(完整版)历届高考中的二项式定理试题汇编大全
二项式定理高考题(含答案)精选全文
![二项式定理高考题(含答案)精选全文](https://img.taocdn.com/s3/m/dc01ed44a66e58fafab069dc5022aaea988f4102.png)
精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。
二项式定理历年高考试题荟萃
![二项式定理历年高考试题荟萃](https://img.taocdn.com/s3/m/c474d004f011f18583d049649b6648d7c0c70850.png)
二项式定理历年高考试题荟萃1、(1+2x)5的展开式中x2的系数是10.2、已知展开式为,求a+b=2+3=5.3、已知展开式为,求n=6.4、(1+2x2)(1+x8)的展开式中常数项为1.5、展开式中含的整数次幂的项的系数之和为63.6、(1+2x2)(x-1)8的展开式中常数项为-256.7、(1+x)8的二项展开式中常数项是1.8、(x2+1)6的展开式中常数项是1.9、若展开式中系数为5,则n=3.10、若(2x3+1)n的展开式中含有常数项,则最小的正整数n等于3.11、(x+1)9展开式中x3的系数是84.12、若展开式的各项系数之和为32,则n=5,其展开式中的常数项为1.13、(1+2x)6的展开式中的系数为1,12,48,96,80,32,6,1.14、a1=-32,a2=80,a3=-80,a4=40,a5=-10.15、(1+2x)3(1-x)4展开式中x2的系数为-12.16、展开式为1+7x+21x2+35x3+35x4+21x5+7x6+x7,常数项为1,各项系数之和为119.17、(x+1)5的二项展开式中x2的系数是10.18、(1+x3)(x+1)6展开式中的常数项为1.19、若x>0,则(2+x)(2-x)-4(x-1)=0.20、已知展开式中x8的系数小于120,则k=2.21、b3=2b4,n=7.22、(x+1)5的二项展开式中x3的系数为10.23、已知(1+x+x2)(x+1)n的展开式中没有常数项,n=4.24、展开式中x的系数为0,∴(1+2x)2展开式中常数项为-4.解析:1.将数字和符号之间加上空格,使得文章更加清晰易读。
2.删除明显有问题的第3段,因为其中的公式无法正确显示。
3.对每段话进行小幅度改写,使得表达更加准确简洁。
改写后的文章如下:3、-256解析:$(1-x)^5=a_2^3+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5$。
二项式定理高考试题及其答案总
![二项式定理高考试题及其答案总](https://img.taocdn.com/s3/m/0f7d580dad02de80d4d84091.png)
二项式定理历年高考试题荟萃(一)一、选择题 ( 本大题共 58 题)1、二项式的展开式中系数为有理数的项共有………()A.6项B.7项C.8项D.9项2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…()①存在n∈N,展开式中有常数项;②对任意n∈N,展开式中没有常数项;③对任意n∈N,展开式中没有x的一次项;④存在n∈N,展开式中有x的一次项.上述判断中正确的是(A)①与③(B)②与③(C)②与④(D)④与①3、在(+x2)6的展开式中,x3的系数和常数项依次是…………()(A)20,20 (B)15,20(C)20,15 (D)15,154、(2x3-)7的展开式中常数项是………………………………………………………()A.14B.-14 C.42 D.-425、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………()(A)28 (B)38 (C)1或38 (D)1或286.若(+)n展开式中存在常数项,则n的值可以是…………()A.8B.9C.10D.127 .(2x+)4的展开式中x3的系数是……………………………………()A.6B.12C.24D.488、(-)6的展开式中的常数项为…………………………………()A.15B.-15 C.20 D.-209、(2x3-)7的展开式中常数项是…………………………………………()A.14B.-14 C.42 D.-4210、若(+)n展开式中存在常数项,则n的值可以是………………()A.8B.9C.10D.1211、若展开式中含项的系数与含项的系数之比为-5,则n等于A.4 B.6 C.8D.1012、的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项13.(x-y)10的展开式中x6y4项的系数是(A)840 (B)-840 (C)210 (D)-21014.的展开式中,含x的正整数次幂的项共有()A.4项 B.3项 C.2项 D.1项15、若展开式中含的项的系数等于含x的项的系数的8倍,则n等于()A.5B.7C.9D.1116、3.若的展开式中的系数是( )A B C D17、在的展开式中的系数是()A.-14B.14C.-28 D.2818、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)19、如果的展开式中各项系数之和为128,则展开式中的系数是()(A)7 (B)(C)21 (D)20、设k=1,2,3,4,5,则(x+2)5的展开式中x k的系数不可能是(A)10 (B)40 (C)50 (D)8021、7.在()n的二项展开式中,若常数项为60,则n等于A.3B.6C.9D.1222、已知()的展开式中第三项与第五项的系数之比为,则展开式中常数项是(A)-1 (B)1 (C)-45 (D)4523、的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项24、在二项式(x+1)6的展开式中,含x3的项的系数是(A)15 (B)20 (C)30 ( D)4025、(若多项式,则(A)9 (B)10 (C)-9 (D)-1026、(的值为()A.61 B.62 C.63D.6427、在(x-)2006的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于A.23008B.-23008C.23009D.-2300928.在()24的展开式中,x的幂的指数是整数的项共有A.3项 B.4项 C.5项 D.6项29、的展开式中含x的正整数指数幂的项数是(A)0 (B)2 (C)4 (D)630、在(x-)的展开公式中,x的系数为(A)-120 (B)120 (C)-15 (D)1531、(2x-3)5的展开式中x2项的系数为(A)-2160 (B)-1080 (C)1080 (D)216032.若(ax-1)5的展开式中x3的系数是80,则实数a的值是A.-2 B.2 C.D.233、的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B)-162 (C)162 (D)54034、已知的展开式中第三项与第五项的系数之比为-,其中i2=-1,则展开式中常数项是(A)-45i (B)45i (C)-45(D)4535.若对于任意的实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为A.3B.6C.9D.136、在的二项展开式中,若只有的系数最大,则A.8B. 9C.10 D.1137、.的展开式中,常数项为15,则n=A.3B.4C.5D.638、若(x+)n展开式的二项式系数之和为64,则展开式的常数项为A.10B.20C.30D.12039、.已知(+)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于A.4B.5C.6D.740、设(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a0+a1+a2+…+a11的值为A.-2B.-1 C.1 D.241、展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 8442、如果的展开式中含有非零常数项,则正整数n的最小值为A.3B.5C.6D.1043、如果的展开式中含有非零常数项,则正整数n的最小值为A.10B.6C.5D.344、((2x+1)6展开式中x2的系数为(A)15 (B)60 (C)120(D)24045、(-)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)220 46、在的展开式中,含的项的系数是(A)-15 (B)85 (C)-120 (D)274 47、展开式中的常数项为A.1 B.C.D.48、在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是(A)-15 (B)85 (C)-120 (D)27449、设则中奇数的个数为()A.2 B.3 C.4D.550、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1251、展开式中的常数项为A.1 B.46 C.4245 D.424652、的展开式中的系数是()A. B. C.3 D .453、的展开式中含的项的系数为(A)4 (B)6 (C)10 (D)1254、的展开式中的系数为()A.10 B.5 C.D.155、的展开式中的系数是()A. B. C.3 D .456、设则中奇数的个数为()A.2 B.3 C.4D.557、若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( )A.6B.7C.8D.958、的展开式中常数项是A.210B.C.D.-105二项式定理历年高考试题荟萃(二)一、填空题 ( 本大题共 55 题)1、在二项式(x-1)11的展开式中,系数最小的项的系数为.(结果用数值表示)2、展开式中的常数项是.3、在二项式(x-1)11的展开式中,系数最小的项的系数为 .(结果用数值表示)4、在代数式(4x2-2x-5)(1+)5的展开式中,常数项为______________.5、在(x-)6的二项展开式中,常数项为 .6、.(x+1)10的二项展开式中x3的系数为.7、若在()n的展开式中,第4项是常数项,则n= .8、(x2+1)(x-2)7的展开式中x3项的系数是.12、(x2-)9展开式中x9的系数是.17.若(1-2x)2004=a0+a1x+a2x2+…+a2004x2004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)= .(用数字作答)18、已知a为实数,(x+a)10展开式中x7的系数是-15,则a= .19、若在(1+ax)5展开式中x3的系数为-80,则a= .20、的展开式中各项系数的和是128,则展开式中x5的系数是 .(以数字作答)21.(x2+)9的展开式中的常数项为(用数字作答).22、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示)23、(x-)8展开式中x5的系数为 .24、若在(1+ax)5展开式中x3的系数为-80,则a= .25、若(x3+)n的展开式中的常数项为84,则n= .26、若(x+-2)n的展开式中常数项为-20,则自然数n=.27、(x-)8展开式中x5的系数为 .28、如图,在由二项式系数所构成的杨辉三角形中,第行中从左至右第14与第15个数的比为2∶3.29、.在(1+x)+(1+x)2+…+(1+x)6的展开式中,x2项的系数是.(用数字作答)30、二项式的展开式中常数项为__________(用数字作答).31、. 若,且,则.32、(展开式中的常数项是(用数字作答).33、的展开式中,常数项为。
5.二项式定理--全国卷2013-2017年高考汇编
![5.二项式定理--全国卷2013-2017年高考汇编](https://img.taocdn.com/s3/m/2a7bf14ecaaedd3382c4d32f.png)
全国卷2013-2017年高考汇编---5.二项式定理
5.二项式定理
【2017全国1,理6】621(1)(1)x x +
+展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 【2017全国3,理4】()()52x y x y +-的展开式中x 3y 3的系数为( )
A .80-
B .40-
C .40
D .80
【2016全国1,理14】
5(2x 的展开式中,x 3的系数是 .(用数字填写答案)
【2015全国1,理10】25()x x y ++的展开式中,52x y 的系数为( )
(A )10 (B )20 (C )30(D )60
【2015全国2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.
【2014全国1,理13】8()()x y x y -+的展开式中22x y 的系数
为 .(用数字填写答案)
【2014全国2,理13】()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)
【2013全国1,理9】设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).
A .5
B .6
C .7
D .8
【2014全国2,理5】已知(1+ɑx )(1+x)5的展开式中x 2的系数为5,则ɑ=
(A )-4
(B )-3 (C )-2 (D )-1。
(完整word版)高考数学二项式定理专题复习专题训练)
![(完整word版)高考数学二项式定理专题复习专题训练)](https://img.taocdn.com/s3/m/1e1009a34b73f242336c5ffd.png)
二项式定理1.二项式定理:)*()(011111100N n b a C b a C b a C b a C b a n n n n n n n nn n n ∈++⋅⋅⋅++=+---. 2.二项式定理的说明:(1)()n a b +的二项展开式是严格按照a 的降次幂(指数从n 逐项减到0)、b 的升次幂(数从0逐项减到n )排列的,其顺序不能更改,且各项关于a 、b 的指数之和等于n 。
所以()n a b +与()n b a +的二项展开式是不同的。
(3)二项式项数共有(1)n +项,是关于a 与b 的齐次多项式。
(4)二项式系数:展开式中各项的系数为1-r n C ,1,...,3,2,1+=n r . (5)二项式通项:展开式中的第r 项记作r T ,)(1,...,3,2,1111+==--+-n r b a C T r r n r n r ,共有(1)n +项。
(6)正确区分二项式系数与项的系数:二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
如:nn r r n n n n n n n n b C b a C b a C b a C a C b a )()()()()(----n r 2221110+⋅⋅⋅++⋅⋅⋅+++=---的 第2项的二次项系数为1n C ,而第2项的系数为1n C -.(7)常见二项式:令1,,a b x ==)*()1(111100N n x C x C x C x C x nn n n n n nn n ∈++⋅⋅⋅++=+--; 令1,,a b x ==-)*()1()1(221100N n x C x C x C x C x n n n n n nn n ∈-+⋅⋅⋅++-=-. 3.二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等:即kn n k n n n n n n n C C C C C C --=⋅⋅⋅==,,,110 .(2)二项式系数和:令1a b ==,则二项式系数的和为:n n n n n n n C C C C 2110=++⋅⋅⋅++-,变形有:12321-=+⋅⋅⋅+++n n n n n n C C C C . (3)15314202-=⋅+⋅⋅+++=⋅+⋅⋅+++n n n nn n n C C C C C C ; (4)求奇数项的系数和与偶数项的系数和: 已知n n n x a x a x a x a a x a 22332102...)(2++++=+,则奇数项的系数和:n a a a a 2420...+++=_______________________________; 偶数项的系数和:12531...-+++n a a a a =_______________________________; (5)二项式系数的最大项:如果二项式的指数n 是偶数时,则中间项为第)(12+n项的二项式系数2nn C 取得最大值;如果二项式的指数n 是奇数时,则中间项有两项,分别为第21+n 项和第23+n 项,对应的二项式系数12n n C -,12n nC+同时取得最大值。
二项式定理历年高考试题荟萃
![二项式定理历年高考试题荟萃](https://img.taocdn.com/s3/m/ea9756f6db38376baf1ffc4ffe4733687f21fc63.png)
二项式定理历年高考试题荟萃圆梦教育中心二项式定理历年高考试题一、填空题 ( 本大题共 24 题, 共计 120 分)1、 (1+2x)5得展开式中x2得系数就是。
(用数字作答)2、得展开式中得第5项为常数项,那么正整数得值就是、3、已知,则( 得值等于。
4、(1+2x2)(1+)8得展开式中常数项为。
(用数字作答)5、展开式中含得整数次幂得项得系数之与为。
(用数字作答)6、(1+2x2)(x-)8得展开式中常数项为。
(用数字作答)7、得二项展开式中常数项就是。
(用数字作答)、8、 (x2+)6得展开式中常数项就是。
(用数字作答)9、若得二项展开式中得系数为,则。
(用数字作答)10、若(2x3+)n得展开式中含有常数项,则最小得正整数n等于。
11、(x+)9展开式中x3得系数就是。
(用数字作答)12、若展开式得各项系数之与为32,则n= 。
其展开式中得常数项为。
(用数字作答)13、得展开式中得系数为。
(用数字作答)14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 。
15、(1+2x)3(1-x)4展开式中x2得系数为、16、得展开式中常数项为 ; 各项系数之与为、(用数字作答)17、 (x)5得二项展开式中x2得系数就是____________、(用数字作答)18、 (1+x3)(x+)6展开式中得常数项为_____________、19、若x>0,则(2+)(2-)-4(x-)=______________、20、已知(1+kx2)6(k就是正整数)得展开式中,x8得系数小于120,则k=______________、21、记(2x+)n得展开式中第m项得系数为b m,若b3=2b4,则n =、22、 (x+)5得二项展开式中x3得系数为_____________、(用数字作答)23、已知(1+x+x2)(x+)n得展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________、24、展开式中x得系数为、二项式定理历年高考试题荟萃答案一、填空题 ( 本大题共 24 题, 共计 102 分)1、40解析:T3=C(2x)2,∴系数为22·C=40、2、解:∵得展开式中得第5项为,且常数项,∴ ,得3、-256解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5、令x=1,则有a0+a1+a2+a3+a4+a5=0, 即(a0+a2+a4)+(a1+a3+a5)=0; ①令x=-1,则有a0-a1+a2-a3+a4-a5=25,即(a0+a2+a4)-(a1+a3+a5)=25、②联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256、4、57解析:1×1+2×=57、5、答案:72解析:∵T r+1= (=,∴r=0,4,8时展开式中得项为整数次幂,所求系数与为++=72、6、答案:-42解析:得通项T r+1= =,∴(1+2x2)展开式中常数项为=-42、7、8、15解析:T r+1=x2(6-r)x-r=x12-3r,令12-3r=0,得r=4,∴T4==15、9、答案:2解析:∵=,∴a=2、10、答案:7解析:T r+1=C(2x3)n-r()r=2Cxx=2Cx令3n-r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7、11、84 T r+1=,∴9-2r=3∴r=3、∴84、12、5 10 解析:令x=1可得展开式中各项系数之与为2n=32、∴n=5、而展开式中通项为T r+1=(x2)r()5-r=x5r-15、令5r-15=0,∴r=3、∴常数项为T4=C35=10、13、84 由二项式定理得(1-)7展开式中得第3项为T3=·(-)2=84·,即得系数为84、14、31 解析:由二项式定理中得赋值法,令x=0,则a0=(-2)5=-32、令x=1,则a0+a1+a2+a3+a4+a5=-1、∴a1+a2+a3+a4+a5=-1-a0=31、15、-6解析:展开式中含x2得项m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·14(-x)0=6x2-24x2+12x2=展开式中x2得系数为-6x2,∴系数为-6、16、10 32 展开式中通项为T r+1=(x2)5-r()r=,其中常数项为T3==10;令x=1,可得各项系数之与为25=32、17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2得系数为40、18、答案:35 (x+)6展开式中得项得系数与常数项得系数之与即为所求,由T r+1=·()r=·x6-3r,∴当r=2时,=15、当r=3时,=20、故原展开式中得常数项为15+20=35、19、答案:-23 原式=4-33-4+4=-23、20、答案:1解析:x8得系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1、21、5 记(2x+)n得展开式中第m项为T m=a n-m+1b m-1=·(2x)n-m+1·()m-1,则b m=·2n-m+1、又∵b3=2b4,∴·2n-2=2×·2n-3=,解得n=5、22、答案:10 ·x4·=5×2=10、23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,由F r+1=x n-r()r=x n-4r、∵2≤n≤8,可以验证n=5时成立、24、2 展开式中含x得项n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,∴展开式中x得系数为2。
(完整版)二项式定理练习题
![(完整版)二项式定理练习题](https://img.taocdn.com/s3/m/ad3074c3ee06eff9aff807ef.png)
二项式定理练习题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于( )A .4B .9C .10D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10B .11C .12D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3D .7 5. (1。
05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1。
24C .1。
33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是( )A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nx x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为( )A .6π或3πB .6π或65πC .3π或32πD .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.92)21(xx -展开式中9x 的系数是 。
二项式定理高考试题汇编
![二项式定理高考试题汇编](https://img.taocdn.com/s3/m/130e3055852458fb770b56f0.png)
二项式定理高考试题汇编一、填空题 ( 本大题共 24 题, 共计 120 分)1、 (1+2x)5的展开式中x2的系数是。
(用数字作答)2、nxx⎪⎭⎫⎝⎛-1的展开式中的第5项为常数项,那么正整数的值是 .3、已知,则(的值等于。
4、的展开式中常数项为。
(用数字作答)5、展开式中含的整数次幂的项的系数之和为。
(用数字作答)6、的展开式中常数项为。
(用数字作答)7、921⎪⎭⎫ ⎝⎛+x x 的二项展开式中常数项是 。
(用数字作答).8、621⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是 。
(用数字作答)9、若的二项展开式中的系数为25,则。
(用数字作答)10、若(2x 3+)n 的展开式中含有常数项,则最小的正整数n 等于 。
11、91⎪⎭⎫ ⎝⎛+x x 展开式中3的系数是 。
(用数字作答)12、若nxx⎪⎭⎫⎝⎛+221展开式的各项系数之和为32,则n= 。
其展开式中的常数项为。
(用数字作答)13、721⎪⎭⎫⎝⎛-x的展开式中21x的系数为。
(用数字作答)14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x,则a1+a2+a3+a4+a5= 。
15、(1+2x)(1-x)展开式中x2的系数为 .16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)17、52⎪⎭⎫⎝⎛-xx的二项展开式中的系数是____________.(用数字作答)18、()62311⎪⎭⎫ ⎝⎛++x x x 展开式中的常数项为_____________.19、若x >0,则(412x +233)(412x -233)-214-x (x -21x )=______________.20、已知(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,则k=______________.21、记nx x ⎪⎭⎫ ⎝⎛+12的展开式中第m 项的系数为b m ,若b 3=2b 4,则n = .22、52⎪⎭⎫ ⎝⎛+x x 的二项展开式中的系数为_____________.(用数字作答)23、已知(1+x+x2)(x+n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.24、展开式中x的系数为_____________.。
二项式定理高考题(带答案)精选全文
![二项式定理高考题(带答案)精选全文](https://img.taocdn.com/s3/m/9ea0f3a6d4bbfd0a79563c1ec5da50e2524dd19a.png)
可编辑修改精选全文完整版1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C.情况,尤其是两个二项式展开式中的r 不同.7.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为A .80-B .40-C .40D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________. 【答案计数.9.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = .【答案】4【解析】试题分析:由二项式定理的通项公式()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =. 【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5-的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.20.(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-221.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A23.(2016年天津高考)281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I 高考)5(2x 的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。
考向38 二项式定理全归纳(十五大经典题型)(原卷版)
![考向38 二项式定理全归纳(十五大经典题型)(原卷版)](https://img.taocdn.com/s3/m/4686daea0d22590102020740be1e650e52eacfe1.png)
考向38二项式定理全归纳经典题型一:求二项展开式中的参数 经典题型二:求二项展开式中的常数项 经典题型三:求二项展开式中的有理项 经典题型四:求二项展开式中的特定项系数 经典题型五:求三项展开式中的指定项经典题型六:求几个二(多)项式的和(积)的展开式中条件项系数 经典题型七:求二项式系数最值 经典题型八:求项的系数最值经典题型九:求二项展开式中的二项式系数和、各项系数和 经典题型十:求奇数项或偶数项系数和 经典题型十一:整数和余数问题 经典题型十二:近似计算问题 经典题型十三:证明组合恒等式 经典题型十四:二项式定理与数列求和 经典题型十五:杨辉三角(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).(2022·浙江·高考真题)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.知识点1、二项式展开式的特定项、特定项的系数问题(1)二项式定理 一般地,对于任意正整数,都有:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的r n r rnC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=,其中的系数r n C (r =0,1,2,…,n )叫做二项式系数, (2)二项式()n a b +的展开式的特点: ①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).(3)两个常用的二项展开式:①()②(4)二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯ 公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是;②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项和()n b a +的二项展开式的第r +1项是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是(只需把b -看成b 代入二项式定理). 2、二项式展开式中的最值问题 (1)二项式系数的性质①每一行两端都是1,即0nn n C C =;其余每个数都等于它“肩上”两个数的和,即nn b a )(+011()(1)(1)n n n r r n r rn n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅*N n ∈122(1)1n r r n n n n x C x C x C x x +=++++++rn C r n r r n C a b -r n r r n C b a -1(1)r r n r rr n T C a b -+=-11m m m n nn C C C -+=+. ②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n mn n C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122rn n n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅=.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T ++的二项式系数12n nC-,12n nC+相等且最大.(2)系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来. 知识点3、二项式展开式中系数和有关问题 常用赋值举例:(1)设,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令,可得:②令11a b ==,,可得:,即:(假设为偶数),再结合①可得: .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++.③奇数项的系数和与偶数项的系数和()011222nn n n r n r rn nnn n n n a b C a C a b C a b C a b C b ---+=++++++1a b ==012n n n n n C C C =+++()012301nnn n n nn C C C C C =-+-+-02131n n n n n n n n C C C C C C -+++=+++n 0213112n n n n n n n n n C C C C C C --+++=+++=(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +-+++=;偶数项的系数和为135(1)(1)2f f a a a --+++=. (可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配) (ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a --+++=;偶数项的系数和为135(1)(1)2f f a a a +-+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配) 若1210121()n n n n f x a a x a x a x a x --=+++++,同理可得.注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.1、求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围().(1)第项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程. 2、解题技巧:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-,偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --.经典题型一:求二项展开式中的参数0,1,2,,k n =m1.(2022·湖南·模拟预测)已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为160-,则实数=a ( ) A .2 B .-2C .8D .-82.(2022·全国·高三专题练习)62ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为-160,则a =( )A .-1B .1C .±1D .23.(2022·全国·高三专题练习)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ( )A .2B .-2C .2或-2D .4经典题型二:求二项展开式中的常数项4.(2022·广东广州·高三阶段练习)若2nx x ⎛⎝的展开式中第2项与第6项的二项式系数相等,则该展开式中的常数项为( ) A .160-B .160C .1120-D .11205.(2022·福建省漳州第一中学模拟预测)已知53a x x ⎛⎝(a 为常数)的展开式中所有项系数的和与二项式系数的和相等,则该展开式中的常数项为( ) A .-90B .-10C .10D .906.(2022·山东青岛·高三开学考试)在62x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .80B .80-C .160D .160-7.(2022·全国·高三专题练习)已知二项式1nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数和为64,则展开式中常数项为( ) A .120-B .20-C .15D .20经典题型三:求二项展开式中的有理项8.(2022·江苏南通·高三阶段练习)21031(2x x的二项展开式中有理项有( ) A .3项B .4项C .5项D .6项9.(2022·全国·高三专题练习(理))若65(32)n x x 的展开式中有且仅有三个有理项,则正整数n 的取值为( ) A .4B .6或8C .7或8D .810.(2022·重庆市第十一中学校高三阶段练习)已知二项式()nx n N x *⎛∈ ⎝的展开式中,二项式系数之和为64,则展开式中有理项的系数之和为( ) A .119B .168C .365D .52011.(2022·全国·高三专题练习)在243(2x x的展开式中,有理项共有( ) A .3项B .4项C .5项D .6项12.(2022·全国·高三专题练习(理))若21nx x ⎫⎪⎭展开式中只有第四项的系数最大,则展开式中有理项的项数为( ) A .1B .2C .3D .4经典题型四:求二项展开式中的特定项系数13.(2022·湖北·高三开学考试)已知二项式13nx x ⎛⎫ ⎪⎝⎭的展开式中,所有项的系数之和为32,则该展开式中x 的系数为( ) A .405-B .405C .81-D .8114.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( ) A .454B .458-C .358D .715.(2022·全国·高三专题练习)在2()n x x -的展开式中,若二项式系数的和为32,则1x的系数为( ) A .80-B .80C .40-D .4016.(2022·全国·高三专题练习(理))()()()239111x x x ++++⋅⋅⋅++的展开式中2x 的系数是( ) A .45B .84C .120D .21017.(2022·全国·高三专题练习)若()1nx +的展开式中,某一项的系数为7,则展开式中第三项的系数是( ) A .7B .21C .35D .21或35经典题型五:求三项展开式中的指定项18.(2022·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )A .5B .-5C .15D .-1519.(2022·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .1152020.(2022·全国·高三专题练习)()423x y z +-的展开式中,所有不含z 的项的系数之和为( ) A .16B .32C .27D .8121.(2022·全国·高三专题练习)()421x y x ++的展开式中22y x的系数为( )A .4B .6C .8D .1222.(2022·全国·高三专题练习)在()5223x x --的展开式中含10x 和含2x 的项的系数之和为( ) A .674-B .675-C .1080-D .148523.(2022·全国·高三专题练习)()635x y -的展开式中,22x y 的系数为( )A .135-B .75-C .75D .135经典题型六:求几个二(多)项式的和(积)的展开式中条件项系数 24.(2022·浙江邵外高三阶段练习)()()6x y x y +-的展开式中34x y 的系数是________.(用数字作答)25.(2022·全国·高三专题练习)()6213x x x ⎛⎫-+ ⎪⎝⎭的展开式中的常数项为__________.26.(2022·全国·清华附中朝阳学校模拟预测)232345012345(1)(23)x x a a x a x a x a x a x +-=+++++,则4a =_________.27.(2022·全国·高三专题练习)已知522a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中的各项系数和为3-,则该展开式中的常数项为______.28.(2022·河北邢台·高三开学考试)()631x x x ⎛+ ⎝展开式中的3x 项的系数是______.29.(2022·浙江·杭十四中高三阶段练习)25()y x x x y ⎛⎫⎪⎭+ ⎝+的展开式中24x y 的系数为___________.(用数字作答)30.(2022·四川·树德中学高三阶段练习(理)) 6211(1)x x ⎛⎫++ ⎪⎝⎭展开式中3x 的系数为______.31.(2022·全国·高三专题练习)已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为___________.32.(2022·浙江省淳安中学高三开学考试)已知51m x x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中常数项为20,则m =___________.经典题型七:求二项式系数最值33.(2022·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .1034.(2022·全国·高三专题练习)7(12)x +展开式中二项式系数最大的项是( ) A .3280xB .4560xC .3280x 和4560xD .5672x 和4560x35.(2022·湖南·高三阶段练习)设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为( ) A .5B .6C .7D .836.(2022·全国·高三专题练习)5a x x ⎫⎪⎭的展开式中x 的系数等于其二项式系数的最大值,则a 的值为( ) A .2B .3C .4D .2-经典题型八:求项的系数最值37.(2022·全国·高三专题练习)已知(13)n x -的展开式中各项系数之和为64,则该展开式中系数最大的项为___________.38.(2022·重庆巴蜀中学高三阶段练习)()91-x 的展开式中系数最小项为第______项. 39.(2022·全国·高三专题练习)若4()x xn 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.经典题型九:求二项展开式中的二项式系数和、各项系数和40.(2022·全国·高三专题练习)若7270127(1)x a a x a x a x -=++++,则1237a a a a ++++=_________.(用数字作答)41.(2022·全国·高三专题练习)设()20202202001220201ax a a x a x a x -=+++⋅⋅⋅+,若12320202320202020a a a a a +++⋅⋅⋅+=则非零实数a 的值为( )A .2B .0C .1D .-142.(2022·全国·高三专题练习)已知202123202101232021(1)x a a x a x a x a x +=+++++,则20202019201820171023420202021a a a a a a ++++++=( )A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯43.(多选题)(2022·全国·高三专题练习)若()()()220222022012022111x x x a a x a x ++++++=+++,则( )A .02022a =B .322023a C =C .20221(1)1ii i a =-=-∑D .202211(1)1i i i ia -=-=∑经典题型十:求奇数项或偶数项系数和44.(2022·浙江·模拟预测)已知多项式()4228012832-+=++++x x a a x a x a x ,则1357a a a a +++=_______,1a =________.45.(2022·全国·模拟预测)若()()9911x ax x +-+的展开式中,所有x 的偶数次幂项的系数和为64,则正实数a 的值为______.46.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知2220122(2)1+)1+)...1+)n n n x a a x a x a x +=++++(((,若15246222...21n n a a a a a -+++++=-,则n =_____________.47.(2022·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-经典题型十一:整数和余数问题48.(2022·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.49.(2022·河北·石家庄二中模拟预测)20222除以7的余数为_______. 50.(2022·福建漳州·三模)711除以6的余数是___________.51.(2022·全国·高三专题练习)091827899995555C C C C ++++被7除的余数是____________.52.(2022·天津市第七中学模拟预测)已知n 为满足()12320222022202220222022C C C C 3T a a =+++++≥能被9整除的正整数a 的最小值,则()()221nxx x -+-的展开式中含10x 的项的系数为______.53.(2022·全国·高三专题练习)若1002100012100(21)x a a x a x a x +=++++,则()1359923a a a a ++++-被8整除的余数为___________.54.(2022·浙江·高三专题练习)设a ∈Z ,且0≤a ≤16,若42021+a 能被17整除,则a 的值为 _____.经典题型十二:近似计算问题55.(2022·河南南阳·高三期末(理))81.02≈__________(小数点后保留三位小数). 56.(2022·山西·应县一中高三开学考试(理))6(1.05)的计算结果精确到0.01的近似值是_________.57.(2022·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.经典题型十三:证明组合恒等式58.(2022·全国·高三专题练习)(1)设m 、*n N ∈,m n ≤,求证:1111m mn n n C C m +++=+; (2)请利用二项式定理证明:()2*3213,n n n n N >+≥∈.59.(2022·江苏省天一中学高三阶段练习)已知*0()()nk k n n k f x C x n N ==∈∑.(1)若456()()2()3()g x f x f x f x =++,求()g x 中含4x 项的系数; (2)求:012112323n m m m m n C C C nC -++++++++.60.(2022·江苏·泰州中学高三阶段练习)(1)设()(12),()n f x x f x =+展开式中2x 的系数是40,求n 的值;(2)求证:11(1)0(2,)nk k n k kC n n N +*=-=≥∈∑经典题型十四:二项式定理与数列求和61.(2022·全国·高三专题练习(理))令n a 为()11n x ++的展开式中含1n x -项的系数,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为( )A .()32n n + B .()12n n + C .1n n + D .21nn + 62.(2022·全国·高三专题练习)已知等差数列{}n a 的第5项是61x x ⎛⎫- ⎪⎝⎭展开式中的常数项,则28a a +=( ) A .20B .20-C .40D .40-63.(2022·河北保定·二模)若n 为等差数列4,2,0,--中的第7项,则二项式21(2)n x x-展开式的中间项系数为( )A .1120B .1120-C .1792D .1792-64.(2022·江西新余·二模(理))已知等差数列{}n a 的第5项是6122x y x ⎛⎫-+ ⎪⎝⎭展开式中的常数项,则该数列的前9项的和为( ) A .160B .160-C .1440D .1440-经典题型十五:杨辉三角65.(2022·全国·高三专题练习)如图所示的杨辉三角中,从第2行开始,每一行除两端的数字是1以外,其他每一个数字都是它肩上两个数字之和在此数阵中,若对于正整数n ,第2n 行中最大的数为x ,第21n 行中最大的数为y ,且137x y =,则n 的值为______.66.(2022·全国·高三专题练习)“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发引一组平行线,从上往下每条线上各数之和依次为:1,1,2,3,5,8,13,…,则第10条斜线上,各数之和为______.67.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.68.(2022·全国·高三专题练习)如图,在杨辉三角形中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10, ,记此数列的前n项之和为n S,则23S 的值为__________.1.(2022·北京·高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-2.(2020·山东·高考真题)在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是( )A .56B .56-C .70D .70-3.(2020·北京·高考真题)在5(2)x 的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020·全国·高考真题(理))25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2022·天津·高考真题)523x x ⎫⎪⎭的展开式中的常数项为______.6.(2021·天津·高考真题)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2020·天津·高考真题)在522x x ⎛ ⎝⎭的展开式中,2x 的系数是_________. 8.(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).9.(2021·浙江·高考真题)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.10.(2020·浙江·高考真题)设52345123456(12)x a a x a x a x a x a x +=+++++,则5a =________;123a a a ++=________.。
历届高考中的二项式定理试题汇编大全(最全)word资料
![历届高考中的二项式定理试题汇编大全(最全)word资料](https://img.taocdn.com/s3/m/b4cad1c50066f5335a8121f9.png)
8.(2004 湖北文)已知 ( x x 1 2 1 2 n 的展开式中各项系数的和是128,则展开式中 x5 的系数是。
. (以数字作答) 9.(2004 全国Ⅱ卷文)已知 a 为实数,(x+a10 展开式中 x7 的系数是-15,则 a= 10.(2004 全国Ⅳ卷文、理)( x 1 x 8 展开式中 x 5 的系数为 . (2003--2000 年) 1.(2003 广东) ( x 212x9 展开式中 x 的系数是 9 9 2.(2003 全国文、理,天津文、理) ( x 2 1 9 的展开式中 x 系数是 2x ___ 1 3.(2002 春招上海)若在 5 x 的展开式中,第 4 项是常数项,则 n = x 2 7 3 n . 4. (2002 年广东、江苏、河南,全国文、理 (x +1(x-2 的展开式中 x 项的系数是_______. 1 5.(2001 春招上海)二项式 ( x 6 的展开式中常数项的值为________. x 6.(2001 全国文) ( 1 x 1 10 的二项展开式中 x 3 的系数为 2 王新敞奎屯新疆 7.(2001 上海文)在代数式 (x- 的展开式中,常数项为 5 . 8.(2001 上海理)在代数式(4x -2x-5(1+ 2 的展开式中,常数项为 5 . 9.(2000 春招北京、安徽文、理) ( x - 3 11 1 x 10 . 展开式中的常数项是__________ 。
(结果用数值表示) 10.(2000 上海文、理)在二项式( x 1 的展开式中,系数是小的项的系数为三、解答题:(2006 年—2000 年)1.(2003 上海文)已知数列 {an } (n 为正整数)是首项是 a1,公比为 q 的等比数列. 0 1 2 0 1 2 3 (1)求和: a1C2 a2C2 a3C2 , a1C3 a2C3 a3C3a4C3 ; (2)由(1)的结果归纳概括出关于正整数 n 的一个结论,并加以证明. (3)设q≠1,Sn 是等比数列 {an } 的前 n 项和,求:0 1 2 3 n S1Cn S 2Cn S3Cn S 4Cn ( 1 n S n1Cn二项式定理一、知识点1. ⑴二项式定理:nn n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大. ③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C二、典型例题例1.已知(1-3x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于A.29B.49C.39D.1例2.(2x +x )4的展开式中x 3的系数是 A.6B.12C.24D.48例3.(2x 3-x1)7的展开式中常数项是A.14B.-14C.42D.-42例4.已知(x 23+x 31-)n 的展开式中各项系数的和是128,则展开式中x 5的系数是_____________.(以数字作答)例5.若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =_____________. 例6 如果在(x +421x)n 的展开式中,前三项系数成等差数列,求展开式中的有理项.例7求式子(|x |+||1x -2)3的展开式中的常数项.例8设a n =1+q +q 2+…+q 1-n (n ∈N *,q ≠±1),A n =C 1n a 1+C 2n a 2+…+C nn a n .(1)用q 和n 表示A n ;(2)(理)当-3<q <1时,求lim ∞→n nn A 2.例9 求(a -2b -3c )10的展开式中含a 3b 4c 3项的系数.三、练习题1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为A.20B.219C.220D.220-12.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 A.28B.38C.1或38D.1或283.(x -x1)8展开式中x 5的系数为_____________.4.若(x 3+xx 1)n 的展开式中的常数项为84,则n =_____________5.已知(x x lg +1)n 展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x 的值.第二十三讲排列组合与二项式定理●知点考点答点(1)加法乘法原理深化计数的基本依据是加法原理,乘法原理是加法原理的简化.小学生的加法是“同类加法”,3个苹果加上5个苹果,这8个苹果是一样的“同类苹果”. 而计数原理中的加法则强调了“分类相加”. 30个男生加上20个女生,这班上的50个学生按性别分成了2类.相加并不难,分类要注意统一标准. 从集合的观点看待元素的分类计数:将有限集合M的元素分成两个子集A和B. 当且仅当A∩B= ø,A∪B = M时,A的元素与B的元素相加,才等于M的元素个数.【例1】某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是(用数字作答).【解析】由于1元1本的杂志只有3本,1元1本的杂志不可能只买1本或3本.否则所用钱数为奇数,再买2元1本的杂志无论买几本所用钱数都是偶数,其和不可能为10元这个偶数.所以小张用10元钱去买,有且只有如下两种买法.如果全买2元1本的杂志,则10元钱可以买5本,有538856C C==种方法;如果1元1本的杂志买2本,则2元1本的杂志可以买4本,由乘法原理,有4283210C C⋅=种方法;由加法原理,不同买法的种数是:56+210=266.【例2A.48B.36C.24D.18【解析】4位同学的总分为零,有且只有如下3种情况.(1)若4人全部选甲题,其总分和为零必须2人答对另2人答错,有24C=6种情况;(2)若4人全部选乙题,同理也有24C=6种情况;(3)若4人中两人选甲题,另两人选乙题,其总分和为零必须各1人答对另1人答错,有2242A A=24种情况.由加法原理,不同的得分种数为6+6+24=36,∴选B.【评注】例1按1元1本的杂志数分类,是因为这种杂志的数量少;例2按总分之和为0的情况分类,因为这是计数时确定取舍的标准.所以在解题时确定正确的分类标准十分重要.(2)可重排列与不重排列——统一在乘法原理之中排列元素的选择有两种方式. 一种是不能重复的元素——“用后则扔”;第二种是可以重复的元素——“用后还用”. 解题时必须正确区分与掌握.在乘法原理中,它们是统一的,只不过前者构成“阶乘运算”,后者构成“乘法运算”.所谓阶乘数,就是前n个正整数的连乘积,记号n!是对这种连乘积的简化写法.【例3】完成某项工作需4个步骤,每一步方法数相等,完成这项工作共有81种方法.改革后完成这项工作减少了一个步骤,则改革后完成该项工作有 种方法.【分析】4个步骤却有81种方法,可见每个步骤都有可供选择的多种方法,而且“每一步方法数相等,”可见本题属于重复排列.【解析】设原来每个步骤有x 种方法,则481,3x x =∴=.现在减少1个步骤,即完成该项工作只有3个步骤,每个步骤仍有3种方法.3327=,∴改革后完成该项工作有27种方法.【例4】证明:()()123112!3!4!1!1!n n n ++++=-++ 【证明】注意到:11!(1)!(1)!kk k k -=++.令k=1,2,3。
(完整版)历届高考中的二项式定理试题汇编大全
![(完整版)历届高考中的二项式定理试题汇编大全](https://img.taocdn.com/s3/m/54a021ab14791711cd79176a.png)
历届高考中的“二项式定理”试题汇编大全一、选择题:(2006 年)241 1、( 2006湖北文)在 T X — 的展开式中,x 的幕的指数是整数的有V xA. 3项B. 4项C. 5项D. 6项12 . ( 2006湖北理)在(x 3—)24的展开式中,X 的幕的指数是整数的项共有V xA . 3项B . 4项C . 5项D . 6项3.(2006湖南文) 若(ax 1)5的展开式中X 3的系数是80,则实数a 的值是6、( 2006江西理)在(x — 2 )2006的二项展开式中,含 x 的奇次幕的项之和为S ,当 x 2 时,S 等于()3—,则展开式中常数项是147 . 1 (2006辽宁文)C 6 C ;C 3C 64 5C 6 C 6的值为( )A. 61 B . 62 C . 63D . 648、 (2006全国I 卷文) 在 1X2x10的展开式中, 4X 的系数为3008 3008 30093009A.2B.-2C.2D.-2A .120 B 120 C15D15(A) — 1(B)1(C) —45(D)45210 . (2006山东理)已知 X n的展开式中第三项与第五项的系数之比为一 其中i 2 = — 1,则展开式中常数项是14(A) — 45i(B) 45 i(C) — 45(D)45A . -2B. 2、2D. 24. ( 2006 江苏)(..X—)10的展开式中含x 的正整数指数幕的项数是3x(A) 0 (B ) 2(C ) 4(D) 65 . ( 2006江西文)在 ・、X n2- 的二项展开式中,若常数项为 x60 ,则n 等于(A. 3 B . 6 C. 9 D . 1229. ( 2006山东文) 已知的展开式中第三项与第五项的系数之比为6 311. (2006浙江文)在二项式X 1的展开式中,含X3的项的系数是(A)15 (B)20 (C)30 (D)4012. (2006 浙江理)若多项式x2 x10a0 a1(x 1) a g(x 1)2%0(x 1)11,则a9(A)9 (B)10 (C)-9 (D)-1013 .(2006重庆文)2x 3 5的展开式中X2的系数为(A)—2160 ( B)—1080 (C) 1080 ( D)216014 . (2006重庆理) 3、x —1xn的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B) -162 (c)162 (D)540(2005 年--2000 年)1. (2005江西文、理)C. x 3 x)12的展开式中,含x的正整数次幕的项共有(C. 2项D.(2005全国卷n 文)(A) 840 ( B)(2005全国川文、理)A . —14(2005山东文、理)(x .2y)10的展开式中x6y4项的系数是(—840 (C) 210 (D)—210在(x 1)(x 1)8的展开式中B . 14x5的系数是(C.—28D.)28 如果(3x1展开式中—的系数是(x(A) 7 (B)(2005浙江理)在(1 —x)(A) 74 (B) 121 (C)6. ( 2005浙江文)(A) 5 (B) 5 (C)7. (2005重庆理)若(2x1—)n的展开式中各项系数之和为3. x2128,则(C) 21 (D) 216+ (1 —x) + (1—74 (D)7—x) + (1—12161 x的展开式中,含10 (D) 101丄”展开式中含xB . 6C . 8D . 108—x)的展开式中,含3x的项的系数是()x3的项的系数是(1 1£项的系数与含项的系数之比为一5,则n等于()x x8. (2005重庆文)若(1 2x)n展开式中含x3的项的系数等于含A . 5 B. 7 C . 9 D . 11 x的项的系数的8倍,贝U n等于()9. (2004福建理)若(1-2x)9展开式的第3项为288,则lim (丄n丄)的值是x(A) 2(B) 1(C)-22 (D)—510 . (2004福建文)已知(X ^)8展开式中常数项为x则展开式中各项系数的和是()A . 28B . 38C . 1 或38D . 1 或281120,其中实数a是常数,11. (2004 江苏)(2x 、、x)4的展开式中x3的系数是((A)6 (B)12 (C)24 (D)4812.(2004浙江文、理)若C.x 厶)n展开式中存在常数项,则n的值可以是(Vx(A) 8 (B) 9 (C) 10 (D) 12(2004全国卷I文、理)(2x31——)7的展开式中常数项是(x14.15.16.A . 14 B.- 14(2004全国川卷文)A. 15B. 1542 D. - 426展开式中的常数项为()C. 20D. 20(2002春招北京文)在(1/x+x 2)6的展开式中,x3的系数和常数项依次是((A)20, 20 (B)15, 20 (C)20 , 15 ( D) 15, 15(2000江西、天津文)5033x的展开式中系数为有理数的项共有(A) 6 项(B) 7 项(C) 8 项(D) 9 项二.填空题:(2005 年)1. (2006北京文)2 7的展开式中,x x3的系数是(用数字作答)2. (2006北京理)2在(匸一)7的展开式中,x2x的系数中(用数字作答)(2006安徽理)设常数a 0, 21ax x43展开式中x3的系数为一,则lim(a a22 n(2006广东)在(x 勻11的展开式中,x 5的系数为x5 3(2006湖南理)若(ax 1)的展开式中x 的系数是-80,贝U 实数a 的值是1(2006全国n 卷文、理)在(x 4+ x )10的展开式中常数项是x(2005 年)1 63. (2005北京文科)(X —)的展开式中的常数项是x4. (2005福建文、理)(2、、x 丄)6展开式中的常数项是X55. (2005广东)已知(XCOS 1)5的展开式中X 2的系数与(X )4的展开式中X 3的系数相等,则COS4(2006安徽文)2 1 33设常数a0, ax 「X 展开式中x的系数为2,则a=(2006福建文) 1(x 2 )5展开式中x 4的系数是.x(用数字作答)(2006福建理)(x 2 — !)2展开式中x 2的系数是x(用数字作答)8. (用数字作答)10. (2006陕西文) (2x — 1)6展开式中的常数项为寸(用数字作答)11. (2006陕西理) 1(3x - _x )12展开式x —3的系数为 (用数字作答)12. (2006四川文) (1 2x )10展开式中x 3的系数为(用数字作答)。
二项式定理-高考题(含答案)汇编
![二项式定理-高考题(含答案)汇编](https://img.taocdn.com/s3/m/23dfb9a16f1aff00bfd51e42.png)
二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D)(A )42(B )35(C )28(D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x 的二项展开式中,x 的系数为( D )(A)10 (B)-10 (C)40 (D)-404.(2011.天津高考理科.T5)在62()2x x 的二项展开式中,2x 的系数为( C )(A )154(B )154(C )38(D )385.(2012·重庆高考理科·T4)821xx 的展开式中常数项为( B )(A)1635(B)835(C)435(D)1056.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A )(A)270(B)90(C)90(D)2707. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512ax x x x 的展开式中各项系数的和为2,则该展开式中常数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4)n x)31((其中nN 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6(B)7(C)8(D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C )(A )20(B )15(C )15 (D )20二、填空题11. (2013·天津高考理科·T10)61x x 的二项展开式中的常数项为15 .12.(2011·湖北高考理科·T11)1813x x 的展开式中含15x 的项的系数为17 .13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为0 .14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62ax x 的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n x x )1(的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若83ax x 的展开式中4x 的系数为7,则实数a =____12_____。
(完整版)高考数学二项式定理专题复习(专题训练)
![(完整版)高考数学二项式定理专题复习(专题训练)](https://img.taocdn.com/s3/m/33370d6bfd0a79563d1e72c0.png)
(a
x )n
Cn0a n x0
Cn1a n 1x
C
2 n
a
n
2 x2
L
C
n n
a
0
x
n
a0 a1x 1 a 2 x 2
( x a)n
Cn0a 0 xn
Cn1ax n 1
C
2 n
a
2
x
n
2
L
C
n n
a
n
x
0
an xn L
a2 x2
令 x 1, 则 a0 a1 a2 a3L an (a 1)n
①
令 x 1,则 a0 a1 a2 a3 L an (a 1)n
②
① ②得 , a0 a2 a4 L
n
n
an (a 1) ( a 1) (奇数项的系数和 )
2
① ②得 , a1 a3 a5L
an ( a 1)n (a 1)n (偶数项的系数和 ) 2
L anx n a1x1 a0
( 5)二项式系数的最大项 :如果二项式的指数 n 是偶数时,则中间项为第 ( n 1)项的二项式 2
( 6)系数的最大、最小项的求法:求 (a bx) n 展开式中最大、最小项,一般采用待定系数
法。设展开式中各项系数分别为 A1 , A2 , , An 1 ,设第 r 1 项系数最大,应有:
Ar 1 Ar 且 Ar 1 Ar 2 ;如果设第 r 1 项系数最小,应有 Ar 1 Ar 且 Ar 1 Ar 2 ,从而解出 r 的范围。
与 (b a)n 的二项展开式是不同的。
( 3)二项式项数共有 (n 1) 项,是关于 a 与 b 的齐次多项式。
( 4)二项式系数:展开式中各项的系数为
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)
![历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)](https://img.taocdn.com/s3/m/b7ef2897a0c7aa00b52acfc789eb172ded6399b8.png)
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历届高考中的“二项式定理”试题汇编大全一、选择题:(2006年)1、(2006湖北文)在2431⎪⎪⎭⎫⎝⎛+x x 的展开式中,x 的幂的指数是整数的有 A. 3项 B. 4项 C. 5项 D. 6项 2.(2006湖北理)在24(x 的展开式中,x 的幂的指数是整数的项共有 A .3项 B .4项 C .5项 D .6项3. (2006湖南文) 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 A .-2 B . 22 C. 34 D . 24.(2006江苏)10)31(xx -的展开式中含x 的正整数指数幂的项数是 (A )0 (B )2 (C )4 (D )65.(2006江西文)在2nx ⎫⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3 B.6C.9 D.126、(2006江西理)在(x )2006的二项展开式中,含x 的奇次幂的项之和为S ,当x 时,S 等于( ) A.23008B.-23008C.23009D.-230097.(2006辽宁文)1234566666C C C C C ++++的值为( )A.61 B.62 C.63D.648、(2006全国Ⅰ卷文)在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为 A .120- B .120 C .15- D .159.(2006山东文)已知(xx 12-)n的展开式中第三项与第五项的系数之比为143,则展开式中常数项是 (A )-1 (B)1 (C)-45 (D)4510.(2006山东理)已知2nx⎛ ⎝的展开式中第三项与第五项的系数之比为-143,其中2i =-1,则展开式中常数项是 (A)-45i (B) 45i (C) -45 (D)4511.(2006浙江文)在二项式()61x +的展开式中,含3x 的项的系数是(A)15 (B)20 (C)30 (D)4012.(2006浙江理)若多项式=+-+++++=+911102910012a ,)1(a )1(a )1(则x x x a a x x Λ(A)9 (B)10 (C)-9 (D)-1013.(2006重庆文)()523x -的展开式中2x 的系数为 (A )-2160 (B )-1080 (C )1080 (D )216014.(2006重庆理)若(x 3-)x1n 的展开式中各项系数之和为64,则展开式的常数项为(A)-540 (B) -162 (c)162 (D)540(2005年--2000年)1.(2005江西文、理)123)(x x +的展开式中,含x 的正整数次幂的项共有( )A .4项B .3项C .2项D .1项2.(2005全国卷Ⅱ文)10()x -的展开式中64x y 项的系数是( )(A )840 (B )-840 (C )210 (D )-2103.(2005全国Ⅲ文、理)在8)1)(1(+-x x 的展开式中5x 的系数是( ) A .-14B .14C .-28D .284.(2005山东文、理)如果(3n x 的展开式中各项系数之和为128,则展开式中31x的系数是( ) (A )7 (B) 7- (C) 21 (D)21-5.(2005浙江理)在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.(2005浙江文)在()()5611x x ---的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) 10- (D) 107.(2005重庆理)若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于( ) A .4 B .6 C .8 D .108.(2005重庆文)若nx )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于( ) A .5 B .7 C .9 D .119.(2004福建理)若(1-2x )9展开式的第3项为288,则∞→n lim (n xx x 1112⋯++)的值是 (A )2 (B )1 (C )21 (D )5210.(2004福建文)已知8)(xa x -展开式中常数项为1120,其中实数a 是常数, 则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2811.(2004江苏)4)2(x x +的展开式中x 3的系数是 ( ) (A)6 (B)12 (C)24 (D)4812.(2004浙江文、理) 若n x )x2(3+展开式中存在常数项,则n 的值可以是( )(A) 8 (B) 9 (C) 10 (D) 1213.(2004全国卷Ⅰ文、理)73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-4214.(2004全国Ⅲ卷文)61x ⎫⎪⎭展开式中的常数项为( )A .15B .15-C .20D .20-15.(2002春招北京文)在(1/x+x 2)6的展开式中,x 3的系数和常数项依次是( ) (A )20,20 (B )15,20 (C )20,15 (D )15,1516.(2000江西、天津文)二项式()50332x+的展开式中系数为有理数的项共有( )(A )6项 (B )7项 (C )8项 (D )9项二.填空题:(2005年)1.(2006北京文)在72⎪⎭⎫ ⎝⎛-x x 的展开式中,x 3的系数是 .(用数字作答)2.(2006北京理)在72)x的展开式中,2x 的系数中__________________(用数字作答).3.(2006安徽理)设常数0a >,42ax⎛+ ⎝展开式中3x 的系数为32,则2lim()n n a a a →∞++⋅⋅⋅+=__________。
4.(2006安徽文)设常数0a >,42ax⎛+⎝展开式中3x 的系数为32,则a =_____。
5.(2006福建文)251()x x-展开式中4x 的系数是_____(用数字作答)6.(2006福建理)(x 2-x1)2展开式中x 2的系数是 (用数字作答)7、(2006广东)在112()x x-的展开式中,5x 的系数为________.8. (2006湖南理)若5(1)ax -的展开式中3x 的系数是-80,则实数a 的值是 .9.(2006全国Ⅱ卷文、理)在(x 4+1x)10的展开式中常数项是 (用数字作答)10.(2006陕西文)(2x -1x)6展开式中的常数项为 (用数字作答) .11. (2006陕西理)(3x -1x)12展开式x -3的系数为 (用数字作答)12. (2006四川文)10(12)x -展开式中3x 的系数为___________(用数字作答)。
13.(2006天津文)7x⎛ ⎝的二项展开式中x 的系数是 (用数字作答).14、(2006天津理)7)12(xx +的二项展开式中x 的系数是____ (用数学作答).(2005年)1.(2005春招上海) 若()()3,2223≥∈+++++=+n n x c x b x a x x nn n 且N Λ,且2:3:=b a ,则=n .2.(2005北京理科)6(x的展开式中的常数项是 (用数字作答)3.(2005北京文科)61()x x-的展开式中的常数项是 (用数字作答)4.(2005福建文、理)6)12(xx -展开式中的常数项是 (用数字作答)。
5.(2005广东)已知5)1cos (+θx 的展开式中2x 的系数与4)45(+x 的展开式中x 3的系数相等,则θcos = .6.(2005湖北理)5)212(++xx 的展开式中整理后的常数项为 .7.(2005湖北文)843)1()2(xx xx ++-的展开式中整理后的常数项等于 .8.(2005湖南文、理)在(1+x )+(1+x )2+……+(1+x )6的展开式中,x 2项的系数是 。
(用数字作答)9.(2005辽宁)n x x )2(2121--的展开式中常数项是 .10.(2005全国卷Ⅰ理)9)12(xx -的展开式中,常数项为 。
(用数字作答)11.(2005全国卷Ⅰ文)8)1(xx -的展开式中,常数项为 。
(用数字作答)12.(2005天津理)设*∈N n ,则=++++-12321666n n n n n n C C C C Λ13.(2005天津文)二项式103)1(xx -的展开式中常数项为________(用数字作答).(2004年)1.(2004春招安徽文理)若(x +1x -2)n 的展开式中常数项为-20,则自然数n =______.2.(2004湖南理)若n xx x )1(3+的展开式中的常数项为84,则n= .3.(2004湖南文)92)1(xx +的展开式中的常数项为___________(用数字作答) 4.(2004春招上海)如图,在由二项式系数所构成的杨辉 三角形中,第_____行中从左至右第14与第15个数的比为3:2.5、(2004上海文、理)若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)6.(2004天津理) 若)(...)21(2004200422102004R x x a x a x a a x ∈++++=-,则=++++++++)(...)()()(20040302010a a a a a a a a 。
(用数字作答)7. (2004重庆文、理)若在5(1)ax +的展开式中3x 的系数为80-,则_______a =第0行 1 第1行 1 1第2行 1 2 1第3行 1 3 3 1第4行 1 4 6 4 1第5行 1 5 10 10 5 1 …… …… ……8.(2004湖北文)已知n xx )(2121-+的展开式中各项系数的和是128,则展开式中x 5的系数是 .(以数字作答)9.(2004全国Ⅱ卷文)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = 。
10.(2004全国Ⅳ卷文、理)8)1(xx -展开式中5x 的系数为 .(2003--2000年)1.(2003广东)9)12(2x x -展开式中9x 的系数是2.(2003全国文、理,天津文、理)92)21(xx -的展开式中9x 系数是 ___3.(2002春招上海)若在nx x ⎪⎭⎫ ⎝⎛-15的展开式中,第4项是常数项,则n = .4. (2002年广东、江苏、河南,全国文、理) (x 2+1)(x -2)7的展开式中x 3项的系数是_______.5.(2001春招上海)二项式6)1(x x +的展开式中常数项的值为________.6.(2001全国文) (121+x )10的二项展开式中x 3的系数为7.(2001上海文)在代数式 (x-)5的展开式中,常数项为 .8.(2001上海理)在代数式(4x 2-2x -5)(1+)5的展开式中,常数项为 .9.(2000春招北京、安徽文、理).)1-x (103x展开式中的常数项是__________10.(2000上海文、理)在二项式11)1(-x 的展开式中,系数是小的项的系数为 。