科林粉煤气化技术(CCG)简介

科林粉煤气化技术(CCG)简介
科林粉煤气化技术(CCG)简介

科林粉煤气化技术(CCG)简介

德国科林工业集团

二零一零年七月

1. 公司简介

德国科林工业集团是全球著名的煤气化、煤干燥和生物质气化技术提供商。该集团是前东德燃料研究所 (DBI)和黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)气化厂最大的后裔公司。

科林(CHOREN)名称的由来是:“C-Carbon-碳H-Hydrogen-氢O-Oxygen-氧REN-RENewable-可再生”。

科林集团总部位于德国弗莱贝格市,原东德燃料研究所旧址,著名的黑水泵气化厂就在附近。戴姆勒奔驰汽车公司、德国大众汽车公司为科林的战略投资者。

目前集团拥有近300名研发及工程技术人员,其中主要技术骨干为前徳燃所和黑水泵厂的员工。科林公司的发起人Wolf博士即为前东徳燃料研究所研发部部长,煤气化运行总监贡瓦先生是前黑水泵气化厂厂运行主任。

科林集团拥有40多年气流床气化技术研发、设计、设备制造、建设以及运行的经验,可以为客户提供粉煤气化技术(CCG)和生物质气化技术(Carbo-V?)从工艺包设计到关键设备制造和开车运行等一系列综合性服务。

此外,科林集团也是蒸汽流化床煤干燥技术的创始人和专利持有人,在全世界煤干燥领域,特别是褐煤干燥领域具有多年成功运行经验。

科林能化技术(北京)有限公司是科林集团的全资子公司,负责集团在亚太地区的业务。

2. 技术来源及技术开发背景

科林高压干粉煤气化炉简称为CCG炉(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用当地褐煤提供城市燃气。1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投煤量为720吨)的水冷壁煤气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。之后改用工业废液废油作为进料,继续运行至今。燃料研究所和黑水泵工厂的技术骨干后来发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出的问题进行了设计更改和完善,推出了一套完整优化的新气化技术 - CCG。

3. CCG技术介绍

(A)气化工艺

CCG气化工艺过程主要是由给料、气化与激冷系统组成。原料煤被碾磨为

100%<200μ,90%<65μ的粒度后, 经过干燥, 通过浓相气流输入系统送至烧嘴,在反应室内与工业氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

根据灰组份和灰熔融特性,气化温度操作控制在1400℃--1700℃之间(高于灰熔点200度左右)。反应温度可通过氧气流量进行调节(控制炉内化学反应剧烈程度)。反应室内壁为水冷壁,由于形成了固态渣层保护,所以反应产生的液态灰渣不会直接接触水冷壁。

动,在激冷室中直接被水冷却,液态灰渣被水

浴固化成颗粒状,冷却后的灰渣经过锁斗排出

系统,从排放的水中分离并通过捞渣机运出。

合成气被蒸汽饱和,以大约210 ℃温度离开气

化炉。气化炉外壳由水夹套保护,表面温度小

于100℃。

原料气化和达到气体平衡所需的热量由原料碳

氧化成CO2和CO所释放。气化温度的选择主

要由煤的灰熔点确定, 气化压力的确定主要取决

于产品煤气的利用工艺,通常为4.0MPa。

(B)CCG气化炉结构

气化炉由烧嘴、燃烧室、激冷室、水冷壁、外

壳等部分组成。日投煤量为1500吨的气化炉的

尺寸大约是16米高,直径3.2米,重量约200

吨。右图是气化炉的示意图。

i 烧嘴

CCG气化炉为多喷嘴顶置的形式,分为引

燃烧嘴和煤粉烧嘴。在开车和停车时候,

利用液化气混合氮气作为引燃烧嘴的燃

气。在气化炉运行过程中,出于安全的考

虑,引燃烧嘴在较小的功率下运行(长明

灯)。可以利用循环回送的合成气作为引燃

烧嘴的燃料。由于长明灯反应放热也是气

化反应所需要的,所以并不会造成额外的能量损耗。

由于烧嘴是一个承载高温的部件,故每个烧嘴自身都有冷却循环系统。经由

泵、泵接收器和热交换器组成一个循环,形成强制冷却,使热量间接传导到冷

却水系统。烧嘴顶部寿命一般为4年,每年半年检修一次烧嘴的顶部。如有损

坏仅需更换烧嘴顶部。下图为400MW(日投煤量1500吨)烧嘴分布图、引燃

烧嘴示意图和粉煤烧嘴示意图。

ii 气化室水冷壁结构

煤粉、氧气和水蒸气通过烧嘴进入燃烧室,发生部分氧化反应。燃烧室是由齿

形蛇管卷水冷壁围成的圆柱形空间, 上部为烧嘴, 下部为排渣口, 原料与氧气、

水蒸气的气化反应就在此空腔内进行。第一次开车后水冷壁被挂上一层渣,在

后续运行中利用以渣抗渣的原理保护水冷壁。正常运行时炉体内温度为1 400-

1700 ℃, 经过渣层以后, 温度降低到500℃左右, 再经过16.5 mm 厚的屏壁和

SiC填充物, 温度降低到270 ℃左右, 水冷壁内的加压冷却水的温度为250 ℃左

右。水冷壁气化炉体的优点是炉体实际承受的温度较低,水冷壁承温<

500 ℃,外层壳体内壁的温度< 250 ℃, 气化炉外壳的表面温度小于100°C,

不容易损坏,故可以气化灰熔点较高的煤种。该水冷壁在黑水泵厂使用8年后,

没有破坏性的损坏。科林CCG炉还对原有水冷壁结构做了改善,分别设立了

4处吹扫口,使炉壁间的吹扫更充分,大大延长了水冷壁的寿命。

iii 激冷室

激冷室是一个上部为圆形筒体的空腔。高温粗煤气和熔渣、从气化室下部一个

喇叭形的排渣口进入激冷室, 高温合成气和熔渣在激冷室内用水进行冷却,冷

却后的合成气进入洗涤系统进行洗涤,冷却后的灰渣经过锁斗排出系统。

(C)气化炉规格

目前, CCG工艺的气化炉规格有3 种。规格分别为200MW,400MW,600MW。规格为200MW、日投煤量720 吨的小型气化炉已经在黑水泵气化厂工业化。另一种气化炉规格为400MW、日投煤量约为1500吨,每小时有效合成气产气量约为100000标准立方。科林公司还可以提供600MW,日投煤量为2250吨的气化炉。

2007年签约的兖矿贵州开阳化工50万吨合成氨项目采用了两台400MW、日投煤量为1500吨CCG气化炉,总产气量为每小时20万标准立方,下游工序需求是每小时14万立方有效合成气。正常运行时两台炉均以70%的负荷运行,如果一台炉停车,则另一台炉可以满负荷运行以保证下游连续生产所需的最低气量。

(D)CCG气化技术的优势

CCG气化技术的主要特点是干粉进料,以水冷壁保护气化炉,采用水激冷流程以冷却合成气、烧嘴顶置下喷。

i 干粉进料(与水煤浆进料比较)有如下优势

1). 克服了部分煤种难以制浆的问题,与水煤浆技术相比,煤种适应性有所增强。

2). 避免将大量的水带入气化炉。与水煤浆技术相比,氧耗降低约15-20%。粗合成气中有效气(CO+H2)浓度可高达90 - 93%,冷煤气效率可达80-83% ,

碳转化率≥99%。这些效率指标均大大高于水煤浆技术。

3). 煤粉在干粉煤烧嘴内移动的速度仅约5米每秒,主要是靠高速的氧气带动煤粉形成旋流参加反应,无严重磨蚀,烧嘴头部寿命可达4年以上,仅需每半年检修头部向火面。而水煤浆烧嘴内煤浆以固液混合物形式存在,流速高,磨蚀严重,1-3个月就需更换,以保证雾化效率和碳率。

ii 水冷壁结构(与耐火材料热壁炉比较)有如下优势

1). 寿命长,检修少,在线率高。水冷壁的寿命可达25年,每半年检修一次。如果是采用耐火砖结构则需每年更换,拱顶砖的寿命更短2). 采用水冷壁结构,在开停车时不存在热壁炉的烘炉问题,从冷态开车到满负荷仅需要一个小时,可以快速响应下游对合成气需求

3). 采用水冷壁进行以渣抗渣,气化反应的温度可以较高,不会对炉体有所损害,而对于热壁炉则需要考虑气化温度对耐火材料的影响。故水冷壁气化

炉可以气化灰熔点较高的煤种,进一步提高了煤种的适应性。而且气化炉

操作温度高于灰熔点200摄氏度,完全可以应付煤质一定范围内的变化。

CCG 气化工艺可以气化高达35% 灰分的煤种

4). 因为气化反应温度高,基本不会形成任何碳氢化合物(如甲烷等),因而简化了对气体净化的要求

5). 水冷壁采用间接副产低压蒸汽,通过监控水冷壁的进出水温差,判断炉壁的挂渣状况,有利用于气化炉稳定操作及设备的寿命延长。

iii 激冷流程(与废锅流程比较)

1). 采用激冷工艺流程,设备结构简单,外形尺寸小,装置投资少。投煤量相同的气化炉,激冷流程气化框架只有废锅流程气化框架的约一半高度,重

量只有其20%左右。气化岛投资只有其50-60%。

2). 由于采用全激冷方式,整个化工流程较废锅流程大大缩短(没有废热锅炉,陶瓷过滤器,循环气压缩机等),故整个装置的可靠率增加。而且由

于装置投资成本较低,能够负担双炉运行,大大提供了气化岛在线率。

3). 经过激冷和水洗,粗合成气含尘量低<1mg/Nm3,粗合成气夹带的水蒸汽可以满足变换工艺所需90-100%的蒸汽。而废锅流程虽然以高投资产生高

品位蒸汽,但如用于化工用途则其下游变换工艺还需要同样加入蒸汽,在

经济上并不合算。

iv 多烧嘴同向顶置下喷

1). 烧嘴顶置下喷在德国黑水泵厂的气化炉有过实际运转经验。

2). 将引燃烧嘴和煤粉烧嘴分开使得烧嘴结构较简单,降低故障率。

3). 烧嘴顶置下喷的方案可以使高温粗气及灰渣方向流向相同以确保燃烧室排渣顺畅,可以克服气渣上下分流工艺的固有排渣困难。

4). 烧嘴同向布置可以克服对置烧嘴间相互磨蚀的问题,

5). 多喷嘴布置保证了粉煤在反应空间分布均匀,流场形成比单喷嘴方案要好。

6). 多喷嘴方案可在开车过程实现各个烧嘴先后点火,开车过程中就能够完全配合后续设备合成气需求逐步升量的方案。

7). 多喷嘴方案的负荷调节余地比单喷嘴方案要大。而且放大更为容易。2000吨以上投煤量的气化炉基本上很难使用用单喷嘴方案。

8). 如某一烧嘴故障,系统还可短时间继续运行,以排除故障带压连投。(E) CCG技术与其他技术的比较

以下是某化工设计院所做的水煤浆气化技术、干粉煤废锅气化技术及科林CCG气化工艺比较:

水煤浆气化工艺、干粉煤废锅气化工艺与科林CCG气化工艺气化室出口处的典型气体成份如下:

综合以上分析,这三种气流床气化工艺都是很好的煤气化技术。但干粉煤废锅气化气化效率较高,煤种适应性强。但其工艺流程长,设备结构复杂,国产化率低,设备运输和安装难度大,建设周期长;一次投资大;干法过滤器的使用寿命短。进入中国时间较短,在国内开车还不太顺利。

水煤浆气化工艺开发和进入中国的时间较早,在国内外的合成气生产中得到了更加广泛的应用,可靠性更高,在技术开发、工程设计、设备制造、工程建设、生产管理和运行操作等方面,积累了丰富的经验,设备的国产率高,国内的技术支持性更好,装置的建设投资较低;但存在耐火砖和烧嘴连续使用寿命短,气化炉难以长周期连续运行,煤种的适应性相对较差。

CCG粉煤气化工艺与干粉煤废锅气化粉煤气化工艺相比,两者采用的都是水冷壁,干粉煤进料,有效气含量相当;煤种适应性、氧气消耗、碳转化率、热效率等方面,基本一致,能耗相近;建设投资较小;建设周期稍短。与水煤浆相比,气化后工艺流程相似(激冷流程),更适合生产氨和醇需要的合成气;设备结构简单;煤种的适应性更宽;煤、水、电耗量少;连续运行的时间长;总的来说CCG煤气化技术效率和消耗基本与干煤粉废锅技术相同,优于水煤浆技术,但其投资却接近水煤浆技术,大大低于干煤粉废锅技术。可以说CCG兼有其他两种气化技术的优点。

(F) CCG气化炉的应用业绩

i 黑水泵厂粉煤气流床气化炉

日投煤量720吨,煤种为褐煤。用作城市燃气。从1984年运行到1990年。

1990年东西德合并,东德城市燃气改为天然气,故原黑水泵厂改造成为综合物

料处理中心,其粉煤气化装置改为浆体进料,用于处理液态有机废料,产生的

合成气用于75MWIGCC发电并联产12万吨甲醇。

ii 兖矿贵州开阳项目

于2007年8月底科林与兖矿贵州开阳化工公司的年产50万吨的合成氨项目签

订技术转让、工艺包设计和烧嘴供应合同。该项目位于贵州开阳县境内,采用

两台日投煤量为1500吨的CCG气化炉。气化炉由业主自行招标委托大连金州

重型机械厂制造,将于2010年三季度完工。该项目将于2011年6月试车。该

项目气化岛(含磨煤干燥,气化激冷,灰水处理和气体洗涤)总投资不超过5

亿人民币。

4. 科林工业集团在煤气化业务方面的优势

(A)人力资源

科林是前东德燃料研究所和黑水泵厂最大的后裔单位。科林公司发起人、科林主要

的技术团队、研发团队大部分来源于黑水泵气化厂和前德国燃料研究所。2008年,黑水泵厂清算解散,科林由于自身在建设生物质气化示范装置,所以又接收了大量的工厂操作人员。也就是说,科林拥有气化技术方面的大批拥有Know-How(专有技术)的人员。他们具有40余年研发、设计、制造、运转方面的理论和实践经验。他们是科林公司最宝贵的财富。

(B)设备制造能力

科林全资拥有的科林设备制造公司(CHOREN Components GmbH)的前身为前德国燃料研究所下属的设备制造车间。3MW和5MW气化试验装置的绝大部分设备,科林公司生物质气化厂的大部分设备,黑水泵厂气化装置的部分设备包括所用烧嘴都是由该公司制造。CCG关键设备的生产专有技术是由科林公司掌握的。

(C)装置运行和培训能力

科林自行投资建立和运行生物质气化厂,这使得科林的装置运行能力保持着领先。

这也为客户的操作员工实习培训提供了现成的实习场地以及实习指导人员。科林正在开发操作模拟系统,可提供如同真实操控环境下的模拟培训。

5. 科林煤气化技术CCG在中国的业务模式

科林在中国的业务通过其在中国的全资子公司科林能化技术(北京)有限公司来开展。通常的业务模式是科林向客户提供技术许可,工艺包设计,气化炉的详细设计,以及供应烧嘴等少量最关键核心部件。气化炉等大型设备可以由客户委托合格生产厂家在国内制造。此种方式可以最大限度地节约客户的投资,并将所有的设备采购置于可控。设备国产化率可以达到95%左右。

兖矿项目气化岛总投资(含软硬件,建设安装等)不超过5亿人民币。基本和水煤浆技术持平。和其他引进干煤粉技术,或者国产的炉外激冷干煤粉技术相比较,科林气化技术具有绝对的竞争力。和国产的炉内激冷干煤粉技术相比,科林气化技术也具有相当的竞争力。

科林能化技术(北京)有限公司

地址:北京市朝阳区建国路93号院万达广场 2号楼602室

邮编: 100022

电话: +86(10)5820 5732

传真: +86(10)5820 3206

邮箱: Henry.Wang@https://www.360docs.net/doc/8a14484293.html,

网址: https://www.360docs.net/doc/8a14484293.html,

粉煤流化床气化技术在煤制气方面的应用和发展

粉煤流化床气化技术在煤制气方面的应用和发展 发表时间:2017-12-11T16:30:04.150Z 来源:《基层建设》2017年第26期作者:赵秀丽[导读] 摘要:煤炭气化技术是洁净、高效利用煤炭的重要技术之一,以煤气化为基础的能源及化工系统已成为世界范围内高效、清洁、经济地利用煤炭资源的热点技术,流化床气化技术是洁净煤技术的关键技术之一。 太重(天津)滨海重型机械有限公司山西太原 030024摘要:煤炭气化技术是洁净、高效利用煤炭的重要技术之一,以煤气化为基础的能源及化工系统已成为世界范围内高效、清洁、经济地利用煤炭资源的热点技术,流化床气化技术是洁净煤技术的关键技术之一。本文简单介绍流化床气化技术的原理及几种代表气化技术(温克勒、灰熔聚、U-gas以及恩德炉)的工业应用总结,并针对该技术特点进行分析及前景发展进行展望。 关键词:粉煤流化床;洁净煤技术;煤气化;工业应用;发展 3.3应用分析和总结 上述几种技术的原理基本都是一样的,不同的在于气化炉布气方式稍微不同;优势的共性诸如:煤种适应性广;高温区将焦油和酚全部裂解,废水少,零排放;飞灰二次燃烧利用,提高碳转化率;气化条件温和;煤气成本低等优点;但是存在的通病都是“上吐下泻”,例如:①煤气中粉尘含量高,占入炉煤总灰分的60%~70%,给煤气净化除尘带来较大困难。②灰中含碳量较高,一般上部出灰中碳约占30%,炉底出灰中约占10%。由于灰中含碳量高,且气化炉外壳面积大,热损失大,致使碳的综合利用率低,气化率低。这些问题要从根本上解决,只能采取高温高压操作。但是必须进行重新设计和较长期的试验研究,目前暂时不可能做到,只能在现有基础上进行改进、完善。 4、流化床气化技术的发展 1)适应现代煤化工的发展趋势。综合发展“多联产”系统是今后的发展方向,可以达到资源、能源的充分利用和循环生产以及环境和经济效益最大化的目的;所以要尽可能实现规模化、大型化、一体化和基地化。 2)消化吸收、实践创新,实现自主知识产权。当前我们要不断进行气化工艺总结,借鉴优秀经验,重点放在如何提高气化压力,提高单台处理量、煤种适应性、环境友好、实现零排放、提高碳转化率、提高气化效率等详细工作,另外还需要加大气化基础和气化过程的数学模拟以及自动控制等基础研究。 5、结语 “缺油、富煤、少气”的现状在长时间内是一定存在的,且国际原油价格也不在低位,根据中国煤炭资源现状,以煤炭为基础的煤基新能源发展前景十分广阔。作为煤气化关键技术的粉煤流化床,也将在民用燃料、化工、工业燃料以及化肥等领域得到有效广泛的应用。 参考文献: [1]贺勇德.现代煤化工技术手册.化学工业出版社,2003.

科林气化技术

科林CCG粉煤加压气化技术 技术拥有单位:德国科林工业技术有限责任公司 2014-5-20来源:《中国煤化工》编辑部作者:德国科林工业技术有限责任公司德国科林工业技术有限责任公司(简称科林公司)是世界著名的洁净煤利用技术的研发者、拥有者及工业解决方案供应商,全部拥有科林粉煤气化(CHOREN Coal Gasification)技术。科林的前身是欧洲洁净煤利用技术领域的先驱和领导者——前德国燃料研究所(DBI)。上世纪90年代,前德国燃料研究所研发部部长Wolf博士创立了科林,科林名称的由来是:“C-Carbon-碳,H-Hydrogen-氢,O-Oxygen-氧,REN-RENewable-可再生”。科林核心技术团队来自于前德国燃料研究所及黑水泵气化厂。公司总部及技术研发工程中心位于德国萨克森州的德累斯顿。科林在干粉煤气流床气化技术领域拥有40多年的研发、设计、制造、建设及运行经验,能够为业主提供全方位、立体化的煤气化解决方案。 科林CCG粉煤气化工艺过程主要是由给料、气化与激冷等系统组成,采用干粉煤加压进料,以纯氧作为氧化剂(部分煤种需添加少量水蒸气),在气化室内在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气,并实现高温液态排渣。原料气化和达到气体平衡所需的热量由原料碳氧化成一氧化碳和二氧化碳所释放。气化温度的选择主要由煤的熔融特性及粘温特性确定,气化压力的确定主要取决于产品煤气的利用工艺,通常为4.0MPa。通过科林CCG气化工艺可以把原煤、石油焦等转化为清洁的、高附加值的一氧化碳和氢气,可用于生产合成氨、甲醇、合成油、合成天然气等化工产品,还可用于发电或者生产城市煤气。

粉煤气化炉专用热电偶

自20世纪初期以来,热电偶就被广泛应用于关键的温度测量,特别是极高温领域。对于许多工业和过程关键应用,它具有量程大、成本低、耐久性好等的优点。气化炉本体和炉体的温度测量是利用其的特性,采用特殊材料制作特殊的粉煤气化炉专用热电偶进行测量,接下来,我来简单介绍下。 粉煤气化炉专用热电偶是水煤浆气化炉专用热电偶。它是专门为煤化工气化炉炉缸温度测量而设计制造的。高温热电偶是一种先进的气化炉炉缸温度检测装置,其长度和角度可在一定范围内调节,长度调节过程简单,角度调节方便,还具有减震功能。安装拆卸过程简单方便,深受广大用户的青睐。通过返料器将分离出来的返料重返料内进行二次气化,从而提高粉煤气化的吨煤产量和气化强度,提高煤的利用率;采用高温空气气化工艺,提高煤气的品质和热煤气效率。循环流化床粉煤气化炉具有煤种适应性好,能利用粉煤;流化床煤气炉

生产的煤气不含焦油和酚类有害物质,简化了煤气净化系统,减少了对大气环境的污染;流化床粉煤气化既可生产城市民用煤气,也可生产燃料气和原料气;流化床造气程序比固定床块煤造气简单。该技术投资省,可生产多种规格煤气,应用领域广。 产品性能满足被测介质(气化炉)、操作条件、环境条件、物理性能等要求,产品满足数据表中防爆等级和防护等级的要求,完全满足气化炉温度测量环境的要求。 优点: (1)产品的长度和角度可在一定范围内调节,具有减震功能。 (2)产品长度调节装置先进,采用伸缩调节原理,调节方便。 (3)产品采用进口火山岩密封,安全可靠。 (4)保护套采用新进口再结晶碳化硅,产品寿命长。 (5)安装简单方便,球管、连接管、连接线、保护套供货齐全。

科林粉煤气化技术

科林粉煤气化技术(CCG)简介 德国科林工业集团 二零一零年七月 1. 公司简介 德国科林工业集团是全球著名的煤气化、煤干燥和生物质气化技术提供商。该集团是前东德燃料研究所 (DBI)和黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)气化厂最大的后裔公司。 科林(CHOREN)名称的由来是:“C-Carbon-碳H-Hydrogen-氢O-Oxygen- 氧REN-RENewable-可再生”。 科林集团总部位于德国弗莱贝格市,原东德燃料研究所旧址,著名的黑水泵气化厂就在附近。戴姆勒奔驰汽车公司、德国大众汽车公司为科林的战略投资者。

目前集团拥有近300名研发及工程技术人员,其中主要技术骨干为前徳燃所和黑水泵厂的员工。科林公司的发起人Wolf博士即为前东徳燃料研究所研发部部长,煤气化运行总监贡瓦先生是前黑水泵气化厂厂运行主任。 科林集团拥有40多年气流床气化技术研发、设计、设备制造、建设以及运行的经验,可以为客户提供粉煤气化技术(CCG)和生物质气化技术(Carbo-V®)从工艺包设计到关键设备制造和开车运行等一系列综合性服务。 此外,科林集团也是蒸汽流化床煤干燥技术的创始人和专利持有人,在全世界煤干燥领域,特别是褐煤干燥领域具有多年成功运行经验。 科林能化技术(北京)有限公司是科林集团的全资子公司,负责集团在亚太地区的业务。 2. 技术来源及技术开发背景 科林高压干粉煤气化炉简称为CCG炉(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用当地褐煤提供城市燃气。1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投煤量为720吨)的水冷壁煤气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。之后改用工业废液废油作为进料,继续运行至今。燃料研究所和黑水泵工厂的技术骨干后来发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出的问题进行了设计更改和完善,推出了一套完整优化的新气化技术 - CCG。 3. CCG技术介绍 (A)气化工艺 CCG气化工艺过程主要是由给料、气化与激冷系统组成。原料煤被碾磨为100%<200μ,90%<65μ的粒度后, 经过干燥, 通过浓相气流输入系统送至烧嘴,在 反应室内与工业氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

航天炉煤气化技术运行情况

航天炉煤气化技术运行情况 航天, 煤气化, 技术, 运行 HT-L煤气化技术的生产应用 HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。现将该工艺在煤化工项目中的应用介绍如下: 一、工艺介绍 1、磨煤与干燥系统 磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。 2、加压输送系统 加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。 3、气化及净化 烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。设计气化温度1400-1600℃,气化压力4.0MPa。热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。 4、渣及灰水处理系统 渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。 二、技术特点 1、原料的适应性 据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。龙宇生产用过两种煤,神木炭厂和永煤新桥,工况稳定,有效气含量基本能够达到设计要求,但由于神木炭厂的煤灰分含量低(<10%),挂渣情况不是太好,炉膛上部还可以,下部基本挂不上渣。永煤新桥煤运行时间较短,还不能完全反应其结渣性。附神木炭厂和永煤新桥

灰熔聚流化床粉煤气化技术介绍

灰熔聚流化床粉煤气化技术 摘要:煤气化是将固态煤转化为气态燃料或化工合成原料(CO+H2)的过程,由于煤炭的储量丰富,特别是中国等一些国家富煤少油贫气,煤气化技术就变的更加重要。研究开发煤气化工艺,就是要为产业界提供能适应更宽的原料范围、更高效、经济和清洁的气化过程。本文介绍由中国科学院山西煤炭化学研究所开发的灰熔聚流化床粉煤气化过程,指出它的优点、缺点、适用范围、技术现状和发展方向,供同行了解。 一、灰熔聚流化床粉煤气化技术的开发历程 针对我国能源以煤为主、煤种多、烟煤多、粉煤多、煤灰份高、灰熔点高(大部分商品煤灰含量>20%,灰熔点>1450 C)的特点,国家从“六五”计划开始投入大量人力、物力,研制开发先进煤气化技术(包括固定床、流化床、气流床)。经过二十余年的研究开发,中国科学院山西煤炭化学研究所开发成功了具有自主知识产权的灰熔聚流化床粉煤气化技术。该工艺具有气化温度适中(1000~1100℃),干粉煤进料,氧耗量较低,煤种适应性宽,产品气不含焦油,气化炉耐火材料要求低等优点。目前已成功应用于合成氨造气工业(常压,100吨煤/日),随着加压技术的进一步研究开发,该技术将在国内全面推广应用。 八十年代,在中国科学院(重点科技攻关项目专项)、国家科委(75-10-05)攻关计划支持下,在原有煤气化和流化床技术的基础上,先后建立了φ300mm(1吨煤/天)气化试验装置、φ1000mm冷态试验装置、φ1000mm(0.1~0.5 MPa 、24吨煤/天)中间试验装置、φ145mm实验室煤种评价试验装置。在理论研究、冷态模试、实验室小试和中试试验基础上,系统地研究了灰熔聚流化床粉煤气化过程中的理论和工程放大特性;通过对气化过程中煤化学、灰化学与气固流体力学的研究,研制了特殊结构的射流分布器,创造性地解决了强烈混合状态下煤灰团聚物与半焦选择性分离等重大技术难题;设计了独特的“飞灰”可控地址:中国山西省太原市桃园南路27号电话: (0351) 2021137 传真: (0351) 4048313,2021137,4041153 邮编:030001

粉煤加压气化技术的开发现状和应用前景

第1期(总第90期)煤 化 工No.1(Tota l No.90) 2000年2月 Coa l Che m ica l I ndustry Feb.2000 干法粉煤加压气化技术的开发现状和应用前景 门长贵 西北化工研究院 710600 摘 要 干法粉煤加压气化是一种高效低污染的先进煤气化方法。本文简要介绍了干法粉煤加压气化的工艺原理、技术特点及开发现状,并指出了这种煤气化工艺技术在联合循环发电和煤化工等领域内的应用前景。 关键词 干法粉煤气化 技术特点 开发现状 应用前景 引 言 目前我国一次能源消费中煤炭约占75%,在今后相当长的一段时间内煤炭仍是我国的主要能源,国家已把煤的高效、洁净利用技术列入21世纪的发展计划,因此发展先进的煤气化技术是当前的重要课题。 近年来,为了减少环境污染,提高煤炭的利用率,增加装置的生产能力,降低氧耗和煤耗,拓宽原料煤种的使用范围,充分利用煤炭资源,先后成功地开发出了新一代先进的煤气化工艺技术,有代表性的主要为鲁奇公司的碎煤移动床熔渣气化(B GL)工艺,水煤浆进料的T exaco气化工艺,干法粉煤进料的SCGP(Shell)气化工艺和P renflo、GSP工艺。上述几种煤气化工艺中,干法粉煤进料的加压气化工艺因其技术经济性具有明显的优势和较强的竞争力,预计它是今后煤气化工艺技术的发展方向。 1 干法气化的原理及技术特点 原料煤经破碎后在热风干燥的磨机内磨制成< 100Λm(90%)的煤粉,由常压料斗进入加压料斗,再由高压惰性载气送至气化炉喷嘴,来自空分的高压氧气预热后与过热蒸汽混合送入喷嘴。煤粉、氧气和蒸汽在气化炉高温高压的条件下发生碳的部分氧化反应,生成CO与H2总含量大于90%的高温煤气,经废热回收、除尘洗涤后的粗合成气送后序工段。 干法气化工艺具有如下技术特点: (1)对原料煤的适应性广,可气化褐煤、烟煤、无烟煤及石油焦。对煤的反应活性几乎没有要求,对高灰熔点、高灰分、高水分、高含硫量的煤种同样也适应。 (2)氧耗和煤耗低,与湿法进料的水煤浆气化工艺相比较,氧气消耗降低15%~25%,原料煤消耗降低10%~15%。 (3)单位重量的原料煤可以多产生10%的合成气,合成气中的有效气体成分(CO+H2)高达94%左右。 (4)原料煤能量的83%转换在合成气中(水煤浆气化工艺只有70%~76%),约15%的能量被回收为蒸汽。由此可见干法气化的热效率高。 (5)干法气化工艺的气化炉一般采用水冷壁结构,以渣抗渣,无昂贵的耐火砖衬里,水煤浆气化工艺气化炉耐火砖的费用约为10美元 tN H3,因多喷嘴操作,干法工艺气化炉运行安全可靠。 (6)单台气化炉生产能力大,目前已投入运行的气化炉操作压力3.0M Pa,日处理煤量2000t。如Shell干法进料气化工艺可采用多喷嘴加料(4只~8只),喷嘴的设计寿命可保证达到8000h,气化装置可以长周期运行。 (7)碳转化率高,可达99%,气化炉排出的熔渣为玻璃状的颗粒,对环境没有污染。气化污水中不含酚、氰、焦油等有害物质,容易处理,可做到零排放。 (8)工艺操作采用先进的控制系统,自动化程度高,利用专有的计算机控制技术可使工艺操作处于最佳状态下运行。 2 干法气化技术的现状 第一代干法粉煤气化技术是K2T炉,目前在南非和印度等国仍有部分装置在运行,该炉型为常压气化,已基本停止发展。我国80年代由西北化工研究院在临潼完成了K2T炉的中间试验,后在山东黄

粉煤加压气化技术

粉煤加压气化技术简介 一、背景 “九五”期间华东理工大学、兖矿鲁南化肥厂(水煤浆气化及煤化工国家工程研究中心)、中国天辰化学工程公司共同承担了国家“十五”科技攻关计划课题“粉煤加压气化制合成气新技术研究与开发”,建设具有自主知识产权的粉煤加压气化中试装置。装置处理能力为15~45吨煤/天,操作压力2.0~2.5Mpa,操作温度1300~1400℃。 该课题于2001年年底启动,2002年10月完成研究开发阶段中期评估,中试装置进入设计施工阶段。2004年7月装置正式投运,首次在国内展示了粉煤加压气化技术的运行结果,填补了国内空白,技术指标达到国际先进水平。中试装置于2004年12月6日至9日顺利通过科技部组织的现场72 小时运行专家考核,2004年12月21日于北京通过科技部主持的课题专家验收。同年,该成果入选2004年度煤炭工业十大科学技术成果。 二、装置流程与技术优势 1、整个工艺流程如图1,具体流程为:原煤除杂后送入磨煤机破碎,同时由经过加热的低压氮气将其干燥,制备出合格煤粉存于料仓中。加热用低压氮气大部分可循环使用。料仓中的煤粉先后在低压氮气和高压氮气的输送下,通过气化喷嘴进入气化炉。气化剂氧气、蒸汽也通过气化喷嘴进入气化炉,并在高温高压下与煤粉进行气化反应。出气化炉的高温合成气经激冷、洗涤后并入造气车间合成气管线。熔融灰渣在气化炉激冷室中被激冷固化,经锁斗收集,定期排放。洗涤塔出来的黑水经过二级闪蒸,水蒸汽及一部分溶解在黑水中的酸性气CO 2、H2S 等被迅速闪蒸出来,闪蒸气经冷凝、分离后与气化分厂生产系统的酸性气一并处理,闪蒸黑水经换热器冷却后排入地沟,送气化分厂生产装置的污水处理系统。

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

Dup(1)HT-L粉煤气化工艺

北 京 航 天 动 力 研 究 所 北京航天石化技术装备工程公司
HT–L煤气化工艺介绍
中国航天科技集团公司

HT–L煤气化工艺系统介绍
1、主要技术路线:干煤粉作原料 采用激冷流程 ? ? ? ? ? ? 主要特点: 技术先进,具有的热效率(可达95%) ,碳转化率高(可达99%); 气化炉为水冷壁结构结构,气化温度能到1500至1700度; 对煤种要求低,可实现原料本地化; 具有自主知识产权,专利费用低; 关键设备全部国产化,投资少。
气化炉专利号: 发明申请号:200510053511.0 实用新型申请号:200520005280.1 烧嘴专利: 发明申请号:200510079701.X 实用新型申请号:200520110717.8 破渣机专利: 发明申请号:03141353.6 实用新型申请号:03272196.X
已申请专利
2006-7-26

HT–L煤气化工艺系统介绍
2、工艺流程:
备煤系统
原料煤 S-1103 粉煤过滤器 V-1302 中压汽包 P-1301A/B 汽包循环泵 V-1201 粉煤贮仓 E-1309 氧气加热器 V-1309 氧气缓冲罐 中压蒸汽
气化及合成气洗涤系统
锅炉给水 中压过热蒸汽 氧气 粗合成气去火炬 粗合成气 脱盐水 闪蒸气去火炬
V-1101 原料煤贮仓 X-1101 称重给煤机
C-1301 洗涤塔 V-1204 粉煤锁斗 F-1301 气化炉
渣及灰水处理系统
高压氮气
A-1101 磨煤机 F-1101 惰性气体发生器 空气 燃料气 渣 V-1303 渣锁斗
冷凝液来自变换 V-1401 高压闪蒸罐 V-1404 真空闪蒸罐 V-1408 除氧器 低压饱和蒸汽 S-1402 过滤机 滤饼
V-1205 粉煤给料罐
三条相同 的进煤管 线
Q-1401/V-1411 捞渣机
T-1401 灰水罐
S-1401 沉降槽
污水
2006-7-26

HT-L粉煤加压气化炉

航天炉又名HT-L粉煤加压气化炉 长期以来,国内煤化工之所以不能大规模地发展,就是因为国内缺乏自主的粉煤加压气化技术。而进口的技术也不能完全满足国内煤化工的需求——如果选用德士古煤气化技术,无法实现原料煤的本地化;选用壳牌煤气化技术的投资又太大。所以,开发具有自主知识产权的高效、洁净、煤种适应性广的国内煤气化技术,一直是业界的梦想。 气化炉的核心部件是气化炉燃烧喷嘴,该喷嘴必须具有超强的耐高温特性,这个特性要实现起来难度较大。而与此类似,火箭上天时喷嘴所经受的温度也很高,而且比气化炉燃烧喷嘴要经受的温度高得多。如果把航天技术“嫁接”到煤化工产业,那就有点像杀鸡用上宰牛刀,技术难度上是没有问题的。 航天炉的主要特点是具有较高的热效率(可达95%)和碳转化率(可达99%);气化炉为水冷壁结构,能承受1500℃至1700℃的高温;对煤种要求低,可实现原料的本地化;拥有完全自主知识产权,专利费用低;关键设备已经全部国产化,投资少,生产成本低。据专家测算,应用航天炉建设年处理原煤25万吨的气化工业装置,一次性投资可比壳牌气化炉少3亿元,比德士古气化炉少5440万元;每年的运行和维修费用比壳牌气化炉少2500 万元,比德士古气化炉少500万元。 它与壳牌、德士古等国际同类装置相比,有三大优势:一是投资少,比同等规模投资节省三分之一;二是工期短,比壳牌炉建设时间缩短三分之一;三是操作程序简便,适应中国煤化工产业的实际,易于大面积推广。 HT-L粉煤气化煤质要求 HT-L粉煤气化工艺对煤种的适应性广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可作为气化的原料。即使是高灰分、高水份、高硫的煤种也能使用。但从经济运行角度考虑,并非所有煤种都能够获得好的经济效益。因此,使用者应该认真细致地选择合适的煤种,在满足设计要求的前提下,保证装置的稳定运行。 HT-L粉煤气化装置对煤种的一般要求 煤种分析项目数据范围 总水(AR;%) 4.5~30.7

气化炉比较

1 煤炭气化是煤炭清洁利用的重要途径 中国煤炭的特点是高硫、高灰煤比重大。全国原煤平均灰分含量17.6%左右,平均硫分含量1.10%,其中13%的原煤含硫量高于2%。西南地区煤炭中含硫量大于2%的占60%。中国煤入洗率低,约80%原煤用于直接燃烧,燃煤排放出大量有害气体和烟灰,使生态环境遭到严重破坏。统计表明,中国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx。来源于煤的燃烧。 同时,中国煤炭利用效率低。除在大型和负荷稳定的燃烧工况下,其燃烧效率与石油和天然气相近外,其它非稳定负荷的燃烧过程热效率均低于石油和天然气,其平均利用效率仅 29%。提高中国煤炭利用效率、减少煤炭燃烧带来的环境污染的根本途径是研制和推广应用煤炭优比利用技术。发展煤炭气化技术是减少环境污染、节能、发展工业的重要措施。中国适于气化的煤炭资源十分丰富,可适用于发生炉气化的褐煤、不粘煤、长焰煤和弱粘煤的储量占全国煤炭总储量的40%之多。此外,还有适用于水煤气发生炉的无烟煤,以及流化床气化炉所用的细、粉煤和煤泥浆等。煤炭气化是中国煤炭清洁利用的重要途径之一。 煤气化技术,尤其是高压、大容量气流床气化技术在国际上已经进入商业化阶段,显示了良好的经济与社会效益,代表着发展趋势。中国"以煤代油"的能源政策促进了以煤制取城市、工业燃气技术的发展和其他相关技术的开发。近20年来,中国煤气化科研和先进技术开发方面已取得了引人注目的成效。 2 煤气化技术 以煤炭为原料,采用空气、氧气、CO2。和水蒸气为气化剂,在气化炉内进行煤的气化反应,可以生产出不同组分不同热值的煤气。为了提高煤气化的气化率和气化炉气化强度,改善环境,70年代以来发达国家加快了新一代煤气化技术的开发和工业化进程。总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。固态床、流化床、气流床等几种不同类型的煤气化技术均取得了较大的进展和较好的效果。 2.1 固定床 固定床(慢移动床),常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有22台炉子,多用于生产城市煤气;如以烟煤为原料用于生产合成气,CH4蒸汽转化工段(例如山西潞城引进装置)。该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。 2.1.1 固定床间歇式气化炉(UGI) 以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低原料单一、能耗高,间歇制气过程中,大量吹

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

13种煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下

的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。至今在国内已建和在建的装置共有9套,14台气化炉。属流化床气化炉,床层温度在1000℃左右。目前最大的气化炉,用富氧气化,最大产气量为40000m3/h半水煤气。缺点是气化压力为常压,单炉气化能力还比较低,产品气中CH4含量高达1.5%-2.5%,飞灰量大、对环境的污染及飞灰综合利用问题有待解决。 6、GE德士古(Texaco)水煤浆加压气化技术 GE德士古(Texaco)水煤浆加压气化技术,属气流床加压气化技术,原料煤经磨制成水煤浆后用泵送进气化炉顶部单烧嘴下行制气,原料煤运输、制浆、泵送入系统比Shell和GSP等干粉煤加压气化要简单得多,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉日投煤量为2000t,国内已投产的最大气化炉日投煤量为1000t。国内设计中的气化炉能力最大为1600t/d。该技术对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能作气化原料。但要求原料煤含灰量较低,煤中含灰量由20%降至6%,可节省煤耗5%左右,氧耗10%左右。另外,要求煤的灰熔点低。由于耐火砖衬里受高温抗渣的限制,一般要求煤的灰熔点在还原性气氛下的T4<1300 ℃,对于灰熔点稍高的煤,可以添加石灰石作助熔剂,降低灰熔点。还要求灰渣粘温特性好,粘温变化平稳,煤的成浆性能要好。气化压力从2.7、4.0、6.5到8.5 MPa 皆有工业性生产装置在稳定长周期运行,装置建成投产后即可正常稳定生产。气化系统的热利用有两种形式,一种是废热锅炉型,可回收煤气中的显热,副产高

煤气化技术那种最好

煤气化技术那种最好? 煤气化是煤化工的关键技术和龙头技术,核心是煤气化炉,包括固定床(移动床,记者误写,固定床是鲁奇气化或BGL等加压气化工艺,移动床就是传统的固定层气化工艺,概念不同)、流化床、气流床3 种类型,其中气流床成为当今煤气化技术发展的主流。近10年来,我国煤气化技术开发明显加快,相继开发成功清华气化炉、多喷嘴对置式水煤浆气化炉、航天加压粉煤气化炉、两段式干粉煤气化炉以及灰熔聚流化床粉煤气化炉等煤气化技术,形成了与国外技术竞相发展的局面。 “新型煤气化技术主要指粉煤加压气化技术和新型水煤浆气化技术。与固定床煤气化技术相比,新型煤气化技术在节能环保、煤种适应性等方面具有十分突出的优势。”中国化工信息中心副主任李中说,在此次煤气化技术/经济发展论坛上,国内自主煤气化技术与美国GE、壳牌、西门子GSP、科林CCG 等国外先进技术同台竞技,各展风采。由于是商业性会议、用户业主只来了10家左右、基本上是参会众多技术单位和专家自我欣赏居多! 记者注意到,国产化技术毫不逊色,一些甚至达到国际领先水平。“在第一代清华气化炉应用世界首个氧气分级气流床煤气化技术的基础上,我们又创新将燃烧凝渣保护和自然循环膜式壁技术引进气化领域,成功开发了新一代清华水冷壁气化炉,装置全部采用我国自主技术和国产设备,解决了水煤浆气化技术的煤种限制和高能耗点火问

题,形成了世界第一个水煤浆水冷壁煤气化工艺。” 清华大学盈德气体煤气化联合研究中心主任张建胜教授自豪地说,水冷壁保护结构水煤浆气化技术,具有水煤浆耐火砖和干粉水冷壁气化炉的优点,比如气化炉操作温度不再受耐火砖的限制,可以使用灰熔点更高的煤作为原料,煤种适应性更宽,覆盖了褐煤、烟煤到无烟煤全煤阶。除此以外,清华水冷壁气化炉的水冷壁按照自然循环设计,强制循环运行。即便在停电、停泵等事故状态下无法强制供水,水汽系统仍可自然循环,水冷壁不会损坏,保证气化炉安全停车。采用水冷壁结构,也不必每年停车更换锥底砖和全炉向火面砖,单炉年运转可达8000小时以上。与其他水冷壁炉相比,清华水冷壁气化炉系统压力高50%~100%,粗合成气中H2 含量高50%以上,后续变换、净化、合成等工序能耗降低,设备投资和运行成本大幅下降。去年9 月,清华水冷壁气化炉技术通过中国石油和化学工业联合会组织的科技成果鉴定,总体技术处于国际领先水平。 华东理工大学洁净煤技术研究所所长于广锁告诉记者,其多喷嘴对置式水煤浆气化炉由于采用四喷嘴对置设计,不存在短路物流现象,具有高效节能、碳转化率高等优点。今年4月,日处理煤2000吨级多喷嘴对置式水煤浆气化技术通过了中国石油和化学工业联合会成果鉴定,专家给予高度评价,认为该成果创新性强,总体处于同类技术的国际领先水平。 中国华能集团清洁能源技术研究院研发的两段式干煤粉加压气化技术,创新采用两室两段多喷嘴反应、分级气化,有效气含量可

恩德粉煤气化炉灰渣再利用分析_许清波

恩德粉煤气化炉灰渣再利用分析 许清波 (吉林长山化肥集团有限公司,吉林松原 131109) [中图分类号]T Q 038.7 [文献标识码]B [文章编号]1004-9932(2005)03-0031-02 [收稿日期]2005-01-10 [作者简介]许清波(1973-),男,吉林长岭人,助理工程师。 恩德粉煤气化炉采用循环流化床气化技术制气,为了避免结渣,流化床底部在900~950℃条件下进行氧化和气化,在这种条件下,要求原 煤的活性和灰熔点高,褐煤和长焰煤是最合适的原料。我公司恩德粉煤气化炉设计时是以内蒙免渡河长焰煤为原煤,设计灰分含量15.59%,但由于铁路运输及设计煤种煤矿储藏和开采能力等影响,现实际使用的原煤大多为内蒙古褐煤,煤质较差,灰含量高达30%~50%,气化炉虽能正常生产,但排灰渣量大,灰渣中带出可燃物相对增多,飞灰残碳高达28%左右,炉渣残碳在10%左右,灰渣可利用价值较大。如何处理和综合利用这些灰渣残碳,既是提高气化炉效率的需要,也是环境保护和充分利用资源的需要。1 灰渣再利用的必要性 恩德粉煤气化炉的设计热效率为80%,碳的利用率为91%。而实际测试气化炉的热效率为78.26%,碳的利用率为86.99%。要提高气化炉的热效率,含碳飞灰和灰渣必须加以利用。1.1 灰渣的基本特性 流化床气化炉排出的灰渣系颗粒物料,分为细灰(包括除尘灰和沉降灰)及大渣(底部排渣)两大类。 细灰颗粒直径<0.8mm ,温度150~450℃;大渣颗粒直径≥2.5mm ,温度850~900℃。 1.2 灰渣量 设计值/t ·h -1 正常运行值/t ·h -1灰渣量  1.48 1.912 飞灰量 2.86 5.87 1.3 经济效益分析 以恩德粉煤气化炉正常运行时产生的灰渣量 计算。 灰渣发热量 Q =(1.912×0.1012×7825+5.87× 0.2613×7825)÷(1.912+5.87)= 1736.87kcal /kg =7260.12kJ /kg 以每焦尔0.0132元计算,吨灰渣价值95.83元。每台炉年灰渣量为56030t ,按80% 利用率计算,两台炉灰渣再利用的年经济效益约为860万元,效益十分可观。2 灰渣再利用可行性分析及方法 恩德粉煤气化炉制出的煤气和煤气所夹带的炭粒经炉膛出口高温分离器分离后,大部分粗炭粒由下料管进入气化炉下部。从高温分离器出来的粗煤气中含有大量高含碳量的细灰,如直接将这部分细灰分离下来送回气化炉内,由于颗粒太细,会立即从炉内被吹走。飞灰的利用办法是将其与气化炉大渣混合后与煤掺混,送入锅炉作为锅炉燃料,这样不仅可以提高碳的综合利用率,而且使灰转变成惰性物质,可用做水泥熟料、制砖或铺路,碳的利用率可达到95%,热效率可达到85%~90%。 气化炉灰渣由于灰分高,挥发分低,因此需要采用燃渣锅炉,或选用燃煤掺烧造气灰渣锅炉。根据恩德粉煤以及循环流化床锅炉(简称CFB )的特点,废渣锅炉采用循环流化床锅炉较好。因为循环流化床燃烧方式具有如下特点。(1)环保性能好。流化床燃烧温度800~870℃,属低温燃烧,是钙基脱硫剂最佳脱硫温度。当钙硫比Ca /S =2~2.5时,循环床脱硫率 第3期2005年5月中 氮 肥 M -Sized Nitrogenous Fertilizer Progress No .3May 2005

科林气化技术

科林气化技术

科林CCG粉煤加压气化技术 技术拥有单位:德国科林工业技术有限责任公司 2014-5-20 来源:《中国煤化工》编辑部作者:德国 科林工业技术有限责任公司 德国科林工业技术有限责任公司(简称科林公司)是世界著名的洁净煤利用技术的研发者、拥有者及工业解决方案供应商,全部拥有科林粉煤气化(CHOREN Coal Gasification)技术。科林的前身是欧洲洁净煤利用技术领域的先驱和领导者——前德国燃料研究所(DBI)。上世纪90年代,前德国燃料研究所研发部部长Wolf博士创立了科林,科林名称的由来是:“C-Carbon-碳,H-Hydrogen-氢,O-Oxygen-氧,REN-RENewable-可再生”。科林核心技术团队来自于前德国燃料研究所及黑水泵气化厂。公司总部及技术研发工程中心位于德国萨克森州的德累斯顿。科林在干粉煤气流床气化技术领域拥有40多年的研发、设计、制造、建设及运行经验,能够为业主提供全方位、立体化的煤气化解决方案。 科林CCG粉煤气化工艺过程主要是由给料、气化与激冷等系统组成,采用干粉煤加压进料,以纯氧作为氧化剂(部分煤种需添加少量水蒸气),在气化室内在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气,并实现高温液态排渣。原料气化和达到气体平衡所需的热量由原料碳氧化成一氧化碳和二氧化碳所释放。气化温度的选择主要由煤的熔融特性及粘温特性确定,气化压力的确定主要取决于产品煤气的利用工艺,通常为4.0MPa。通过科林CCG气化工艺可以把原煤、石油焦等转化为清洁的、高附加值的一氧化碳和氢气,可用于生产合成氨、甲醇、合成油、合成天然气等化工产品,还可用于发电或者生产城市煤气。

航天炉粉煤加压气化装置运行分析

航天炉粉煤加压气化装置运行分析 伴随着航天事业的不断进步,各种新型工艺技术、材料以及设备得以出现,其中航天炉粉煤加压气化技术便是最为关键的高端技术之一,其主要根据煤制合成气技术加以研发,不但在航天炉方面具有一定的技术创新性,而且还充分发挥出传统技术的优势和作用,效果良好。有关调查资料信息显示,尽管航天炉相关技术没有通过大量的实验检测过,不过在针对航天工程项目的基本需要满足方面却表现突出,十分有助于推进我国的工业化发展进程。因此,深入探讨航天炉粉煤加压气化装置运行状况具有重要意义。 2 航天炉粉煤加压气化工作开展的装置要求 对于航天炉粉煤加压气化工作而言,一般来说,为了保证良好的运行效果,要求粉煤加压气化的装置功能正常、覆盖全面,主要涵盖四个不同的单元,具体来说依次为:以磨煤与干燥处理为主要任务的15单元;以粉煤加压与运输为主要任务的16单元;以粉煤气化为主要任务的17单元;以灰水与渣处置为主要任务的18单元。对于15单元而言,其中包括了两条生产运行线,即1开1备,以便达到维持装置持续运行的效果。对于装置当中的16单元来说,可以实现针对所储存粉煤的加压处理,完成之后,使粉煤被运输到料罐当中。对于17单元来说,属于粉煤加压气化装置的核心组成部分,可以发挥出一定的燃烧作用,并合理进行气激冷與相关设施的清洁处理。对于18单元而言,可以对装置实施黑水的有效处理,并且能够反复循环使用,节约了资源。 3 航天炉粉煤加压气化装置的运行状况分析 本次研究将以安徽昊源化工集团企业的两套航天炉粉煤加压气化装置运行情况作为分析案例,该项目粉煤加压气化装置工程项目在2021年10月份正式开工,其中一期项目气化炉于2021年4月14日首次成功点火。该项目从基建到首次点火成功花费了一年多的时间。

相关文档
最新文档