人教版高中数学高二必修五【课堂强化】3.2.1一元二次不等式的解法

合集下载

人教版高中数学必修课件一元二次不等式及其解法

人教版高中数学必修课件一元二次不等式及其解法

人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
总结出: 解一元二次不等式
ax2+bx+c>0、ax2+bx+c<0 的步骤是:
(1)化成标准形式 ax2+bx+c>0 (a>0)
ax2+bx+c<0 (a>0)
(2) 写出ax2+bx+c=0判定△的符号,
当x取 0 < x <5 时,y<0?
(3).由图象写出:
不等式x2 -5x>0 的 解集为 ﹛x|x<0或x>5﹜ 。
不等式x2 -5x<0 的 解集为 ﹛x| 0 <x <5﹜ 。
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
一元二次不等式及其解法
=(2x-1)2≥0
(2)解不等式 - x2 + 2x – 3 >0
解:整理,得 x2 - 2x + 3 < 0
因为△= 4 - 12 = - 8 < 0
方程 2 x2 - 3x – 2 = 0无实数根
所以原不等式的解集为ф
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
(3)求出方程 的实根;画出函数图像
(4)(结合函数图象)写出不等式的解集.
简记为:一化—二判—三求—四写
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)

人教A版高中数学必修五3.2.1一元二次不等式及其解法 课件

人教A版高中数学必修五3.2.1一元二次不等式及其解法 课件
3.2.1 一元二次不等式 及其解法
三种表述
方程f(x)=ax2+bx+c=0(a≠0)有实数根
函数的图象与x轴有交点 等价于函数有零点
解方程与解不等式
• 1.求根公式
x b b2 4ac 2a
• 2.因式分解(十字相乘)
对形如ax2+bx+c=0的普式情况,先将a和c分解为
a=a1*a2 c=c1*c2
• 3.作图 (1)与x轴交点坐标
b b2 4ac
(
,0)(a 0)
2a
(2)与y轴交点坐标
(0, c)
(3)顶点坐标 (4)对称轴方程
( b , 4ac b2 )(a 0) 2a 4a
x b (a 0) 2a
作图计算
画出y=x2-2x-3的图象,并写出其(1)对称轴方程 (2)顶点坐标 (3)与x轴交点坐标 (4)与y轴交点坐标
f (x) 0 g(x)
f (x)g(x) 0
f (x) 0 g(x)
f (x)g(x) 0 且g(x) 0
巩固
一元二次方程、一元二次不等式与二次函数的关系:
⊿=b2-4ac
二次函数 y=ax2+bx+c(a>0)
的图象
⊿>0
y
x1 x2
⊿=0
y
x x1(x2) x
⊿<0
y
x
方程ax2+bx+c=0 (a>0) 的根
思考:你能画出二次函数y=x2-x-6的图象吗?
能否在图像中表示出不等式x2-x-6>0的解集?
{x | x 2,或x 3}
那x2-x-6<0的解呢?
y

高中数学人教版必修5课件:3.2一元二次不等式及其解法

高中数学人教版必修5课件:3.2一元二次不等式及其解法
一元二次方程: ax2+bx+c=0(a≠0)
一元二次不等式: ax2+bx+c>0(a≠0) 或ax2+bx+c<0(a≠0)
它们之 间有怎 样的联 系呢?
一元二次不等式f(x)>0,或f(x)<0 (a≠0)的 解集,就是分别使二次函数f(x)的函数值为
正值或负值时自变量x的取值的集合。
一元二次方程f(x)=0 (a≠0)的解集,就是使 二次函数f(x)为零时自变量x的取值的集合。
2、自变量x在什么范围取值时,函数
y 3x2 x 2 的值小于0
课堂小结
1.求解一元二次不等式的三个步骤: (1).将不等式化为标准情势:
ax2+bx+c>0 或 ax2+bx+c<0
(2).解出相应的方程的根。 (3).画出相应二次函数的草图,根据草
图确定所求不等式的解集。
2.若ax2 + bx + c = 0(a > 0)有两根x1,x2(x1 < x2), 则ax2 + bx + c > 0的解集可记忆为"大于取在两边", ax2 + bx + c < 0的解集可记忆为"小于在取中间"
探究一元二次不等式 x2 7x6 0的解集
(1)一元二次方程 x2 7x 6 0 的根与二次
函数 y x2 7x 6 的零点的关系:
二次方程有两个实数根:
y
x1 1, x2 6
二次函数有两个零点:
o
01
o
x
6
x1 1, x2 6
即:二次方程的根就是二次函数的零点

3.2.1一元二次不等式及其解法

3.2.1一元二次不等式及其解法
a < 0, b , =−(−1+ 2) =−1 a c ) a = (−1 ×2 =−2,
∴b= -a,c= -2a∴不等式 2+1)+b(x-1)+c>2ax, , ∴不等式a(x > , 可化为(x 可化为 2+1)+(-1)(x-1)+(-2)<2x, < , 即x2-3x<0,解得0<x<3,∴选A. < ,解得 < < ,
故原不等式的解集为{ 故原不等式的解集为 x| x <-1或1.“三个二次”之间的关 三个二次” 系
1 设不等式ax + bx + 1 < 0的解集是{x | −1 < x < }, 求a ⋅ b. 3
2
变式:已知二次不等式ax 2 + bx + c < 0的解集是 1 1 2 {x | x < 或x > },求关于x的不等式cx -bx+a>0的解集. 3 2
题3:解不等式2x2+x -3>0 解不等式2
因为△ 解: 因为△= 1+24=25>0 的解是x 方程 2 x2 +x -3=0 的解是 1=-3/2 , x2=1 故原不等式的解集为{ 故原不等式的解集为 x| x <-3/2或x> 1} 或
题4:解不等式 2x2 + 3x +5 >0 :解不等式解:整理,得 2x2 - 3x - 5< 0 整理, 因为△ 因为△= 9+40 = 49 > 0 的解是x 方程 2 x2 -3x -5=0 的解是 1=5/2 , x2=-1
若f(x)=ax2+bx+c>0(a>0)在区间 在区间 [n,+∞)上恒成立,则 上恒成立, 上恒成立

高二数学必修五一元二次不等式的解法三

高二数学必修五一元二次不等式的解法三

1 x2 5x5
⑴ 2 2 2 解:∵ x2 5x5 1 2 2 ∴ x2 5x5 21 ∴ x2 5x 5 1
化为同底,便于比较 运用函数的增减性,
∴ (x 2)(x 3) 0
转化为一元二次不等
∴ 原 不 等 式 的 解 集 为 式得解
x x 2 或 x 3 .
4
试解下列不等式:
一元二次不等式的解法(三)
上两节课我们学习了一元二次不等式的解法, 这是解不等式的基础,很多的不等式的求解最终都 是转化为一元一次不等式或一元二次不等式来进 行的,关键是同解变形转化.
另外一元二次不等式的解集和一元二方程的 根紧密联系,这里有综合问题.
这节课我们就来思考以上两方面的问题的解 决.
1
试解下列不等式:
8
例 3 关于一元二次方程的根的分布问题:
关于 x 的方程 x2 (a 2 1)x a 2 0 的一根比 1 大,
另一根比 1 小,则( C )
(A) 1 a 1
(B)a 1或 a 1
(C) 2 a 1
(D)a 2 或 a 1
9
⑶集合 A={x|10+3x-x2≥0},B={x|m+1≤x≤2m+1},
当 A∩B=φ时,m 的取值范围是________.
m<0 或 m>4
7
怎样解含字母的不等式: 例 2 解关于 x 的不等式: ax2 2(a 1)x 4 0
解法一样
解: ax2 2(a 1)x 4 0
只是判断时要注意这里是字
5 2

x
2
.
6
例 1 几个关于一元二次不等式的解集的问题:
⑴不等式 a 2x2 2a 2x 4 0 对于 x R 恒成

人教A版高中数学必修五3.2.1 一元二次不等式的解法(一)

人教A版高中数学必修五3.2.1 一元二次不等式的解法(一)
一般来说,一次上网时间不会超过17小时,所以,不妨假设一次上网 时间总小于17小时.那么,一次上网在多长时间以内能够保证选择公 司A比选择公司B所需费用少?
解:假设一次上网x小时,则公司A收取的费用为1.5x(元),
公司B收取的费用为1.7x+x(x-1)×(-0.1)/2=x(35-x)/20(元).
解:设在一个星期内大约应该生产x辆摩托车
则依题意可得
-2x2 + 220x > 6000
移项整理得 x2 - 110x + 3000 < 0
解得
50<x<60
因为x只能取整数,所以当这条摩托车整车装配
流水线在一周内生产的摩托车数量在51辆到59辆
之间时,这家工厂能够获得6000元以上的收益.
题1 某种牌号的汽车在水泥路面上的刹车距离s m和
练习.解下列不等式: (1)x2-7x+6≤0; {x|1≤x≤6} (2)-2x2+x-5<0; R (3)(x+2)(1-x)<0. {x|x<-2,或x>1}
二、例题讲解
例4、若不等式x2+px+q<0的解集为{x|1<x<2} ,求不等式 x2+qx+p>0的解集。
解:依题意可知,方程x2+px+q=0的解为x=1或x=2
如果能够保证选择公司A比选择公司B所需费用少,则
x(35-x)/20 >1.5x (0< x <17).
整理得
x2 - 5x < 0 (0< x <17)
解得
0<x<5
所以,当一次上网时间在5小时以内时,选择公司A的费用少;

人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件

人教A版高中数学必修5第三章 不等式3.2 一元二次不等式及其解法课件
2.高考对一元二次不等式解法的考查常有以下几个 命题角度:
(1)直接考查一元二次不等式的解法; (2)与函数的奇偶性等相结合,考查一元二次不等式 的解法; (3)已知一元二次不等式的解集求参数.
[例 1] 为( )
(1)(2014·全国高考)不等式组xx+2>0, 的解集 |x|<1
ax2+bx+c<0 对一切 x∈R 都成立的条件为a<0, Δ<0.
2.可用(x-a)(x-b)>0 的解集代替xx- -ab>0 的解集,你认为 如何求不等式xx- -ab<0,xx- -ab≥0 及xx- -ab≤0 的解集?
提示:xx--ab<0⇔(x-a)(x-b)<0; xx--ab≥0⇔xx--ba≠0x-;b≥0, xx--ab≤0⇔xx--ba≠0x-. b≤0,
考点二
一元二次不等式的恒成立问题
[例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范 围; (2)若对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取 值范围.
[自主解答] (1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0;
xx≠-2ba
R
判别式 Δ=b2-4ac
Δ>0
ax2+bx+c<0
(a>0)的解集 {x|x<x1<x2}
Δ=0

续表 Δ<0

1.ax2+bx+c>0,ax2+bx+c<0(a≠0)对一切 x∈R 都成立 的条件是什么?
提示:ax2+bx+c>0 对一切 x∈R 都成立的条件为a>0, Δ<0.

3.一元二次不等式及其解法-人教A版高中数学必修五PPT全文课件

3.一元二次不等式及其解法-人教A版高中数学必修五PPT全文课件

说明:数形结合要牢记心中,但书写过程可简化。 3.一元二次不等式及其解法-人教A版高中数学必修五PPT全文课件【完美课件】
例1、解不等式 2x2-3x-2>0 另解:
解:原不等式可化为:
(2x 1)( x 2) 0
x 2或x 1 2
所以,不等式的解集是
{ x | x 1 ,或x 2} 2
3.2.1一元二次不等式及其解法
1.一元二次不等式
观察下面含未知数x的不等式: 15x2+30x-1>0 ቤተ መጻሕፍቲ ባይዱ x2+6x-1≤0.
它们有什么共同特点:
(1)含有一个未知数x; (2)未知数的最高次数为2.
定义:一般地,把只含有一个未知数, 且未知数的最高次数为2的不等式, 叫做一元二次不等式。
即:ax 2 bx c 0或 ax 2 bx c 0 (a 0)
则实数a的取值范围是 _-_2_≤_a__≤_6_
课外作业:
练习:求函数 y lg( x 2 5x 14) 的定义域。
(,2) (7,)
变式:若 y lg( x 2 5x b) 的定义域为R,求 b范围。
b (, 25 ) 4
变式:若对于x∈R,不等式mx2+2mx+3>0恒成立, 求实数m的取值范围。
思考题:
1、若方程x 2 mx n 0无实数根,则不等式
x 2 mx n 0的解集是 ______R__
2、已知不等式ax 2 bx 2 0的解是 1 x 1
2
3
则a __-_1_2___;b ___-_2____ .
3、若不等式x 2 ax (a 3) 0的解集是,
(2)计算相应的判别式; (3)当△>0时,求出相应的一元二次方程的两个 根;

高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教

高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教

课时作业20 一元二次不等式的解法时间:45分钟——基础巩固类——一、选择题1.下列不等式中是一元二次不等式的是(C)A.a2x2+2≥0 B.1x2+x<3 C.-x2+x-m≤0 D.x3-2x+1>0 解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.故选C.2.不等式6-x-2x2<0的解集是(D)解析:不等式变形为2x2+x-6>0,又方程2x2+x-6=0的两根为x1=32,x2=-2,所以不等式的解集为.故选D.3.设关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1<x<1},则a的值是(D) A.-2 B.-1C.0 D.1解析:根据题意可得,-1,1是方程(ax-1)(x+1)=0的两根,代入解得a=1.4.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足:x ⊙(x -2)<0的实数x 的取值X 围为( B )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析:x ⊙(x -2)=x (x -2)+2x +x -2<0⇒x 2+x -2<0⇒-2<x <1. 5.不等式x 2-|x |-2<0的解集是( A ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1}解析:令t =|x |,则原不等式可化为t 2-t -2<0,即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,得-2<x <2.6.已知方程2x 2-(m +1)x +m =0有两个不等正实根,则实数m 的取值X 围是( C ) A .{m |0<m ≤3-22或m ≥3+22} B .{m |m <3-22或m >3+22} C .{m |0<m <3-22或m >3+22} D .{m |m ≤3-22或m ≥3+22}解析:∵方程2x 2-(m +1)x +m =0有两个不等正实根,∴Δ=(-m -1)2-8m >0,即m 2-6m +1>0,解得m <3-22或m >3+2 2.再根据两根之和为m +12>0,且两根之积为m 2>0,解得m >0.综上可得,0<m <3-22或m >3+2 2.二、填空题7.函数f (x )=log 2(-x 2+x +12)的定义域为(-3,4).解析:由-x 2+x +12>0,得x 2-x -12<0,解得-3<x <4,所以定义域为(-3,4).8.不等式组⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0的解集是{x |x >3或x ≤-1}.解析:由⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0,得⎩⎨⎧x ≥23或x ≤-1,x >3或x <34,即x >3或x ≤-1,故不等式组的解集为{x |x >3或x ≤-1}.9.若关于x 的不等式组⎩⎪⎨⎪⎧x -1>a 2,x -4<2a 解集不是空集,则实数a 的取值X 围是-1<a <3.解析:依题意有⎩⎪⎨⎪⎧x >1+a 2,x <4+2a ,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.三、解答题10.求下列不等式的解集. (1)-2x 2+x +12<0;(2)3x 2+5≤3x ; (3)9x 2-6x +1>0.解:(1)原不等式可以化为2x 2-x -12>0.∵方程2x 2-x -12=0的解是:x 1=1-54,x 2=1+54,∴原不等式的解集是{x |x <1-54或x >1+54}.(2)原不等式变形为3x 2-3x +5≤0. ∵Δ<0,∴方程3x 2-3x +5=0无解. ∴不等式3x 2-3x +5≤0的解集是∅.∴原不等式的解集是∅.(3)∵Δ=0,∴方程9x 2-6x +1=0有两个相等实根x 1=x 2=13,∴不等式9x 2-6x +1>0的解集为{x |x ≠13}.11.已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1,(1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0.解:(1)当a =12时,不等式为f (x )=x 2-52x +1≤0,∴⎝⎛⎭⎫x -12(x -2)≤0, ∴不等式的解集为(2)∵f (x )=⎝⎛⎭⎫x -1a (x -a )≤0, 当0<a <1时,有1a>a ,∴不等式的解集为当a >1时,有1a<a ,∴不等式的解集为当a =1时,不等式的解集为{x |x =1}.——能力提升类——12.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( B )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:作出函数f (x )的图象,如右图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4.所以不等式的解集为(-1,4).13.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( A ) A .52B .72C .154D .152解析:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2. 由(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,解得a =52.14.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是(-3,1)∪(3,+∞).解析:f (1)=12-4×1+6=3,不等式即为f (x )>3.①当x ≥0时,不等式即为⎩⎪⎨⎪⎧x 2-4x +6>3,x ≥0,解得⎩⎪⎨⎪⎧x >3或x <1,x ≥0,即x >3或0≤x <1;②当x <0时,不等式即为⎩⎪⎨⎪⎧x +6>3,x <0,解得-3<x <0.综上,原不等式的解集为(-3,1)∪(3,+∞). 15.已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值X 围. (2)若函数的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数y =ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立. 当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1. 综上,0≤a ≤1. (2)因为函数的最小值为22, 所以y =ax 2+2ax +1的最小值为12,因此4a -4a 24a =12(a ≠0),解得a =12.于是不等式可化为x 2-x -34<0,即4x 2-4x -3<0,解得-12<x <32.故不等式x 2-x -a 2-a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <32.。

3.2 第一课时 一元二次不等式及其解法

3.2 第一课时 一元二次不等式及其解法

Δ =b2-4ac
Δ >0
Δ =0
Δ <0
y=ax2+bx+c(a>0)的图象
ax2+bx+c=0(a>0) 的解
ax2+bx+c>0(a>0) 的解集 ax2+bx+c<0(a>0) 的解集
有两个相异实根 x1,2=
b b2 4ac (x1<x2) 2a
{x|x<x1 或 x>x2}(即 “大于取两边”) {x|x1<x<x2}(即“小于 取中间”)
答案:(3)(-∞,-3)∪(-3,1)∪(2,+∞)
点击进入 课时作业
即时训练 3-1:(1)不等式 x 1 ≤3 的解集是
;
x
解析:(1)原不等式等价于 x 1 -3≤0⇔ 1 2x ≤0⇔ 2x 1 ≥0⇔x(2x-1)≥0,且 x
x
x
x
≠0,解得 x≥ 1 或 x<0. 2
答案:(1){x|x≥ 1 或 x<0} 2
(2)不等式 2x 1 >1 的解集是
3.2 一元二次不等式及其解法 第一课时 一元二次不等式及其解法
课标要求:1.理解一元二次方程、一元二次不等式与二次函数的关系.2.掌 握图象法解一元二次不等式.3.会用分类讨论法解含参数的一元二次不等 式.4.会解可化为一元二次不等式(组)的简单分式不等式.
自主学习
知识探究
1.一元二次不等式的相关概念 只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不 等式.一元二次不等式的一般形式是ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0), 其中a≠0,且a,b,c为常数. 使某个一元二次不等式成立的x的值叫这个一元二次不等式的 解 ,一元二次 不等式的所有解组成的集合,叫做这个一元二次不等式的 解集 .

高中数学2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)新人教版必修5

高中数学2.示范教案(3.2.1 一元二次不等式的概念和一元二次不等式解法)新人教版必修5

3.2一元二次不等式及其解法3.2.1一元二次不等式的概念和一元二次不等式解法从容说课本节课是人民教育出版社A版必修数学5第三章不等式第二大节3.2一元二次不等式及其解法的第一节课.一元二次不等式及其解法教学分为三个学时,第一个学时先由师生共同分析日常生活中的实际问题来引出一元二次不等式及其解法中的一些基本概念、求解一元二次不等式的步骤、求解一元二次不等式的程序框图.确定一元二次不等式的概念和解法,以此激发学生对科学的探究精神和严肃认真的科学态度.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生深刻理解一元二次不等式的概念,有利于一元二次不等式的解法的教学.讲述完一元二次不等式的概念后,再回归到先前的具体事例,总结一元二次不等式解法与二次函数的关系和一元二次不等式解法的步骤,由学生用表格将一元二次不等式解法与二次函数的数形关系的对应关系用图表形式表示出来;然后用一个程序框图把求解一般一元二次不等式的过程表示出来,根据这些图表,得出一元二次不等式解法与二次函数的关系两者之间的区别与联系,再辅以新的例题巩固.整个教学过程,探究一元二次不等式的概念,揭示一元二次不等式解法与二次函数的关系本质,引出一元二次不等式解法的步骤和过程,并及时加以巩固,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点理解二次函数、一元二次方程与一元二次不等式的关系.教具准备多媒体及课件,幻灯片三张三维目标一、知识与技能1.经历从实际情景中抽象出一元二次不等式模型的过程;2.通过函数图象了解一元二次不等式与二次函数、一元二次方程的联系;3.会解一次二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;2.通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辩证的世界观.教学过程导入新课师上网获取信息已经成为人们日常生活的重要组成部分,因特网服务公司(Internet Servi c e Provider)的任务就是负责将用户的计算机接入因特网,同时收取一定的费用.某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时收费1.5元;公司B的收费原则是在用户上网的第一小时内收费1.7元,第二小时内收费1.6元,以后每小时减少0.1元.(若用户一次上网时间超过17小时,按17小时计算) 一般来说,一次上网时间不会超过17小时,所以,不妨一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司A 比选择公司B 所需费用少?假设一次上网x 小时,则A 公司收取的费用为1.5x ,那么B 公司收取的费用为多少?怎样得来? 生 结果是20)35(x x -元,因为是等差数列,其首项为1.7,公差为-0.1,项数为x 的和,即.20)35()1.0(2)1(7.1x x x x x -=--+师 如果能够保证选择A 公司比选择B 公司所需费用少,则如何列式? 生 由题设条件应列式为20)35(x x ->1.5x(0<x <17),整理化简得不等式x 2-5x <0.推进新课师 因此这个问题实际就是解不等式:x 2-5x <0的问题.这样的不等式就叫做一元二次不等式,它的解法是我们下面要学习讨论的重点. 什么叫做一元二次不等式?含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是a x 2+b x+c >0或a x 2+b x+c <0(a ≠0).例如2x 2-3x-2>0,3x 2-6x <-2,-2x 2+3<0等都是一元二次不等式. 那么如何求解呢?师 在初中,我们已经学习过一元一次方程和一元一次不等式的解法,以及一次函数的有关知识,那么一元一次方程、一元一次不等式以及一次函数三者之间有什么关系呢? 思考:对一次函数y=2x-7,当x 为何值时,y=0?当x 为何值时,y <0?当x 为何值时,y >0? 它的对应值表与图象如下:x 2 2.5 3 3.5 4 4.5 5 y -3 -2 -1 01 2 3 由对应值表与图象(如上图)可知: 当x=3.5时,y=0,即2x-7=0; 当x <3.5时,y <0,即2x-7<0; 当x >3.5时,y >0,即2x-7>0.师 一般地,设直线y=a x+b 与x 轴的交点是(x 0,0),则有如下结果: (1)一元一次方程a x+b =0的解是x 0;(2)①当a >0时,一元一次不等式a x+b >0的解集是{x|x >x 0};一元一次不等式a x+b <0的解集是{x|x <x 0}.②当a <0时,一元一次不等式a x+b >0的解集是{x|x <x 0};一元一次不等式a x+b <0的解集是{x|x >x 0}.师 在解决上述问题的基础上分析,一次函数、一元一次方程、一元一次不等式之间的关系.能通过观察一次函数的图象求得一元一次不等式的解集吗? 生 函数图象与x 轴的交点横坐标为方程的根,不等式的解集为函数图象落在x 轴上方(下方)部分对应的横坐标.a >0 a <0一次函数 y=a x+b (a ≠0)的图象一元一次方程a x+b =0的解集 {x|x=a b -} {x|x=a b -} 一元一次不等式a x+b >0的解集 {x|x >a b -} {x|x <a b -} 一元一次不等式a x+b <0的解集{x|x <ab -}{x|x >ab -}师 在这里我们发现一元一次方程、一元一次不等式与一次函数三者之间有着密切的联系.利用这种联系(集中反映在相应一次函数的图象上)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?在初中学习二次函数时,我们曾解决过这样的问题:对二次函数y=x 2-5x ,当x 为何值时,y=0?当x 为何值时,y <0?当x 为何值时,y >0?当时我们又是怎样解决的呢? 生 当时我们是通过作出函数的图象,找出图象与x 轴的交点,通过观察来解决的. 二次函数y=x 2-5x 的对应值表与图象如下: x -1 0 1 2 3 4 5 6 y 6 0 -4 -6 -6 -4 0 6由对应值表与图象(如上图)可知: 当x=0或x=5时,y=0,即x 2-5x=0; 当0<x <5时,y <0,即x 2-5x <0; 当x <0或x >5时,y >0,即x 2-5x >0.这就是说,若抛物线y=x 2-5x 与x 轴的交点是(0,0)与(5,0), 则一元二次方程x 2-5x=0的解就是x 1=0,x 2=5.一元二次不等式x 2-5x <0的解集是{x|0<x <5};一元二次不等式x 2-5x >0的解集是{x|x <0或x >5}.[教师精讲]由一元二次不等式的一般形式知,任何一个一元二次不等式,最后都可以化为a x 2+b x+c >0或a x 2+b x+c <0(a >0)的形式,而且我们已经知道,一元二次不等式的解与其相应的一元二次方程的根及二次函数图象有关,即由抛物线与x 轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集. 如何讨论一元二次不等式的解集呢?我们知道,对于一元二次方程a x 2+b x+c =0(a >0),设其判别式为Δ=b 2-4ac ,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=a x 2+b x+c (a >0)与x 轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式a x 2+b x+c >0或a x 2+b x+c <0(a >0)的解集我们也分这三种情况进行讨论.(1)若Δ>0,此时抛物线y=a x 2+b x+c (a >0)与x 轴有两个交点〔图(1)〕,即方程a x 2+b x+c =0(a >0)有两个不相等的实根x 1,x 2(x 1<x 2),则不等式a x 2+b x+c >0(a >0)的解集是{x|x <x 1,或x >x 2};不等式a x 2+b x+c <0(a >0)的解集是{x|x 1<x <x 2}. (2)若Δ=0,此时抛物线y=a x 2+b x+c (a >0)与x 轴只有一个交点〔图(2)〕,即方程a x 2+b x+c =0(a >0)有两个相等的实根x 1=x 2=ab 2-,则不等式a x 2+b x+c >0(a >0)的解集是{x|x≠ab 2-};不等式a x 2+b x+c <0(a >0)的解集是.(3)若Δ<0,此时抛物线y=a x 2+b x+c (a >0)与x 轴没有交点〔图(3)〕,即方程a x 2+b x+c =0(a >0)无实根,则不等式a x 2+b x+c >0(a >0)的解集是R ;不等式a x 2+b x+c <0(a >0)的解集是.Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y=a x 2+b x+c (a >0)的图象a x 2+b x+c =0的根ab x 22.1∆≡±-=x 1=x 2=a b 2-∅a x 2+b x+c >0的解集 {x|x <x 1或x >x 2}{x|x≠ab 2-}Ra x 2+b x+c <0的解集 {x|x 1<x <x 2}∅ ∅ 对于二次项系数是负数(即a <0)的不等式,可以先把二次项系数化成正数,再求解. [知识拓展]【例1】 解不等式2x 2-5x-3>0.生 解:因为Δ>0,2x 2-5x-3=0的解是x 1=-21,x 2=3.所以不等式的解集是{x|x <21-,或x>3}.【例2】 解不等式-3x 2+15x >12.生 解:整理化简得3x 2-15x+12<0.因为Δ>0,方程3x 2-15x+12=0的解是x 1=1,x 2=4,所以不等式的解集是{x|1<x <4}.【例3】 解不等式4x 2+4x+1>0.生 解:因为Δ=0,方程4x 2+4x+1=0的解是x 1=x 2=21-.所以不等式的解集是{x|x≠21-}.【例4】 解不等式-x 2+2x-3>0.生 解:整理化简,得x 2-2x+3<0.因为Δ<0,方程x 2-2x+3=0无实数解,所以不等式的解集是∅.师 由上述讨论及例题,可归纳出解一元二次不等式的程序吗? 生 归纳如下:(1)将二次项系数化为“+”:y=a x 2+b x+c >0(或<0)(a >0). (2)计算判别式Δ,分析不等式的解的情况:①Δ>0时,求根x 1<x 2,⎩⎨⎧≠.,0;,02121x x x y x x x x y <<则<若>或则>若②Δ=0时,求根x 1=x 2=x 0,⎪⎩⎪⎨⎧==∅∈≠.,0;,0;,000x x y x y x x y 则若则<若的一切实数则>若③Δ<0时,方程无解,⎩⎨⎧∅∈≤∈.,0;,0x y R x y 则若则>若(3)写出解集.师 说的很好.下面我们用一个程序框图把求解一元二次不等式的过程表示出来,请同学们将判断框和处理框中的空格填充完整. [学生活动过程][方法引导]上述过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用与新课程的理念.该过程中的思考、观察、探究起到层层铺设的作用,激起学生学习的兴趣与勇于探索的精神. 课堂小结1.一元二次不等式:含有一个未知数并且未知数的最高次数是二次的不等式叫做一元二次不等式,它的一般形式是a x2+b x+c>0或a x2+b x+c<0(a≠0).2.求解一元二次不等式的步骤和解一元二次不等式的程序.布置作业1.完成第90页的练习.2.完成第90页习题3.2第1题.板书设计一元二次不等式的概念和一元二次不等式解法多媒体演示区一元二次不等式概念一元二次不等式解题步骤例题。

人教A版高中数学必修五3.2一元二次不等式及其解法课件

人教A版高中数学必修五3.2一元二次不等式及其解法课件
(a > 0)的图象
0
y
x1 O x2 x
0
y
O x1 =x2 x
0
y
Ox
方程ax2 + bx + c = 0 有两个不等
(a > 0)的根
实根 x1 < x2
有两个相等 实根 x1 = x2
ax2 + bx + c > 0 (a > 0)的解集
ax2 + bx + c < 0 (a > 0)的解集
所以,当一次上网时间在5小时
y
以内(含恰好5小时)时,选择公 司A的费用小于或等于选择公司B
O 5x
的费用;超过5小时,选择公司B的
费用少.
不等式 ax2 + bx + c > 0或ax2 + bx + c < 0(a > 0)
的解集是什么?
完成下表:
Δ= b2 - 4ac
y = ax2 + bx + c
x
x
<
-2或x
>
1 3
.
【规律总结】 解一元二次不等式的一般步骤:
(1)化成不等式的标准情势: ax2 + bx + c > 0或ax2 + bx + c < 0(a > 0);
(2)求方程 ax2 + bx + c = 0(a > 0) 的根, 并画出对应的二次函数 y = ax2 + bx + c(a > 0) 的图象;
5.解下列不等式: (1)(1 - x)(1 + x)> 0;(2)1 - x - 4x2 > 0; 23

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a

高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A版必修5

高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A版必修5

高中数学第三章不等式3.2.1一元二次不等式及其解法练习(含解析)新人教A 版必修5知识点一 解一元二次不等式1.不等式4x 2-11x +6≤0的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x ≤2 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤34或x >2 D .{}x |x <2答案 A解析 原不等式可化为(4x -3)(x -2)≤0, 解得34≤x ≤2.故选A .2.不等式3x 2-x +2<0的解集为( ) A .∅ B .RC .⎩⎪⎨⎪⎧x ⎪⎪⎪ -13<x <12 D .x ∈R ⎪⎪⎪x ≠16答案 A解析 ∵Δ=-23<0,且二次函数y =3x 2-x +2的图象开口向上,∴3x 2-x +2<0的解集为∅.3.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≥5或x ≤-1} B .{x |x >5或x <-1} C .{x |-1<x <5} D .{x |-1≤x ≤5} 答案 B解析 不等式x 2-2x -5>2x 可化为x 2-4x -5>0,解得x >5或x <-1. 4.不等式0≤x 2-2x -3<5的解集为________. 答案 {x |-2<x ≤-1或3≤x <4} 解析 由x 2-2x -3≥0得x ≤-1或x ≥3; 由x 2-2x -3<5得-2<x <4, ∴-2<x ≤-1或3≤x <4.∴原不等式的解集为{x |-2<x ≤-1或3≤x <4}.知识点二 根与系数关系的应用5.若一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2} 答案 D解析 由题意知,-ba =1,c a=-2, ∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.6.若不等式2x 2+mx +n >0的解集是{x |x >3或x <-2},则m ,n 的值分别是( ) A .2,12 B .2,-2 C .2,-12 D .-2,-12 答案 D解析 由题意知-2,3是方程2x 2+mx +n =0的两个根,所以-2+3=-m 2,-2×3=n2,∴m =-2,n =-12.知识点三 一元二次不等式的应用7.若不等式mx 2+2mx -4<2x 2+4x 的解集为R ,则实数m 的取值范围是( ) A .(-2,2) B .(-2,2]C .(-∞,-2)∪[2,+∞) D.(-∞,2) 答案 B解析 ∵mx 2+2mx -4<2x 2+4x , ∴(2-m )x 2+(4-2m )x +4>0. 当m =2时,4>0,x ∈R ;当m <2时,Δ=(4-2m )2-16(2-m )<0, 解得-2<m <2.此时,x ∈R . 综上所述,-2<m ≤2.8.不等式lg x 2<(lg x )2的解集是________. 答案 {x |x >100或0<x <1}解析 不等式lg x 2<(lg x )2, 可化为(lg x )2-2lg x >0,解得lg x >2或lg x <0,即x >100或0<x <1.易错点一 忽略二次项系数的正负9.求一元二次不等式-x 2+5x -4>0的解集.易错分析 本题易不注意二次项系数为负数错解为x <1或x >4. 解 原不等式等价于x 2-5x +4<0,因为方程x 2-5x +4=0的根为x 1=1,x 2=4, 所以原不等式的解集为{x |1<x <4}.易错点二 忽略不等式对应方程根的大小10.解关于x 的不等式21x 2+4ax -a 2<0.易错分析 当一元二次不等式解集的端点值(即对应方程的根)无法比较大小时,要注意分类讨论.本题易错解为-a 3<x <a7.解 原不等式等价于⎝ ⎛⎭⎪⎫x +a 3⎝ ⎛⎭⎪⎫x -a 7<0. ①当a >0时,a 7>-a3,原不等式的解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪ -a3<⎭⎪⎬⎪⎫x <a7; ②当a <0时,a 7<-a3,原不等式的解集为⎩⎪⎨⎪⎧ x ⎪⎪⎪ a 7<x ⎭⎪⎬⎪⎫<-a3; ③当a =0时,原不等式的解集为∅.一、选择题1.不等式4x 2-12x +9≤0的解集是( ) A .∅ B .RC .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32 D .⎩⎨⎧⎭⎬⎫32答案 D解析 原不等式可化为(2x -3)2≤0,故x =32.故选D .2.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个 答案 D解析 根据一元二次不等式的定义知①②正确.3.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集是( )A .{x |-1≤x ≤1} B.{x |-2≤x ≤2} C .{x |-2≤x ≤1} D.{x |-1≤x ≤2} 答案 A解析 原不等式可化为⎩⎪⎨⎪⎧x ≤0,x +2≥x 2或⎩⎪⎨⎪⎧x >0,-x +2≥x 2,解得-1≤x ≤0或0<x ≤1,即-1≤x ≤1.故选A .4.设集合M ={x |x 2-2x -3<0,x ∈Z },则集合M 的真子集个数为( ) A .8 B .7 C .4 D .3 答案 B解析 由x 2-2x -3<0得-1<x <3,∴M ={0,1,2}.故选B . 5.不等式x 2-|x |-2<0的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1} 答案 A解析 令t =|x |,则原不等式可化为t 2-t -2<0, 即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,解得-2<x <2. 二、填空题6.已知全集U =R ,A ={x |x 2-1≥0},则∁U A =________.答案 {x |-1<x <1}解析 ∁U A ={x |x 2-1<0}={x |-1<x <1}. 7.不等式-1<x 2+2x -1≤2的解集是________. 答案 {x |-3≤x <-2或0<x ≤1}解析 ∵⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,∴-3≤x <-2或0<x ≤1.8.已知关于x 的不等式ax 2-bx +c >0的解集是⎝ ⎛⎭⎪⎫-12,2,对于系数a ,b ,c 有下列说法:(1)a >0;(2)b >0;(3)c >0;(4)a +b +c >0; (5)a -b +c >0.其中正确的序号是________. 答案 (3)(5)解析 依题意有a <0且b a =2-12=32>0,c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,故b <0,c >0,a =-c ,b =-32c .令f (x )=ax 2-bx +c ,则f (1)=a -b +c =32c ,f (-1)=a +b +c =-32c ,所以f (1)>0,f (-1)<0,所以a -b +c >0,a +b +c <0.故(3)(5)正确. 三、解答题 9.解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解 (1)原不等式可化为2x 2-3x -2<0, ∴(2x +1)(x -2)<0.故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-12<x <2.(2)原不等式可化为2x 2-x -1≥0, ∴(2x +1)(x -1)≥0,故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-12或x ≥1.10.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,求-cx 2+2x -a >0的解集.解 由ax 2+2x +c >0的解集为-13,12,知a <0,且-13和12是方程ax 2+2x +c =0的两个根.由根与系数的关系,得⎩⎪⎨⎪⎧-13×12=c a,-13+12=-2a ,解得⎩⎪⎨⎪⎧a =-12,c =2.所以-cx 2+2x -a >0,即x 2-x -6<0,解得-2<x <3.所以-cx 2+2x -a >0的解集为{x |-2<x <3}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知集合M ={x |x 2-3x -28≤0},N ={x |x 2-x -6>0},则M ∩N 为( )
A .{x |-4≤x <-2或3<x ≤7}
B .{x |-4<x ≤-2或3≤x <7}
C .{x |x ≤-2或x >3}
D .{x |x <-2或x ≥3}
解析:M ={x |x 2-3x -28≤0}={x |-4≤x ≤7},
N ={x |x 2-x -6>0}={x |x <-2或x >3},
∴M ∩N ={x |-4≤x <-2或3<x ≤7}.
答案:A
2.(2012·兖州高二检测)不等式-x 2-5x +6≤0的解集为( )
A .{x |x ≥6或x ≤-1}
B .{x |-1≤x ≤6}
C .{x |-6≤x ≤1}
D .{x |x ≤-6或x ≥1}
解析:由-x 2-5x +6≤0,得x 2+5x -6≥0,
即(x -1)(x +6)≥0,∴x ≥1或x ≤-6.
答案:D
3.(2012·海淀高二检测)函数f (x )=lg 1-x x -4
的定义域为( ) A .(1,4)
B .[1,4)
C .(-∞,1)∪(4,+∞)
D .(-∞,1]∪(4,+∞) 解析:由函数有意义知1-x x -4
>0,即(1-x )(x -4)>0. 解得:1<x <4.
答案:A
4.函数y =x 2-x -6的判别式Δ________0,该图象与x 轴有________个交点,其交点横坐标为________.不等式x 2-x -6>0的解集是________,不等式x 2-x -6<0的解集是________.
答案:> 两 -2、3 {x |x <-2或x >3}
{x |-2<x <3}
5.不等式(x +1)(2-x )≤0的解集为________.
解析:方程(x +1)(2-x )=0的两根为x 1=-1,x 2=2,函数y =(x +1)(2-x )=-x 2+x
+2.
由图象可知不等式(x+1)(2-x)≤0的解集为
{x|x≤-1或x≥2}.
答案:{x|x≤-1或x≥2}
6.解关于x的不等式x2-x-a(a-1)>0.
解:原不等式可以化为:(x+a-1)(x-a)>0,
∴当a>-(a-1)即a>1
2
时,原不等式的解集为{x|x>a或x<1-a};
当a=-(a-1)即a=1
2
时,
由(x-1
2)
2>0,得原不等式的解集为
{x|x≠1 2}.
当a<-(a-1)即a<1
2
时,原不等式的解集为{x|x<a或x>1-a}.。

相关文档
最新文档