突出重点。
难点:弧长和扇形面积公式的应用,通过利用弧长和扇形面积解答实际问题来突破难点。
三、教具学具:教具准备:PPT,短绳,长条。
学具准备:圆规,铅笔,直尺。
四、教学设计:本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。
在教学过程中,我采用自主探究、多媒体辅助教学的模式,我在其中只起穿针引线的作用,注重对学生的启发和引导,鼓励学生们大胆的猜想推导和应用,最后引导学生用学到的新知识解决一些实际问题。
其基本过程如下:创设情境提出问题(激励想象)自主探究讨论交流(训练思维)总结归纳巩固实践(构建知识体系)灵活应用创新发展(强化方法)五、教学过程:教学环节教学过程学生活动设计理念设置问题情境1、利用幻灯片出示视频欣赏问题1:通过视频的观看,如图在运动会的200米比赛中,为什么8位参赛选手的起跑线不在同一处?因为要保证这些弯道的“展直长度”是一样的.问题2:怎样来计算弯道的“展直长度”?学生阅读生活中的实际问题,自觉的提出弧长的计算让学生观看视频,感受数学就在我们的身边,进而出示一个实际生活中的问题,引发学生的思考与分析,激励学生自主的提出要研究的问题即求弧长的问题,这样,学生带着问题开始新知识的探索。
人教版九年级数学上册教学设计:24.4弧长和扇形面积
3.教学过程中,关注学生的情感态度与价值观的培养,设想如下:
a.创设生动、有趣的教学情境,激发学生的学习兴趣,使学生感受到数学学习的乐趣。
b.引导学生关注生活中的数学现象,培养学生的应用意识,使学生认识到数学知识在实际生活中的价值。
4.学会使用量角器、圆规等工具,准确地画出给定圆心角和半径的扇形,培养动手操作能力和空间观念。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,引导学生发现弧长和扇形面积的计算方法,培养学生的探究精神和团队协作能力。
2.利用问题驱动法,设置具有启发性的问题,引导学生主动思考,培养学生的问题意识。
(二)讲授新知
1.讲解弧长和扇形面积的概念,明确弧长是指圆上两点间的弧度,扇形面积是指由圆心角和半径围成的图形的面积。
2.引导学生通过观察、分析,发现弧长与半径、圆心角之间的关系,以及扇形面积与半径、圆心角之间的关系。
3.推导弧长和扇形面积的计算公式,强调公式中各个量的含义。
4.结合实际例子,讲解如何运用公式计算弧长和扇形面积,让学生理解公式的实际意义。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的弧长和扇形面积的例子,如彩虹桥、扇子等,引导学生观察、思考,激发学生的兴趣。
2.提问:“我们学过圆的相关知识,那么如何计算一个扇形的面积和弧长呢?”通过问题引导学生回顾圆的性质,为新课的学习做好铺垫。
3.学生分享自己对扇形和弧长的理解,教师适时总结,导入新课。
(二)教学设想
1.对于教学重点和难点的处理,我设想通过以下步骤进行:
a.利用多媒体教学手段,展示生活中的弧长和扇形面积实例,引导学生观察、思考,激发学生的学习兴趣。
24.4 第1课时 弧长和扇形面积 人教版数学九年级上册教案
24.4 弧长和扇形面积第1课时 弧长和扇形面积教学目标:1.理解弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.教学重点:会利用弧长和扇形面积的计算公式进行计算.教学难点:理解弧长和扇形面积公式的探求过程并会应用解决问题. 教学导入一、知识链接1.小学里学习过圆周长和圆面积的计算公式,公式分别是什么呢?2. 想一想什么叫弧长?什么叫扇形? 教学过程二、要点探究探究点1:与弧长相关的计算问题1 半径为R 的圆,周长是多少?问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几?要点归纳:在半径为r 的圆中,因为360°的圆心角所对的弧长就是圆周长C =2πr ,所以1°的圆心角所对的弧长是«Skip Record If...»,即«Skip Record If...»,于是n °的圆心角所对的弧长为«Skip Record If...».算一算已知弧所对的圆心角为60°,半径是4,则弧长为.典例精析例1 (教材P111例1)制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L.(单位:mm,精确到1mm)练一练一滑轮起重机装置(如图),滑轮的半径=10 cm,当重物上升15.7 cm时,滑轮的一条半径绕轴心逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动,π取3.14)?探究点2:与扇形面积相关的计算概念学习圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫做扇形.如图,黄色部分是一个扇形,记作扇形OAB.问题1 半径为的圆,面积是多少?问题2 下图中各扇形面积分别是圆面积的几分之几,具体是多少呢?要点归纳:在半径为r的圆中,因为360°的圆心角所对的扇形面积就是圆面积S=πr2,所以圆心角是1°的扇形面积是«Skip Record If...»,于是圆心角为n°的扇形面积为«Skip RecordIf...».问题3 扇形面积与哪些因素有关?问题4 扇形的弧长公式与面积公式有联系吗?例2 如图,圆心角为60°的扇形的半径为10 cm.求这个扇形的面积和周长.(分别精确到0.01 cm2和0.01 cm)试一试1.已知半径为2 cm的扇形,其弧长为«Skip Record If...»cm,则这个扇形的面积S扇= .2.已知扇形的圆心角为150°,半径为3,则这个扇形的面积S扇= .例3 (教材P112例2)如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水面高0.3 m,求截面上有水部分的面积.(结果保留小数点后两位)要点归纳:弓形的面积=扇形的面积±三角形的面积.三、课堂小结当堂检测1.已知弧所对的圆周角为90°,半径是4,则弧长为 .2.某扇形的圆心角为72°,面积为5π,则此扇形的弧长为( )A .πB .2πC .3πD .4π3.如图,∠ACB 是⊙O 的圆周角,若⊙O 的半径为10,∠ACB =45°,则扇形AOB 的面积为( )A .5πB .12.5πC .20πD .25π第3题图第4题图4.如图,☉A.☉B.☉C.☉D两两不相交,且半径都是2 cm,则图中阴影部分的面积是()A.6π cm2B.8π cm2C.9π cm2D.12π cm25.(教材P112例2变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.9m,求截面上有水部分的面积.6. 如图,一个边长为10 cm的等边三角形模板在水平桌面上绕顶点按顺时针方向旋转到△A'B'C的位置,求顶点从开始到结束所经过的路程为多少.参考答案自主学习一、知识链接1.半径为r的圆,其周长为2πr,面积为πr2.2.弧长为圆周长的一部分,扇形为组成圆心角的两条半径和圆心角所对的弧围成的图形.课堂探究二、要点探究探究点1:与弧长相关的计算问题1:C=2πR问题2 :«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»算一算«Skip Record If...»典例精析因此所要求的展直长度例1 解:由弧长公式,可得弧AB的长«Skip Record If...»L=2×700+1570=2970(mm).答:管道的展直长度为2970 mm.解得练一练解:设半径OA绕轴心O逆时针方向旋转的度数为n°.«Skip Record If...»n≈90°.因此,滑轮旋转的角度约为90°.探究点2:与扇形面积相关的计算问题1 S=πr2问题2比例:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»扇形面积:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»问题3 扇形圆心角度数,半径问题4 扇形弧长为l ,半径为r ,则S 扇形=«Skip Record If...»例2 解:∵n =60,r =10cm ,∴扇形的面积为«Skip Record If...»扇形的周长为«Skip Record If...»试一试: 1.«Skip Record If...»cm 22.«Skip Record If...»例3 解:如图,连接OA ,OB ,过点O 作弦AB 的垂线,垂足为D ,交«Skip Record If...» 于点C ,连接AC .∵ OC =0.6 m , DC =0.3 m , ∴ OD =OC - DC =0.3 m ,∴ OD =DC .又 AD ⊥DC ,∴AD 是线段OC 的垂直平分线,∴AC =AO =OC .从而 ∠AOD =60˚,∠AOB =120˚.在Rt △AOD 中,OA =0.6 m ,OD =0.3 m ,∴AD =«Skip Record If...»m.∴AB =2AD =«Skip Record If...»m.有水部分的面积:S =S 扇形OAB - S ΔOAB =«Skip Record If...»当堂检测1.2π2.B3.D4.D5.解:S =S 扇形+S △OAB =«Skip Record If...»6.解:由图可知,由于∠A'CB'=60°,则等边三角形木板绕点C 按顺时针方向旋转了120°,即∠ACA ' =120°,这说明顶点A 经过的路程长等于弧AA ' 的长.∵等边三角形ABC 的边长为10 cm ,∴弧AA ' 所在圆的半径为10 cm.∴l 弧AA ' =«Skip Record If...»答:顶点A 从开始到结束时所经过的路程为«Skip Record If...»。
人教版九年级上册数学《弧长和扇形面积》教学导学案
24.4弧长和扇形面积( 第 2 课时 )教课内容1.圆锥母线的观点.2.圆锥侧面积的计算方法.3.计算圆锥全面积的计算方法.4.应用它们解决实质问题.教课目的认识圆锥母线的观点,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.经过设置情形和复习扇形面积的计算方法探究圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实质问题.重难点、要点1.要点:圆锥侧面积和全面积的计算公式.2.难点:探究两个公式的由来.3.要点:你经过剪母线变为面的过程.教具、学具准备准备好的圆锥。
教课过程一、复习引入1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.赏识图片,抽象出几何体------ 圆锥幻灯片2)二、探究新知活动一:同学们取出自制的圆锥,谈谈你对圆锥的认识。
圆锥是由一个侧面﹝曲面﹞和一个底面﹝圆﹞构成的。
﹝幻灯片3﹞活动二:对圆锥的再认识:母线、圆锥的高。
思虑:圆锥的母线和圆锥的高有什么性质?﹝圆锥的母线长都相等;圆锥的高垂直于底面圆﹞。
﹝幻灯片4﹞假如用 r 表示圆锥底面的半径, h 表示圆锥的高线长, 表示圆锥的母线长,那么 r,h, 之间h l222r +h = l r5﹞有如何的数目关系呢?﹝幻灯片练习:填空 : 依据以下条件求值(此中r、h、分别是圆锥的底面半径、高线、母线长)﹝幻灯片 6﹞圆锥的侧面睁开图是一个扇形。
A﹝幻灯片 7﹞B O C其侧面睁开图扇形的半径 =母线的长 l ;侧面睁开图扇形的弧长=底面周长;S 侧 =π rl(r 表示圆锥底面的半径, l表示圆锥的母线长);全面积 = rL+r2﹝幻灯片 8—幻灯片 10﹞要求:不要死记公式,造作业一定画出侧面睁开图的表示图。
练习: (1) 已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母长为_______(2)已知一个圆锥的底面半径为 12cm,母线长为 20cm,则这个圆锥的侧面积为 _________ ,全面积为 _______。
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》是学生在学习了角的度量、圆的性质、圆的周长等知识的基础上,进一步探究圆的弧长和扇形面积的计算。
这一节内容不仅是前面学习内容的延续,也为后面学习圆锥、圆柱等几何体提供了基础。
教材通过生活中的实例,引导学生探究弧长和扇形面积的计算公式,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。
但是,对于弧长和扇形面积的计算,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作、探究活动等,理解和掌握弧长和扇形面积的计算方法。
三. 教学目标1.理解弧长和扇形面积的概念。
2.掌握弧长和扇形面积的计算公式。
3.能够运用弧长和扇形面积的知识解决实际问题。
四. 教学重难点1.重点:弧长和扇形面积的计算公式。
2.难点:弧长和扇形面积公式的推导过程。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探究弧长和扇形面积的计算方法。
2.利用几何画板等软件,直观展示弧长和扇形的计算过程,帮助学生理解。
3.采用小组合作学习的方式,让学生在合作中交流、讨论,提高学生的合作能力。
六. 教学准备1.准备相关的教学课件、几何画板软件。
2.准备一些实际的例子,用于引导学生探究。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如自行车轮子的周长,引出弧长的概念。
提问:如何计算这个弧长?引导学生思考,为下面的学习做好铺垫。
2.呈现(10分钟)利用几何画板软件,展示一个圆的扇形,让学生直观地感受弧长和扇形面积的计算过程。
通过软件的动态演示,引导学生探究弧长和扇形面积的计算公式。
3.操练(10分钟)让学生分组合作,利用准备好的实际例子,计算弧长和扇形面积。
人教版数学九年级上册24.4弧长和扇形面积(第1课时)优秀教学案例
4.对学生进行激励性评价,鼓励他们自信心,激发他们继续学习的动力。
5.教师要根据学生的评价结果,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示生活中常见的弧长和扇形面积的实际问题,如自行车轮子的周长、扇形统计图等,让学生感受数学与生活的紧密联系。
2.创设有趣的问题情境,如“猜灯谜”、“数学谜语”等,激发学生的学习兴趣,引导他们主动探究。
3.小组合作:本节课通过组织学生进行小组讨论和合作,培养了学生的团队协作能力和沟通能力。在小组合作中,学生能够互相学习、互相帮助,共同解决问题,提高了学习效果。
4.空间想象能力培养:本节课利用多媒体课件和实物模型,直观地展示了弧长和扇形面积的计算过程,提高了学生的空间想象能力。通过直观的展示,学生能够更好地理解和掌握知识,提高了学习效果。
人教版数学九年级上册24.4弧长和扇形面积(第1课时)优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第24章第4节“弧长和扇形面积”,是学生在学习了圆的相关知识后,对圆的更深入理解的拓展。在现实生活和学习中,九年级学生已经对圆有了初步的认识和理解,但弧长和扇形面积的计算对他们来说还是一个新的挑战。因此,在教学案例的设计中,我将以学生已有的知识为基础,通过生活实例引入弧长和扇形面积的概念,引导学生运用转化思想,将未知转化为已知,从而更好地理解和掌握本节课的知识。同时,我会注重培养学生的空间想象能力和数学思维能力,使他们在学习过程中能够体会到数学的实用性和趣味性。
人教版数学九年级上册24.4《弧长和扇形的面积》教学设计
人教版数学九年级上册24.4《弧长和扇形的面积》教学设计一. 教材分析人教版数学九年级上册24.4《弧长和扇形的面积》是本册教材中的一个重要内容,主要介绍了弧长和扇形面积的计算方法。
这部分内容与现实生活密切相关,既有实际意义,又为高中阶段学习更为复杂的圆周率及曲线提供基础。
教材通过生动的实例和图示,引导学生掌握弧长和扇形面积的计算公式,并能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有一定的深度。
但同时,这部分内容相对复杂,需要学生具有较强的逻辑思维能力和空间想象能力。
在导入阶段,教师需要激发学生的学习兴趣,引发学生对弧长和扇形面积的探究欲望。
在呈现和操练阶段,教师需引导学生通过合作交流,理解并掌握弧长和扇形面积的计算方法。
在巩固和拓展阶段,教师应关注学生的个体差异,给予不同程度的学生适当的引导和帮助。
三. 教学目标1.知识与技能:让学生掌握弧长和扇形面积的计算方法,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、分析、归纳、推理等数学活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:弧长和扇形面积的计算方法。
2.难点:理解并掌握弧长和扇形面积的计算原理,能够灵活运用所学知识解决实际问题。
五. 教学方法1.情境教学法:通过实例和图示,引导学生了解弧长和扇形面积的实际意义。
2.合作学习法:鼓励学生分组讨论,共同探究弧长和扇形面积的计算方法。
3.引导发现法:教师引导学生观察、分析、归纳、推理,发现弧长和扇形面积的计算规律。
4.实践操作法:让学生通过动手操作,加深对弧长和扇形面积计算方法的理解。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、教案、练习题等。
2.学具:学生手册、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如自行车轮胎的磨损、扇形的雨伞等,引导学生关注弧长和扇形面积的实际意义,激发学生的学习兴趣。
九年级数学上册 24.4 弧长及扇形的面积教案 (新版)新
弧长及扇形的面积教学目标:1、经历探索弧长计算公式的过程2、掌握弧长计算公式,并会应用公式解决问题。
教学重点:圆的弧长计算公式教学难点:例1图形较为复杂,牵涉的知识点较多,并需添加辅助线,思路不易形成。
教学设计:一、复习(圆周长)已知⊙O半径为R,⊙O的周长C是多少?C=2πR这里π=3.14159…,这个无限不循环的小数叫做圆周率.由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?提出新问题:已知⊙O半径为R,求n°圆心角所对弧长.二、探究新问题、归纳结论教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).研究步骤:归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则(弧长公式)(三)理解公式、区分概念教师引导学生理解:(1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;(2)公式可以理解记忆(即按照上面推导过程记忆);(3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧. (四)初步应用 例1、填空:(1)半径为3cm ,120°的圆心角所对的弧长是_______cm ;(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______; (3)已知半径为3,则弧长为π的弧所对的圆心角为_______.例2、例1 一段圆弧的公路弯道,圆弧的半径是2km,一辆汽车以每小时60km 的速度通过弯道,需20秒.求弯道所对的圆心角的度数。
(精确到0.1度)分析:(1)对照弧长公式,那些量是直接已知的,哪个量是要求的? (2)要求弯道所对圆心角的度数,应先求出什么? 解(略)例3、 如图,BM 是⊙O 的直径,四边形ABMN 是矩形,D 是⊙O 上的点,DC ⊥AN ,与AN 交于点C ,已知AC =15,⊙O 的半径为R=30,求»BD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学弧长和扇形面积学案
情境引入趣味感知
朵拉非常喜欢探险,一天她正在院子中散步,突然从空中飞来一片树叶,静静的落在朵拉的面前,好奇的朵拉连忙捡起来,一看只见上面写道:
如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC点B 顺时针旋转到△A 'BC '的位置,且点A '、C '仍落在格点上,则点A运动到A '时,所经过的路线长是 ,线段AB扫过的图形的面积 是 平方单位(结果保留π).
C A
面对问题,好胜的朵拉决定亲自解决,于是她就带着问题,踏上了探索之旅。
潜能开发 自主探究
填一填:半径为R的圆的周长是 ,圆的周长所对的圆心角为 ,所以 1°圆心角所对的弧长为 。
推一推:半径为R的圆中,n°圆心角所对的弧长为L,则L= 。
想一想:弧长相等的两条弧是等弧吗?
仪一仪:计算弧长时,我们发现圆心角相等时, 弧长越大。
当弧长一定时,半径与圆心角度数成 。
通过探索,朵拉找到解决第一问的方法,怎样解决第二问呢?于是朵拉继续进行探索: 填一填:
1.由组成圆心角的 和圆心角 组成的图形,叫做扇形。
2. 半径为R的圆的面积是 ,圆的面积所对的圆心角为 ,所以 1°圆心角所对的扇形面积为 。
3. 推一推:半径为R的圆中,n°圆心角所对的扇形面积为扇形S ,则扇形S = 。
变一变:因为L=︒
180R n π,所以扇形的面积可以表示为 。
试一试:如图1所示,在ABC △中,90A ∠=,4BC =cm ,分别以B C ,为圆心的两个等圆外切,则图中阴影部分的面积为 2
cm .
终于找到了解答第二问的金钥匙,朵拉高兴极了。
为了能不断强化,于是朵拉就走进了第三个环节。
综合应用 挑战技能
练一练:
1.在半径为5的圆中,︒30的圆心角所对的弧长为_________(结果保留π)
2. 如图2所示,在Rt △ABC 中,∠BAC=90°,BC =6,点D 为BC 中点,将△ABD 点A 按逆时针方向旋转120得到AB D ''△,则点D 在旋转过程中所经过的路程为 .(结果保留π)
3. 如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转 30°后得到R t △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是___________.
参考答案:
情境:
213π,4
13π 潜能开发 自主探究
填一填:2πR,360°,
︒180R π。
推一推:︒
180R n π。
想一想:弧长相等的两条弧不一定是等弧,但是等弧弧长一定相等。
仪一仪:半径越大。
反比。
填一填:
1.两条半径,所对的弧。
2. π2
R ,360°,︒3602
R π。
3. 推一推:︒
3602
R n π 变一变:
2
1LR。
试一试:π 综合应用 挑战技能
练一练:
1.
6
5π 2. 2π
3.π61.。