高中数学必修1综合复习ppt
合集下载
高中数学必修一必修1全章节ppt课件幻灯片
22
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高中数学必修1-总复习课件(学生版)
数集 自然 数集 正整 数集 整数 有理 集 数集 实数 集 复数
记法
N
N
Z
Q
R
C
空集 . 无限集 、______ (5)集合的分类:有限集 ______、______
2. 集合间的基本关系 (1)子集、真子集及其性质 B(或B__ A). ①对任意的x∈A,都有x∈B,则A___ ②若A⊆B,且在B中至少有一个元素x∈B,但x∉A, ). 则A____ B(或B____A A;A___ A; A⊆B,B⊆C⇒A_____ C. ③ ∅___ ④若A含有n个元素,则A的子集有___ 2n 个,A的非空 子集有______ 2n-1 个,A的非空真子集有_______ 2n-2 个.
变式训练 3
设全集是实数集 R,A={x|2x2-7x+3≤0},B={x|x2+a<0}. (1)当 a=-4 时,求 A∩B 和 A∪B; (2)若(∁RA)∩B=B,求实数 a 的取值范围.
集合中的新定义问题 题 型四 【例 4】在集合{a,b,c,d}上定义两种运算 和 如下:
那么 d (a c)等于 ( A.a
变式训练 4
) D.d
B.b
C.c
已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A 时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元 素”,那么S中无“孤立元素”的4个元素的子集共有 ________ 个,其中的一个是____________.
易错警示
忽略空集致误
(1)(4 分)若集合 P={x|x2+x-6=0},S={x|ax+1 =0}, 且 S⊆P, 则由 a 的可取值组成的集合为__________.
1.集合与元素 确定性 、________ 互异性 、 (1)集合元素的三个特性:_______ 无序性 . _________ 不属于∉ 、 属于∈ 、________ (2) 元素与集合的关系: _______ 反映个体与整体之间的关系. 图示法 、 列举法 、_______ 描述法 、_______ (3)集合的表示法:_______ 区间法 . ________ (4)常用数集的记法
记法
N
N
Z
Q
R
C
空集 . 无限集 、______ (5)集合的分类:有限集 ______、______
2. 集合间的基本关系 (1)子集、真子集及其性质 B(或B__ A). ①对任意的x∈A,都有x∈B,则A___ ②若A⊆B,且在B中至少有一个元素x∈B,但x∉A, ). 则A____ B(或B____A A;A___ A; A⊆B,B⊆C⇒A_____ C. ③ ∅___ ④若A含有n个元素,则A的子集有___ 2n 个,A的非空 子集有______ 2n-1 个,A的非空真子集有_______ 2n-2 个.
变式训练 3
设全集是实数集 R,A={x|2x2-7x+3≤0},B={x|x2+a<0}. (1)当 a=-4 时,求 A∩B 和 A∪B; (2)若(∁RA)∩B=B,求实数 a 的取值范围.
集合中的新定义问题 题 型四 【例 4】在集合{a,b,c,d}上定义两种运算 和 如下:
那么 d (a c)等于 ( A.a
变式训练 4
) D.d
B.b
C.c
已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A 时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元 素”,那么S中无“孤立元素”的4个元素的子集共有 ________ 个,其中的一个是____________.
易错警示
忽略空集致误
(1)(4 分)若集合 P={x|x2+x-6=0},S={x|ax+1 =0}, 且 S⊆P, 则由 a 的可取值组成的集合为__________.
1.集合与元素 确定性 、________ 互异性 、 (1)集合元素的三个特性:_______ 无序性 . _________ 不属于∉ 、 属于∈ 、________ (2) 元素与集合的关系: _______ 反映个体与整体之间的关系. 图示法 、 列举法 、_______ 描述法 、_______ (3)集合的表示法:_______ 区间法 . ________ (4)常用数集的记法
人教高中数学必修一A版《幂函数》函数的概念与性质教学说课复习课件
课件
课件
课件
所以250.5>130.5. (2)因为幂函数y=x-1在(-∞,0)上是单调递减的,
又-23<-35,所以-23-1>-35-1.
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
比较幂的大小时若指数相同,则利用幂函数的单调性比较大小;若 底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是 “0”或“1”.
的形式,即函数的解析式为一个幂的形式,且需满足:1指数为常数;2
底数为自变量;3系数为 1.
栏目导航
1.(1)在函数y=x1 ,y=2x ,y=x +x,y=1中,幂函数的个数为 2
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
2
2
() A.0
B.1
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
探 课件
究
提素养
栏目导航
幂函数的概念
【例 1】 值.
已知 y=(m2+2m-2)xm2-1+2n-3 是幂函数,求 m,n 的
课件
课件
课件
课件
湘教版高中数学必修1全套PPT课件
三 知识引入
我们通常用大写拉丁字母A,B,C,······表示集合,用小写的拉丁 字母a,b,c······表示集合中的元素.
如果a是集合A的元素,就说a属于(belong to)集合A记作
;如果a
不是集合A的元素,就说a不属于(not belong to)集合A记作
.
常用数集的记法:
非负整数集(自然数集):_____ N
集合的包含关系
[学习目标] 1.明确子集,真子集,两集合相等的概念; 2.会用符号表示两个集合之间的关系; 3.能根据两集合之间的关系求解参数的范围; 4.知道全集,补集的概念,会求集合的补集.
[知识链接] 1.已知任意两个实数a,b,如果满足a≥b,b≥a,
则它们的大小关系是 a=b 。
2.若实数x满足x>1,如何在数轴上表示呢? x≥1 时呢? 3.方程ax2-(a+1)x+1=0的根一定有两个吗?
I. 确定性:给定一个集合,那么任何一个元素在不在这个集合 中是确定的.
II. 互异性:集合中的元素是不重复出现的. III. 无序性:集合中的元素排列是没有顺序的.
集合相等:只要构成两个集合的元素是一样的,我们就称这两个集
合是相等的.
练习一下
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
四 知识创新
通过上面的分析,我们可以知道:例1至例4、例7所列举的元素组 成的集合元素个数是有限的;而例5、例6、例8所列举的元素组成 的集合元素个数是无限的.
我们把含有有限个个数的集合叫做有限集,用card来表示有限集中 元素的个数.含有无限个个数的集合叫做无限集.
人教版高中数学必修1全套PPT课件
图2
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
人教A版高中数学选择性必修第一册精品课件 复习课 第1课时 空间向量与立体几何
(
)
(12)若向量n与直线l的方向向量垂直,A∈l,P∉l,则点P到直线l的距离可以
看成是 在n上的投影向量的长度.(
)
(13)设直线l与平面α所成的角为θ,直线l的方向向量为u,平面α的法向量为
n,则cos θ=|cos<u,n>|. ( × )
专题归纳 核心突破
专题一
空间向量的线性运算
提示:空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充
要条件是存在实数λ,使a=λb.
空间向量共面的充要条件:如果两个向量a,b不共线,那么向量p与向量a,b
共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
2.空间向量基本定理与空间向量的坐标表示的内容是什么?
模就越大.(
)
(3)不论λ取什么实数,λa与a一定共线.(
)
(4)若a·b=0,则a,b中至少有一个为0.( × )
(5)若 a·b=k,则
a= 或
b= .
( × )
(6)对于三个不共面向量a1,a2,a3,不存在实数组(λ1,λ2,λ3),使
λ1a1+λ2a2+λ3a3=0.( × )
(7)已知 A,B,M,N 是空间四点,若{, , }是空间的一个基底,则
(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存
在,确定N的位置;若不存在,说明理由.
分析:(1)证明向量垂直于平面 PAD 的一个法向量即可;
(2)假设存在点 N,设出其坐标,利用 ⊥ , ⊥ ,
列方程求其坐标即可.
解:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立空间直角
)
(12)若向量n与直线l的方向向量垂直,A∈l,P∉l,则点P到直线l的距离可以
看成是 在n上的投影向量的长度.(
)
(13)设直线l与平面α所成的角为θ,直线l的方向向量为u,平面α的法向量为
n,则cos θ=|cos<u,n>|. ( × )
专题归纳 核心突破
专题一
空间向量的线性运算
提示:空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充
要条件是存在实数λ,使a=λb.
空间向量共面的充要条件:如果两个向量a,b不共线,那么向量p与向量a,b
共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
2.空间向量基本定理与空间向量的坐标表示的内容是什么?
模就越大.(
)
(3)不论λ取什么实数,λa与a一定共线.(
)
(4)若a·b=0,则a,b中至少有一个为0.( × )
(5)若 a·b=k,则
a= 或
b= .
( × )
(6)对于三个不共面向量a1,a2,a3,不存在实数组(λ1,λ2,λ3),使
λ1a1+λ2a2+λ3a3=0.( × )
(7)已知 A,B,M,N 是空间四点,若{, , }是空间的一个基底,则
(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存
在,确定N的位置;若不存在,说明理由.
分析:(1)证明向量垂直于平面 PAD 的一个法向量即可;
(2)假设存在点 N,设出其坐标,利用 ⊥ , ⊥ ,
列方程求其坐标即可.
解:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立空间直角
高中数学必修一知识点ppt全
交集(记作A∩B):A∩B表示的是A集合与B集合所有相同元素组成的集合
并集(A∪B):A∪B表示的是A,B所有元素合并组在一起的集合
补集(∁UA):表示在全集U中所有不属于A集合的元素组成的集合
1
A
2
C
3
C
4
B
5
D
A
6
B
7
8
①={x|x≤2或x≥10}
②={x|2<x<3或7≤x<10}
9
a<-12 或 a>2
单调性是函数的局部性质,不能把单
调性相同的区间写在一起
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算
结合而成的那么,它的定义域是使各部分都
有意义的x的值组成的集合
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际
)
C
奇函数
(0,+∞)
D
C
A
相同函数的判断方法:
①表达式相同(与表示
自变量和函数值的字母
无关)
②定义域一致(两点必须
同时具备)
②
C
求函数的解析式
配凑法
换元法
待定系数法
方程组求解析式
03
PART Three
基本初等函数
ADD YOUR TITLE HERE
幂函数的一般形式幂函数的一般形式是
函数y= log a (a>0,且a≠1)叫做对数函数,
2个
(-1,1)
二次函数
基本表示形式为y=ax²+bx+c(a≠0)
并集(A∪B):A∪B表示的是A,B所有元素合并组在一起的集合
补集(∁UA):表示在全集U中所有不属于A集合的元素组成的集合
1
A
2
C
3
C
4
B
5
D
A
6
B
7
8
①={x|x≤2或x≥10}
②={x|2<x<3或7≤x<10}
9
a<-12 或 a>2
单调性是函数的局部性质,不能把单
调性相同的区间写在一起
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算
结合而成的那么,它的定义域是使各部分都
有意义的x的值组成的集合
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际
)
C
奇函数
(0,+∞)
D
C
A
相同函数的判断方法:
①表达式相同(与表示
自变量和函数值的字母
无关)
②定义域一致(两点必须
同时具备)
②
C
求函数的解析式
配凑法
换元法
待定系数法
方程组求解析式
03
PART Three
基本初等函数
ADD YOUR TITLE HERE
幂函数的一般形式幂函数的一般形式是
函数y= log a (a>0,且a≠1)叫做对数函数,
2个
(-1,1)
二次函数
基本表示形式为y=ax²+bx+c(a≠0)
人教版高中数学必修1全套课件
函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题
人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课
【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
高中数学必修1复习 PPT课件 图文
x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
高中数学必修1课件全册(人教A版)
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A”
否则,称为mA,读作“元素m不属于集合A。
例如:1 N, -5 Z,
Q
∈
∈
2、集合与元素的关系(属于∈或不属于 )
1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如下: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x),x∈A。 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20”和“平方后乘以4.9”
观察下面几个例子,你能发现两个集合之间的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5};
⑵设A为新华中学高一(2)班女生的全体组成的集合, B为这个班学生的全体组成的集合;
⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.
2,3
-2
-1,1
A
B
C
交集的运算性质:
思考题:如何用集合语言描述?
2、并集
一般地,由所有属于集合A或者属于集合B的所构成的集合,称为A与B的并集,记作A∪B,即 A∪B = {x|x∈A,或x∈B} A∪B可用右图中的阴影部分来表示
否则,称为mA,读作“元素m不属于集合A。
例如:1 N, -5 Z,
Q
∈
∈
2、集合与元素的关系(属于∈或不属于 )
1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如下: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x),x∈A。 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20”和“平方后乘以4.9”
观察下面几个例子,你能发现两个集合之间的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5};
⑵设A为新华中学高一(2)班女生的全体组成的集合, B为这个班学生的全体组成的集合;
⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.
2,3
-2
-1,1
A
B
C
交集的运算性质:
思考题:如何用集合语言描述?
2、并集
一般地,由所有属于集合A或者属于集合B的所构成的集合,称为A与B的并集,记作A∪B,即 A∪B = {x|x∈A,或x∈B} A∪B可用右图中的阴影部分来表示
人教版高中数学必修一全套PPT课件
点在直线上或点在直线外。
点与平面的位置关系
点在平面内、点在平面外或点在平面上(即点在平面的边界上)。
直线与平面的位置关系
直线在平面内、直线与平面相交或直线与平面平行。
2024/1/25
31
直线、平面平行的判定及其性质
直线平行的判定
同一平面内,不相交的两条直线互相平行。
平面平行的判定
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个 平面平行。
。
幂函数增长模型
函数值随自变量幂次增长,增 长速度介于线性和指数之间,
如幂函数。
2024/1/25
19
函数模型的应用实例
经济学中的应用
利用函数模型研究成本、收益 、利润等经济问题。
2024/1/25
物理学中的应用
利用函数模型描述物体的运动 规律、波动现象等。
工程学中的应用
利用函数模型进行工程设计、 优化等问题。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
2024/1/25
1
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
2024/1/25
2
PART 01
高中数学必修一概述
2024/1/25
以直角梯形的垂直于底边的腰所在直线为旋转轴,其余各边旋转 形成的曲面所围成的几何体。
球
半圆以它的直径为旋转轴,旋转一周形成的曲面所围成的几何体 。
2024/1/25
24
空间几何体的三视图和直观图
三视图
正视图(从正面看)、侧视图(从左面看)、俯视图(从上面看)。
点与平面的位置关系
点在平面内、点在平面外或点在平面上(即点在平面的边界上)。
直线与平面的位置关系
直线在平面内、直线与平面相交或直线与平面平行。
2024/1/25
31
直线、平面平行的判定及其性质
直线平行的判定
同一平面内,不相交的两条直线互相平行。
平面平行的判定
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个 平面平行。
。
幂函数增长模型
函数值随自变量幂次增长,增 长速度介于线性和指数之间,
如幂函数。
2024/1/25
19
函数模型的应用实例
经济学中的应用
利用函数模型研究成本、收益 、利润等经济问题。
2024/1/25
物理学中的应用
利用函数模型描述物体的运动 规律、波动现象等。
工程学中的应用
利用函数模型进行工程设计、 优化等问题。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
2024/1/25
1
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
2024/1/25
2
PART 01
高中数学必修一概述
2024/1/25
以直角梯形的垂直于底边的腰所在直线为旋转轴,其余各边旋转 形成的曲面所围成的几何体。
球
半圆以它的直径为旋转轴,旋转一周形成的曲面所围成的几何体 。
2024/1/25
24
空间几何体的三视图和直观图
三视图
正视图(从正面看)、侧视图(从左面看)、俯视图(从上面看)。
人教高中 数学必修一必修二的总复习(共32张PPT)
4、若
1 a log 1 3 b 3 2
0.2
c2
1 3
,则它们的大小关系为 c>b>a
5、不等式 log2 ( x 7) 4 的解集为———————— 6、若函数 y f ( x) 在(-1,1)上是减函数,且 f (1 a) f (2a 1) , 则a的取值范围为 0 a 2
3、 判断f(-x)与f(x)之间的关系。 类型题:必修一课本:P35例5 ;P75第4题 综合题: 必修一课本: P82 第10题;P83第3题
例:已知函数
f ( x) loga
x 1 (a 0且a 1) 【必修一优化方案P52例3】 x 1
(1)求函数的定义域 (2)判断函数的奇偶性和单调性
高中数学必修一 【复习重点】
(1)基本特性:确定性、互异性、无序性 1、集合: (2)元素和集合的关系: a A, a B (3)子集、真子集、集合相等:
A B
(子集)
A
B(真子集)
A B
(4)交集、并集、补集: A B A B CU A B {x 2k 1 x 2k 1} 例:1、设集合 A {x 3 x 2}
x2 2 x 则 x 0 时, f ( x) ———————
(3)判断函数的单调性:
证明步骤:1、取点; 2、列差式; 3、化简后与0比较大小; 4、下结论。
类型题:必修一课本:P29例2 P31例4 P78例1
(4) 判断函数的奇偶性:
判断步骤:1、求定义域; 2、判断定义域是否关于原点对称;
平行x轴的线段平行于x’ 轴; (3)确定线段长度
平行x轴的线段长度保持不变; (4)成图
人教A版高一数学必修一第一章综合复习 PPT课件 图文
必修1 第一章 集合与函数的概念
栏目导引
2.函数及其表示
(1)本节是函数部分的起始部分,以考查函数的概念 、三要素及表示法为主,同时考查实际问题中的建 模能力.
(2)以多种题型出现在高考试题中,要求相对较低, 但很重要.特别是函数的表达式,对以后函数应用 起非常重要的作用.
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的 子集.
②在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集 合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定 子集的补集.
B.{x|x≥0}
C.{x|x≥1 或 x≤0} D.{x|0≤x≤1}
解析:
1-x≥0, x≥0
⇔0≤x≤1.故选 D.
答案: D
必修1 第一章 集合与函数的概念
栏目导引
3.若定义在R上的函数f(x)满足:对任意x1,x2∈R 有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确 的是( )
当 x<0 时,函数 f(x)=(x+1)2-2 的最小值为-2,
最大值为 f(-3)=2.故函数 f(x)的值域为[-2,2].
必修1 第一章 集合与函数的概念
栏目导引
1.已知集合A={x|x<a},B={x|1<x<2},且
A∪(∁RB)=R,则实数a的取值范围是( )
A.a≥2
B.a<1
C.a≤2
解析: 假设存在x,使得B∪(∁AB)=A, 即B A.
①若x+2=3,则x=1,此时A={1,3,-1},B= {1,3},符合题意.
人教版(新教材)高中数学第一册(必修1)精品课件:第五章三角函数章末复习课
(2)由题意知,cos α=xr≤0,sin α=yr>0, 即x≤0,y>0, 所以3mm+-29>≤0,0, 所以-2<m≤3,即实数m的取值范围为(-2,3].
【训练 1】 已知角 α 的终边过点 P(-8m,-6sin 30°),且 cos α=-45,则 m
的值为( )
A.-12
B.12
(3)正切曲线:
6.三角函数的性质(表中k∈Z)
y=sin x
定义域
R
y=cos x R
y=tan x {x|x∈R,且 x≠π2+kπ}
增区间:[-π2+2kπ,π2+2kπ], 单调性
减区间:[π2+2kπ,32π+2kπ]
增减区区间间::[[2-kππ,+π2+kπ,2kπ2]kπ],增区间:(-π2+kπ,π2+kπ)
章末复习课
[网络构建]
[核心归纳] 1.任意角与弧度制 (1)与角 α 终边相同的角的集合为 S={β|β=α+2kπ,k∈Z}. (2)角度与弧度的互化:1°=1π80 rad,1 rad=(1π80)°. (3)弧长公式:l=|α|r, 扇形面积公式:S=12lr=12|α|r2.
2.任意角的三角函数 设任意角 α 的终边上任意一点 P(x,y),r= x2+y2,则 sin α=yr,cos α=xr,tan α=yx(x≠0).
C.-
3 2
D.
3 2
解析 由题意知 P(-8m,-3)且 cos α=-45,∴r= 64m2+9,∴cos α=
6-4m82m+9=-45,且 m>0,∴m2=14,∴m=12.故选 B.
答案 B
要点二 同角三角函数基本关系式的应用 同角三角函数基本关系式的应用方法 (1)利用 sin2α+cos2α=1 可以实现 α 的正弦、余弦的转化,利用csoins αα=tan α 可 以实现角 α 弦切互化. (2)关系式的逆用与变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1- sin2α,(sin α+cos α)2=(sin α-cos α)2+4sin αcos α. (3)sin α,cos α 的齐次式的应用:分式中分子与分母是关于 sin α,cos α 的齐次 式或含有 sin2α,cos2α 及 sin αcos α 的式子求值时,可将所求式子的分母看作“1”, 利用“sin2α+cos2α=1”代换后转化为“切”求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选初始区间 取区间中点
中点函
是
数值为零
否
定新区间
区间长度
否
小于精确度
是
结束
(二)函数模型及其应用
▪ 不同增长的函数模型 ▪ 函数模型应用实例
y log 1 x
2
指数函数与对数函数(互为反函数)
指数函数与对数函数(互为反函数)
题型一:求定义域
例1 求定义域
(1)y=log(5x-1)(7x-2)的定义域是
{x
︳x>
2 7
且x≠
2 5
}
(2)y= lg(8 x2 ) 的定义域是
[ 7, 7]
题型二:比较大小(单调性的应用)
例2 比较下列各题中两数值的大小
比较大小的方法
(1) 利用函数单调性(同底数) (2) 利用中间值(如:0,1.) (3) 变形后比较 (4) 作差比较
题型三:图像过定点
例4 (1)函数 y a2 x1 恒过定点________.
(2)函数 y a xb 2 恒过定点(1,3)则b=___.
题型四:解不等式(单调性的应用)
log
a
M N
log
a
M
log
a N;
(3) log a Mn n log a M(n R).
(a>0,且a≠1,M>0,N>0 )
3.几个重要公式
(1) log am
bn
n m
log
a
b
(2) log a
b
log c log c
b a
(3) log a
b
1 log b
a
(换底公式)
(4) log a b • logb c • log c d log a d
二分法概念
a
0
b
x
对于在区间a,b上连续不断且 f a • f b 0的函
数 y f x ,通过不断地把函数 f x的零点所在的区
间一分为二,使区间的两个端点逐步逼近零点,进而得到
零点近似值的方法叫做二分法(bisection).
总结提 炼
用二分法求方程近似解的步骤:
⑴确定区间[a,b],验证 f (a) • f (b) 0 ,给定精确度 ;
两个根都在(k1.k2)内
y
两个根有且仅有
一个在(k1 .k 2)内
x 1∈(m,n) x 2∈(p,q)
k1
k2 x
k 1 k2
m np q
0
k1
b 2a
k2
f
(k1 )
0
f (k2 ) 0
f (m) 0
f(k1 )f(k2 )<0
f (n) 0
f
(
p)
0
f (q) 0
y
必修1复 习
第二课时
第二章 基本初等函数Ⅰ
▪ 指数函数 ▪ 对数函数 ▪ 幂函数
整数指数幂 有理指数幂 无理指数幂
指数
对数
定义 运算性质
定义 图象与性质
定义
指数函数 对数函数
幂函数
图象与性质
返回
(一)指数幂与根式运算
1.指数幂的运算性质
(1)am • an amn
(2)(am )n amn
am (3) an
(1)1.72.5,1.73.
(2) 0.8-0.1 ,0.8-0.2
(3) 2.13.4 ,0.42.8
11
(4) 2 3 ,33
比较两个幂的形式的数大小的方法:
(1) 对于底数相同指数不同的两个幂的大小比较,可以
利用指数函数的单调性来判断.
(2) 对于底数不同指数相同的两个幂的大小比较,可
以利用比商法来判断.
例5 (1)满足不等式 232x 23x7 的x
的取值范围是_________.
(2)解不等式
( 1 )32x ( 1 )3x7 .
2
2
(3)解不等式 a32x a3x7 (a 0, a 1)
(4)解不等式 log2(3 2x) log2(3x 7)
(5)解不等式 log1 (3 2x) log2(3x 7)
一般情况 两个根都小于K 两个根都大于K
y
一个根小于K,一个 根大于K
k
kx
k
0
0
b 2a
k
b 2a
k
f (k ) 0 f (k ) 0
一个根正,一个根负
f(k)<0 , f(0)<0
正根 大
f(0)<0且
b 2a
0
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
一般情况
0<a<1
图y
y
0 (1,0)
象
x
0 (1,0)
x
定义域 : ( 0,+∞)
值域: R
性
过点(1 ,0), 即当x =1时,y=0
在(0,+∞)上是增函数 在(0,+∞)上是减函数
质 当x>1时,y>0
当x=1时,y=0
当0<x<1时,y<0
当x>1时,y<0 当x=1时,y=0 当0<x<1时,y>0
⑵求区间(a,b)的中点x1 ;
⑶计算 f (x1)
①若f( x1)=0,则 x1 就是函数的零点;
②若 f (a) • f (x1) 0 ,则令b=x1(此时零点 x0 (a, x1) );
x ③若 f (x1) • f (b) 0 ,则令a= 1 (此时零点 x0 (x1, b));
⑷判断是否达到精确度 :即若|a-b|< ,则得到零点近似值 为a(或b);否则重复⑵~⑷
例9 求函数f (x) log2 (2x) log1 x,
4
x
1 2பைடு நூலகம்
,
8的值域
换元法
例10 求f (x) 4x 2x1 2, x 1,1的值域.
例11 判断函数f (x) lg( x2 1 x) 的奇偶性与单调性.
3.函数y=xα叫做幂函数,其中x是自变量,α
是常数.
第三章 函数的应用
(二)对数的概念及运算
1.概念
ax N x log a N. (a>0,a 1 )
!负数和零没有对数. !常用关系式:
log a1 0, log aa 1, aloga N N log a ax x
2.对数运算性质
(1) log a(M N) log aM log aN;
(2)
▪ 函数与方程 ▪ 函数模型及其应用
(一)函数的零点与方程的根
y=f(x)的图像与x轴的交点的横坐标叫做该函数 的零点。即f(x)=0的解。
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
例12 已知函数f x的图象是连续不断的, 且有如下的x, f x的对应值表:
x 1 2 3 4 5 67 89
f x 14 8 2 2 7 3 2 1 8
问:函数f x在哪几个区间内有零点?为什么?
结 零点存在定理
论 如果函数 y f (x)在区间a,b上的图象是连续不断的一条曲线,
并且有 f (a) f (b) 0,那么,函数 y f (x)在区间a,b内有零点,
2
例6 (1)已知3lg(x-3)<1,求x的范围.
(2)已知logm5>logn5,试确定m和n的大小 关系.
题型五:函数奇偶性的判断
例7 判断下列函数的奇偶性.
(1)
f
(x)
(
2
1 x
1
1)x 2
(2)
f
(x)
1 x
log2
1 1
x x
题型六:综合问题
例8 若f (x) ax loga (x 1)在[0,1]上 的最大值与最小值之和为a,则a的值为__ .
即存在c a,b,使得 f (c) 0,这个c也就是方程 f (x) 0的根。
(1) 函数y=f(x)在区间
[a,b]上的图象是连续不 断的一条曲线:
(2) f(a)y ·f(b)<0
.
函数y=f(x)在区间 (a,b)内至少有一个 零点;
0 a.
bx
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
a>1
a>1
1
R (0,+∞) (0,1)
X<0 X>0
0<y<1 y>1
增函数
1
(0,+∞) R
(1,0) 0<x<1 y<0
x>1 y>0
增函数
y y (110)x y 10x
y
(
1 3
)
x
y (1)x 2
y 3x
y 2x
o
x
y log2 x
y lg x
y log 1 x
10
3. 根式
!根式 n an 对任意实数a都有意义,
!当n为正奇数时,n an a ,
!当n为正偶数时,
n
an
|
a
|
a
,a 0
a , a 0
4. 分数指数幂
(1)正数的分数指数幂:
m
a n n am
m
,a n
1
,
n am
(a 0, m, n N , n 1)
(2)零的正分数指数幂为零,零的 负分数指数幂没有意义
amn
(4)(ab)n an • bn