正弦函数图像课件

合集下载

正弦函数、余弦函数的图像课件(第一课时)

正弦函数、余弦函数的图像课件(第一课时)
总结词
正弦函数和余弦函数的图像在极值点处达到最大或最小值。
详细描述
正弦函数和余弦函数的图像在极值点处呈现出明显的拐点,即函数值从增加变为减少或从减少变为增 加的点。这些极值点的位置与函数的周期性有关,它们通常出现在周期的中点和结束处。在数学上, 这些极值点可以通过求导数或观察函数图像来确定。
05
总结与回顾
正弦函数具有周期性、单调性、奇偶性等性质。在区间[0,π]上,正弦函数是单 调递增的;在区间[π,2π]上,正弦函数是单调递减的。正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义与性质
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比 值,记作cos(x)。
绘制图像
使用与绘制正弦函数相同的方 法来绘制余弦函数的图像。
显示图像
同样使用matplotlib的show 函数来显示绘制的图像。
04
图像分析
正弦函数和余弦函数的图像对比
总结词
正弦函数和余弦函数的图像在形状上非常相似,但在相位上存在差异。
详细描述
正弦函数和余弦函数都是周期函数,它们的图像呈现出规律性的波动。在直角坐标系中,正弦函数的图像是一个 连续的波形,而余弦函数的图像同样是连续的波形,但相对于正弦函数,它有一个相位偏移。在极坐标系中,正 弦函数和余弦函数的图像分别呈现出正弦曲线和余弦曲线的形状。
课程目标
掌握正弦函数和余弦 函数的图像特点。
能够运用正弦函数和 余弦函数的图像解决 一些实际问题。
理解正弦函数和余弦 函数的周期性和对称 性。
02
正弦函数和余弦函数的定 义与性质
正弦函数的定义与性质
定义
正弦函数是三角函数的一种,定义为直角三角形中锐角的对边与斜边的比值, 记作sin(x)。

《正弦函数图象》课件

《正弦函数图象》课件
2023
《正弦函数图象》 ppt课件
REPORTING
2023
目录
• 正弦函数的定义与性质 • 正弦函数的图象 • 正弦函数在实际生活中的应用 • 正弦函数的拓展知识
2023
PART 01
正弦函数的定义与性质
REPORTING
正弦函数的定义
总结词
正弦函数是三角函数的一种,它 描述了直角三角形中锐角的对边 与斜边的比值。
sin(2π+α)=sinα
诱Байду номын сангаас公式三
sin(π/2+α)=cosα
诱导公式四
sin(3π/2+α)=-cosα
诱导公式五
sin(π/2-α)=cosα
诱导公式六
sin(3π/2-α)=-cosα
和差化积公式
01
sin α+sin β=2 sin((α+β)/2) cos((αβ)/2)
02
sin α-sin β=2 cos((α+β)/2) sin((αβ)/2)
总结词
正弦函数是奇函数,因为对于任何x,都有sin(-x) = -sin(x)。
详细描述
奇函数的定义为对于所有x,都有f(-x) = -f(x)。对于正弦函数,当我们将x替换 为-x时,得到sin(-x) = -sin(x),满足奇函数的定义。
2023
PART 02
正弦函数的图象
REPORTING
与线性函数的比较
线性函数是一条直线,其图像单 调增加或单调减少,与正弦函数 的周期性和波动性有显著差异。
2023
PART 03
正弦函数在实际生活中的 应用
REPORTING

5.4.1正弦函数、余弦函数的图像课件(人教版)

5.4.1正弦函数、余弦函数的图像课件(人教版)
6
6 3 2 3



3

2
2
3
5
6







2

x
sin(2k+x)= sinx (kZ)
y
y=sinx (xR)
1
2
-1
0

2
3
4
5
6
x
2、正弦函数的“五点画图法”
y
1


2

0


-1
3
2

2
x



(0,0) ( , 1) (,0) (

,-1)
解:(1)按五个关键点列表 y=1+sinx, x[0,2]
x
0
sinx
0
1+sinx
1
y
2


2
3
2
0
1
2
2
0
-1
0
1
1
y=1+sinx x[0, 2]

1●
o


2



3
2
2
x
(2)按五个关键点列表 y= - cosx, x[0,2]
x
0
cosx
1
-1
-cosx
y
2
-1

3
2
2
3
y=cosx的图象
4
5
6
x
4、余弦函数的“五点画图法”
y
1

o

高数数学必修一《5.4.1正弦函数、余弦函数的图像》教学课件

高数数学必修一《5.4.1正弦函数、余弦函数的图像》教学课件
过两直线y=1和y=-1所夹的范围.
其中正确的个数是(
)
A.0
B.1
C.2
D.3
答案:D
题型 2 利用“五点法”作三角函数的图象
【问题探究2】 在确定正弦函数的图象形状时,应抓住哪些关键点?
π
2

2
提示:(0,0),( ,1),(π,0),( ,-1),(2π,0)
例2 用“五点法”作出下列函数的图象:
)
(2)函数y=cos
1
2
x,x∈[0,2π]的图象与直线y=- 的交点有________
2
个.
1
2
解析:作出y=cos x,x∈[0,2π]与y=- 的图象(图略),由图象可知,函数y=cos x,x∈[0,2π]的图象与
1
直线y=-2有两个交点.
ቤተ መጻሕፍቲ ባይዱ
随堂练习

1.已知点( ,m)在余弦曲线上,则m=(
____________
________
正(余)弦函数的图象叫做正(余)弦曲线,是一条“波浪
起伏”的连续光滑曲线
【即时练习】
1.观察正弦函数y=sin x,x∈R的图象,下列说法错误的是(
A.过原点
B.与y=cos x的图象形状相同,只是位置不同
C.与x轴有无数个交点
D.关于y轴对称
答案:D
解析:观察题图可得,正弦函数y=sin x,x∈R的图象不关于y轴对称.故选D.
B.介于直线y=1与直线y=-1之间
C.关于x轴对称
D.与y轴仅有一个交点
答案:ABD
微点拨❶
(1)作正弦函数、余弦函数图象时,函数自变量的取值要用弧度制,
以保证自变量的取值与函数值都为实数.

数学人教A版必修第一册5.4.1正弦函数、余弦函数的图象课件

数学人教A版必修第一册5.4.1正弦函数、余弦函数的图象课件
点( ,�� ),将这些点用光滑的曲线连接起来,可得的比较精确的函数 =
, ∈ [,]的图象.
知识梳理
探究二:根据函数 = , ∈ [,]的图象,你能想象函数 = , ∈
的图象吗?
由诱导公式一可知,函数 = , ∈ [, ( + )], ∈ 且 ≠ 的图象



− −



− −


− −















知识梳理
探究三:在确定正弦函数的图象形状时,应抓住哪些关键点?
【提示】
视察图,在函数 = , x∈[0,2π]的图象上,
以下五个点: 0,0 ,

,1
2
, ,0 ,
3
,1
2
, 2,0



= , ∈ 的图


象向左平移 个单位长度而得到.所以,将正弦函数的图象向左平移 个单位长度,
就得到余弦函数的图象,如图所示:
知识梳理

− −






− −


















余弦函数 = , ∈ 的图象叫做余弦曲线.它是与正弦曲线具有相同形状
若把轴上从0到2这一段分成12等份,使



的值分别为0, , , , … ,2,



它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点( , )

正弦函数的图像课件

正弦函数的图像课件
解决实际问题
通过掌握正弦函数的性质和图像, 可以解决许多实际问题,提高解决 实际问题的能力和素养。
未来研究方向和挑战
深入研究和探索
随着科学技术的发展,正弦函数的应用领域也在 不断扩大和深化,需要进一步研究和探索其性质 和应用。
数值分析和计算物理
随着计算机技术的发展,如何利用正弦函数进行 数值分析和计算物理的研究也是未来的一个重要 方向。
数学建模和算法设计
如何利用正弦函数建立数学模型和设计算法,是 未来研究的一个重要方向。
跨学科应用
正弦函数作为数学中的基础函数,可以与其他学 科进行交叉融合,例如与物理学、工程学、经济 学等学科的结合,需要进一步探索其跨学科应用 的价值和可能性。
THANKS
感谢观看
图像形状
正弦函数和对数函数的图像形状也不同。正弦函数的图像呈现波形,而对数函数的图像 呈现向上或向下凸出的趋势。
05
总结与展望
正弦函数的重要性和应用价值
数学基础
正弦函数是数学中的基本函数之 一,是学习三角函数、复数、微
积分等数学领域的基础。
应用广泛
正弦函数在物理学、工程学、经济 学等多个领域都有广泛的应用,例 如振动分析、交流电、信号处理等 。
振幅和相位
通过调整正弦函数中的振幅和相位参 数,可以改变图像的高度和位置。了 解这些参数对理解正弦函数图像的影 响非常重要。
03
正弦函数的应用
在物理中的应用
简谐振动
正弦函数描述了许多物理现象, 如简谐振动。在物理中,简谐振 动是一种基本的振动类型,其位 移与时间的关系通常可以用正弦
函数表示。
交流电
操作步骤
在软件中选择相应的函数图像绘制工具,输入正弦函数公式(例如y=sin(x)), 然后选择x的取值范围(例如-π到π),最后点击“绘制”按钮即可生成正弦函数 的图像。

正弦函数的图像课件(用)

正弦函数的图像课件(用)
正弦函数的图像 课件
PPT,a click to unlimited possibilities
汇报人:PPT
添加目录标题 课件概述
正弦函数基础 知识
正弦函数的图 像绘制
正弦函数图像 的变换与性质
正弦函数的应 用实例
总结与回顾
添加章节标题
课件概述
适用对象:高中生
课件简介
教学目标:掌握正弦函数的图 像特点,理解其性质和应用
信号的滤波:正弦函数可以 作为滤波器的一种基础波形
信号的表示:正弦函数可以 用来表示周期信号
信号的调制:正弦函数可以用 于调制信号,例如在无线通信

总结与回顾
知识点总结
正弦函数的定义 与性质
正弦函数的图像 与特点
正弦函数的应用 与实例
回顾与总结:加 深对正弦函数的 理解和掌握
回顾与思考题
正弦函数的定义和性质 正弦函数的图像特点和绘制方法 正弦函数的应用和实际意义 回顾与思考:如何更好地理解和掌握正弦函数的图像?
感谢观看
汇报人:PPT
设置x的范围:例 如x = np.linspace(-2 * pi, 2 * pi, 1000)
绘制图像:例如 plt.plot(x, y)
正弦函数图像的变换与 性质
振幅变换与周期变换
振幅变换:改变正 弦函数的幅度大小, 图像形状不变
周期变换:改变正 弦函数的周期,图 像形状不变
振幅与周期的关系 :振幅越大,周期 越短;振幅越小, 周期越长
振幅与周期变换的 应用:在信号处理 、电子工程等领域 有广泛的应用
相位变换的方法
相位变换
相位变换对函数图像的影响
相位的概念
相位变换在实际问题中的应 用

数学:《正弦函数的图像与性质——ωφ的图象》课件新人教版必修可编辑全文

数学:《正弦函数的图像与性质——ωφ的图象》课件新人教版必修可编辑全文
有何关系?
2024/10/13
思考 :怎样由y sin x的图象得到y 2sin(1 x )
36 的图象?
(1)向右平移
函数y sin x
6
y sin( x )的图象
6
(2)横坐标伸长到原来的3倍 y sin(1 x )的图象
纵坐标不变
36
(3)纵坐标伸长到原来的2倍 y 2sin(1 x )的图象
y
2
y=2sinx
1
y=sinx
2
O
1
y=
1sinx
2 2
yx 2
1
2024/10/13
O
1
2
2 x
一、函数y=Asinx(A>0)的图象
2024/10/13
y
y=2sinx
2
1
O
1 y= 1sinx
2
2
2 x
函数y=Asinx (A >0且A≠1)的图象可以看作是把 y=sinx 的图象上所有点的纵坐标伸长 (当A>1时) 或缩短(当0<A<1时) 到原来的A倍(横坐标不变) 而得到的。 y=Asinx ,x∈R的值域为[-A,A],最 大值 为A,最小值为-A.
新课讲解:
例1 作函数
y 2sin x

y
1 sin 2
x
的图象。
解:1.列表
x
0
2
3 2
2
sin x
0
1
0
1
0
2sin x 0
2
0
2
0
1 2
sin
x
0
1 2
0
1 2
0

正弦函数、余弦函数的图像课件

正弦函数、余弦函数的图像课件

2.余弦函数的图像 (1)余弦曲线:余弦函数y=cos x,x∈R的图像叫做余弦 曲线.
(2)余弦函数图像的画法:
①要得到 y=cos x 的图像,只须把 y=sin x 的图像 向左平移 π2个单位长度 便可,这是由于 cos x= sin(x+π2).
②用“五点法”画余弦曲线 y=cos x 在[0,2π]上的图像时,所取
()
A.y=sin x
B.y=sin |x|
C.y=-sin |x|
D.y=-|sin x| 解析:由 y=sin x 的图像知 A 不正确,D 中图像都在 x 轴下方
不正确,当 x=π2时,由图像知 y<0,故排除 B. 答案:C
[研一题]
[例 3] 在[0,2π]内,使 sin x>cos x 成立的 x 值的取值范围
[悟一法] 1.把y=sin x的图像在x轴上方的部分保留,x轴下方的 图像沿x轴翻折到x轴上方,就可得y=|sin x|的图像. 2.把y=sin x图像在y轴右侧的部分保留,去掉y轴左侧 的图像,再把y轴右侧的图像沿y轴翻折到y轴左侧,就可得y =sin |x|的图像.
[通一类]
2.与图中曲线对应的函数是

()
A.(π4,π2)∪(π,54π)
B.(π4,π)
C.(π4,54π)
D.(π4,π)∪(54π,32π)
[自主解答] 用“五点法”作出y=sin x,y=cos x(0≤x≤2π)的简图.
由图像可知(1)当 x=π4或 x=54π时,sin x=cos x. (2)当π4<x<54π时,sin x>cos x. (3)当 0≤x<π4或54π<x≤2π 时,sin x<cos x.

三角函数正弦函数的图像与性质正弦函数的图像课件ppt

三角函数正弦函数的图像与性质正弦函数的图像课件ppt

波形
正弦函数的图像呈现出典 型的波形,即一个连续的 、重复的曲线。
图像的周期性与振幅
周期性
正弦函数的周期性意味着我们可以使用一个常数(通常称为相位偏移量)来移动 函数的图像,而不改变其形状或特性。这个常数被称为相位偏移量,通常用希腊 字母表示。
振幅
正弦函数的振幅是指函数值可以变化的范围。振幅的大小可以用数学公式表示, 也可以在图像上直观地看到。
要点二
控制系统
正弦函数经常用于分析和设计控制系统,如反馈控制系 统和自动控制系统。在控制工程中,正弦函数被用于描 述和建模系统的动态行为。
在数学与其他领域中的应用
微积分
正弦函数是微积分中重要的函数之一。它在求解微分方 程、最优控制和最优化问题等数学问题中具有广泛的应 用。
统计学
正弦函数在统计学中也有应用,如在描述正态分布的尾 部概率密度函数时。此外,正弦函数还被用于信号处理 和图像处理等领域。
图像的极值与零点
极值
正弦函数在某些点上达到最大或最小值。这些点称为极值点 。在图像上,极值点通常表现为曲线向上或向下突然转折的 点。
零点
正弦函数在某些点上为零。这些点称为零点。在图像上,零 点通常表现为水平线段,即函数值为零的点。
03
正弦函数的性质
函数的单调性
递增区间
正弦函数在$\lbrack - \frac{\pi}{2} + 2k\pi,\frac{\pi}{2} + 2k\pi\rbrack(k \in \mathbf{Z})$上单调 递增。
正弦函数与反正弦函数的关系
反正弦函数(asin)是正弦函数的反函数。 它的定义域和值域与正弦函数相反。
反正弦函数和正弦函数在图像上呈现对称性 ,且具有相同的频率但相位不同。

7.3.2正弦型函数的性质和图像课件-高一下学期数学人教B版必修第三册

7.3.2正弦型函数的性质和图像课件-高一下学期数学人教B版必修第三册
是把 y sin( x) 的图象上所有点的横坐
标* 1 倍(纵坐标不变)而得到的. 0 T 2
正弦型函数y =Asin(ωx + )的图象
2. A的作用:研究 y=Asinx 与 y=sinx 图象的关系 先视察y=2sinx、y= 1 sinx与y=sinx的图象间的关系
2
y 2
1
0
的作用:使正弦函数的图象产生位移变化。
五点作图法:1、列五点表,2、描点、连线。
Thank you for watching !
人教B版高中数学必修三
第七章 三角函数
7.3.2 正弦型函数图像
主讲人:
学习目标
核心素养
通过正弦型函数 y=
1.结合具体实例,了解 y=Asin(ωx+φ)的实际意义,Asin(ωx + φ) 图 像 和
并且了解 y=Asin(ωx+φ)中的参数 A,ω,φ 对函数 性质的学习,培养学
图像变化的影响以及它们的物理意义.(难点)
先视察y = sin(x+ )、y = sin(x - )
2
2
与 y=sinx 的图象间的关系
y 1
0
2 -1
π
2

x
3、 的作用:研究 y=sin(x+ )与y=sinx 图象的关系
先视察y
=
sin(x+
2
)、y
=
sin(x
-2

与 y=sinx 的图象间的关系
y 1
0
π

x
-1
的作用:使正弦函数的图象产生位移变化。
y
A2 1
0
-1
y=2sinx y= 1 sinx

正弦函数的图像ppt课件

正弦函数的图像ppt课件

信号处理
在信号处理领域,正弦函数常被用 于信号的滤波、调制和解调等操作。
机械工程
在机械振动和噪音控制中,正弦函 数被用于描述和分析振动模式和频 率。
在日常生活中的应用
音乐
正弦函数在音乐领域的应 用非常广泛,如音高和音 长的计算等。
通信
无线电和电视信号的传输 过程中,正弦函数用于调 制和解调信号。
医学成像
正弦函数的周期性
总结词
正弦函数具有周期性,即函数图像每 隔一定周期重复出现。
详细描述
正弦函数的周期为360度或2π弧度,这 意味着每经过360度或2π弧度,函数值 会重复之前的值,形成周期性的波形。
正弦函数的奇偶性
总结词
正弦函数是奇函数,具有奇函数的性质。
详细描述
奇函数满足性质f(-x)=-f(x),对于正弦函数,当取相反角度时,函数值也取相反 数。例如,sin(-π/2) = -1,与sin(π/2)的值相反。
03
正弦函数的应用
在物理中的应用
01
02
03
简谐振动
正弦函数是描述简谐振动 的基本函数,如弹簧振荡 器、单摆等。
交流电
正弦函数被广泛用于描述 交流电的电压、电流和频 率,是电力系统的基本模 型。
声学
声音的传播和波动可以用 正弦函数来描述,如声波 的振幅和频率。
在工程中的应用
控制系统
正弦函数在控制系统分析中有着 广泛应用,如PID控制器等。
03
奇偶性
正弦函数是奇函数,而正切函数是奇函数。这意味着它们在对称性上有
相同的表现。
与其他三角函数的比较
定义域
除了正弦函数、余弦函数和正切函数外,还有其他一些三角函数,如反正弦函数、反余弦 函数、反正切函数等。它们的定义域各不相同,但都与正弦函数、余弦函数和正切函数的 定义域有交集。

三角函数正弦函数的图像与性质正弦函数的图像课件ppt

三角函数正弦函数的图像与性质正弦函数的图像课件ppt
三角函数正弦函数的图像与性质 正弦函数的图像课件ppt
xx年xx月xx日
目录
• 正弦函数图像生成 • 正弦函数的性质 • 常见三角函数公式 • 正弦函数的应用 • 实战案例:使用正弦函数和余弦函数解决实际问

01
正弦函数图像生成
准备绘制正弦函数图像
选择坐标系
在直角坐标系中,选择一个周期内的图像,可选择 $y=sin(x)$或$y=sin(2x)$等。
03
常见三角函数公式
两角和与差的余弦函数和正弦函数公式
$\cos(x+y)=\cos x\cos y-\sin x\sin y$
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
倍角公式和半角公式
$\cos 2x=cos^2 x-sin^2 x$ $\cos\frac{x}{2}=\frac{\cos x+1}{2}$
$\sin 2x=2sin x cos x$ $\sin\frac{x}{2}=\frac{\sqrt{1-cos x}}{2}$
积化和差和反三角函数公式
使用正弦函数和余弦函数解决桥梁振动问题
总结词
利用正弦、余弦函数的性质,建立模型并解决实际问题。
详细描述
通过实例演示如何利用正弦、余弦函数的性质,建立模型并解决桥梁振动问题, 包括振幅、频率、相位等的求解。
使用正弦函数和余弦函数解决日常生活中的优化问题
总结词
将正弦、余弦函数应用于优化问题中,提高解决方案的效率 和精度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
3
y=2+sin x x∈[0,2π]
2
1
. . .π
0

2
y=sin x -1 x∈[0,2π]
-1
.3
2
. 2π x y=sin 3x x∈[0,2π]

本节课主要介绍了作正弦函数图 不 象的方法,其中五点作图法最常用, 在
要牢记五个关键点的选取特点。

,
你记住了吗?

作正弦函数图象的简图的

方法是

“五点法”

!
ห้องสมุดไป่ตู้出下列函数的简图:
(1)y 1sin x, x[0,2 ] (2)y 1 sin x, x[0,2 ]
(3) y
1
1 sin
x, x[0,2 ]
(4) y

2
3sin x, x[0,2 ]
2
数与形,本是相倚依, 焉能分作两边飞; 数无形时少直觉, 形少数时难入微; 数形结合百般好, 隔离分家万事休; 切莫忘, 几何代数统一体, 永远联系莫分离.
正弦函数y=sinx的
图象
制作:熊德忠 颛孙友波 单位:济宁高新区高级中学
正弦线的概念
y P
M
x
O
正弦线: MP

在直角坐标系中如何作点( ,sin )? 33
y
P MO
C(

3
,

sin 3
)
x

用几何方法作正弦函数 y sin x(x [0,2 ])
图象的步骤:
(1)作直角坐标系,在直角坐标系的y轴左侧画单位圆; (2)把单位圆分成12等份。过单位圆上的各分点作x轴
. . 3
2

x
(2) 列表:
x
0

2
y=sin x
0
1

3
2
2
0
-1
0
y=1+sin x
1
2
1
0
1
描点得y=1+sin x的图象 y=1+sin x x∈[0,2π] y
1
..
0

2
-1
. . . π
3 2

x
y=sin x x∈[0,2π]
练习:用“五点法”画出下列函数在区间[0,2π]的简图。 (1)y=2+sin x; (2)y=sin x-1; (3)y=3sin x.
y
B
1
(B) y=sin x, x∈[0,2π]
A
O1
O
(O1)


2
3
2
2
x
-1
作函数 y sin x(x [0,2 ])的简图
y.
. · · -2
-
o
. . · · · ·x
.
2 3
4
坐标依次为:
(0,0)、( ,1)、( ,0)、(3 ,-1)、( 2 ,0)
———华罗庚

4
1


7 2

3


5 2

2


3 2




2
0
2
y1


3 2

2

5 2

3

7 2

4
x
正弦曲线
y=sin x, x∈R
由此得正弦函数 y sin x(x R)的图象为
y 1
· · -2
-
o
· · · ·x

2 3
4
-1
正弦函数 y sin x(x R)的图象叫正弦曲线
因为正弦函数是周期为2kπ(k∈Z,k≠0)的函数,所以函数y=sin x在 区间[2kπ, 2(k+1)π] (k∈Z,k≠0)上与在区间[0,2π]上的函数图象形状完全 一样,只是位置不同.于是我们只要将函数y=sin x(x∈ [0,2π])的图象向左, 右平行移动(每次平行移动2π个单位长度),就可以得到正弦函数y=sin x(x∈R)的图象,如下图所示.
的垂线,可以得到对应于各角的正弦线; (3)找横坐标:把x轴上从0到2这一段分成12等份; (4)找纵坐标:将正弦线对应平移,即可指出相应12
个点; (5)连线:用平滑的曲线将12个点依次从左到右连接
起来,即得到 y sin x(x [0,2 ])的图象。
所以我们只需要仿照上述方法,取一系列的x的值,找到这些 角的正弦线,再把这些正弦线向右平移,使他们的起点分别与x轴 上表示的数的点重合,再用光滑的曲线把这些正弦线的终点连接 起来就得到正弦函数y=sin x 在区间[0,2π]上的图象.
2
2
图中,起着关键作用的点是哪些?
找到它们有什么作用呢?
0,0


2
,1
,0

3 2
,1
2 ,0
找到这五个关键点,就可以画出正弦曲线了!
如下表
x

0
2

3
2
2
y=sin x
0
1
0
-1
0
y

1
. . . . . 3
π
2

0

x
2
-1

五点法
如何画出正弦函数 y=sin x(x∈R) 的图象呢?
例题分析
例 用“五点法”画出下列函数在区间[0,2π]的简图。
(1)y=-sin x; (2)y=1+sin x.
解 (1)列表:
x
0


3
2
2
2
y=sin x
0
1
0
-1
0
y=-sin x
0
-1
0
1
0
描点得y=-sin x的图象
y y=sin x x∈[0,2π]
1
. . .π
0

2
-y1=-sin x x∈[0,2π]
相关文档
最新文档