高一第二学期期末考试数学试卷含答案(共3套)
2020高中数学新课标测试模拟试卷及答案(两套)

高中数学新课标测试模拟试卷(一)一、填空题(本大题共 10 道小题,每小题 3 分,共 30 分)1、数学是研究()的科学,是刻画自然规律和社会规律的 科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、()、基本思想。
3、高中数学课程应具有多样性和(),使不同的学生在数学上得到不同的发展。
)能力。
4、高中数学课程应注重提高学生的数学(5、高中数学选修 2-2 的内容包括:导数及其应用、(复数的引入。
)、数系的扩充与 6、高中数学课程要求把数学探究、(块和专题内容之中。
)的思想以不同的形式渗透在各个模 7、选修课程系列 1 是为希望在( )等方面发展的学生设置的, 系列 2 是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与( 的一种工具。
)。
)10、数学探究即数学(学习的过程。
)学习,是指学生围绕某个数学问题,自主探究、 二、判断题(本大题共 5 道小题,每小题 2 分,共 10 分)1、高中数学课程每个模块 1 学分,每个专题 2 学分。
() 2、函数关系和相关关系都是确定性关系。
( 3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依 据。
( 4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
) )( )5、教师应成为学生进行数学探究的领导者。
()三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?2、高中数学新课程设置的原则是什么?3、评价学生在数学建模中的表现时,评价内容应关注哪几个方面?4、请简述《必修三》中《算法初步》一章的内容与要求。
四、论述题(本大题共2道小题,第一小题12分,第二小题20分)1、请完成《等差数列前n项和》第一课时的教学设计。
2、请您结合自己的教学经验,从理论和实践两个方面谈谈如何改善课堂教学中的教与学的方式,能使学生更主动地学习?答案一、填空题1、空间形式和数量关系2、基本技能3、选择性4、思维5、推理与证明6、数学建模7、人文、社会科学8、情感、态度、价值观9、三角函数10、探究性课题二、判断题1、错,改:高中数学课程每个模块2 学分,每个专题1 学分。
高一数学下学期期中考试数学试卷含答案(共3套)

15.从3男2女共5名学生中任选2人参加座谈会,则选出的2人恰好为1男1女的概率为______.
16.已知圆 ,圆 以 为中点的弦所在直线的斜率 __________.
三、解答题(17题10分,18-22题每题12分)
17.如图,在三角形ABC中,顶点 , 边所在直线的方程为 , 边的中点 .
附:回归直线的斜率和截距的最小二乘法估计公式分别为: ,
22.“中华好诗词”内蒙古赛区有40名选手参加初选,测试成绩(单位:分)分组如下:第1组 ,第2组 ,第3组 ,第4组 ,第5组 ,得到频率分布直方图如图所示.
(1)求直方图中 的值,若90分(含90分)为晋级线,有多少同学晋级?(4分)
(2)根据频率分布直方图估计成绩的众数和平均值;(4分)
5887 3522 2468 3748 1685 9527 1413 8727 1495 5656
A.09B.02C.15D.18
6.小李同学从网上购买了一本数学辅导书,快递员计划周日上午 之间送货到家,小李上午有两节视频课,上课时间分别为 和 ,则辅导书恰好在小李同学非上课时间送到的概率为()
A. B. C. D.
即 .
(2)(5分)因 ,所以点 在线段 的中垂线 上,
由 得 ,即 的坐标为 ,又点 ,
边所在直线的方程为 ,即 .
18.(1)(6分)设圆为 : ,
代入 , , ,
有 ,
∴圆 的方程为 .
(2)(6分)联立 ,
即 ,解得:交点为 , ,
故弦长 .
19.(1)(6分)因为点 是 的中点,
,即
又 ,即 .
所以点 的轨迹方程为 .
天利38套名校高一第二学期期末联考测试卷(八)数学答案

天利38套名校高一第二学期期末联考测试卷(八)数学答案本试卷分第1卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项.1、答卷前,考生务必用0、5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2、第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3、第1I卷必须用0、5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上,如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4、填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤参考公式.如果事件A,B互斥,那么P(A+B)=P(A)+P(B)第1卷(共50分)一、选择题.本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求1、若集合M=(r|VE<4),N=(x |3x>1),则MON =()A.[r|0<r<2)B.(x<r<2)C.[r|3 <r<16)D.(x1<r<16)2、若i(1-=)=1,则.+3=()A.-2B.-1C.1D.23、在AABC中,点D在边AB上,BD =2DA、记CA=m,CD=n、则CB=()A.3m-2nB.-2m +3nC.3m + 2nD.2m +3n4、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库,已知该水库水位为海拔148、5 m时,相应水面的面积为140、0km2;水位为海拔157、5 m时,相应水面的面积为180、0km2、将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148、5m上升到157、5m时,增加的水量约为(V7= 2、65)()A.1、0 x 100 m3B.1、2 x 100 m3C.1、4 x 109 m3D.1、6 x 109 m35,从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.1/6B.1/3C.1/2D.2/36、记函数f(z)= sin(wr+)+b(w> 0)的最小正周期为T、若〈T<x,且y=f(z)的图像关于点(、2)中心对称,则f()=A.1B.3/2C.2/5D.3二、选择题.本题共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分7、已知正方体ABCD-asic,Di,则()A.直线bcg与DA1所成的角为90°B.直线BC;与CA1所成的角为90°C.直线BC]与平面BB,DiD所成的角为45D.直线BC]与平面ABCD所成的角为45°8、已知函数f(r)=r3-r+1,则()A.f(r)有两个极值点B.f(r)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2r是曲线y=f(z)的切线9、已知0为坐标原点,点A(1,1)在抛物线C:r=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则()A.C的准线为y=-1B.直线AB与C相切C.OPI-JOQ > |OAD.BPI-|BQI > |BA210、已知函数f(z)及其导函数J"(z)的定义域均为R,记g(z)= f'(r)、若f(;-2r),9(2+r)均为偶函数,则()A.f(0)=09B.g(-1)=g(2)C.f(-1)= f(4)D.g(-1)= g(2)三、填空题.本题共4小题,每小题5分,共20分11、(1-)(z+ y)*的展开式中ry的系数为()(用数字作答)、12、写出与圆r2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程15、若曲线y=(r+a)e有两条过坐标原点的切线,则a的取值范围是13、已知椭圆C.+=1(a>b>0),C的上顶点为A、两个焦点为Fi,Fz,离心率为过F.且垂直于AF2的直线与C交于D,E两点,DE=6,则AADE的周长是四、解答题.本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤14、(10分)记S,为数列(an的前n项和,已知a1=1,)是公差为.的等差数列(1)求(an)的通项公式;(2)证明:=+-++<215、(12分)已知函数/(r)=e'-ar 和g(r)= ax-jnr有相同的最小值(1)求a;(2)证明.存在直线y=6,其与两条曲线y=f(r)和y= g(r)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列16、(12 分)cos A记AABC的内角A、B、C的对边分别为a、b、c,已知1+ sin A(1)若C=,求B;(2)求的最小值。
2022-2023学年江西省赣州市于都县第三中学、全南县第二中学高一数学第一学期期末考试试题含解析

对于套餐甲:
当 时, ,
当 时,设 ,可知函数图象经过点 , ,
所以 ,解得 ,所以
故
对于套餐乙:
当 时, ,
当 时,根据题意,可设 ,
将 代入可得 ,所以
故
【小问2详解】
由 ,可得 ,解得
由函数图象可知:
若用户使用的流量 时,应选择套餐甲;
若用户使用的流量 时,选择两种套餐均可;
若用户使用的流量 ,应选择套餐乙
2022-2023学年高一上数学期末模拟试卷
考பைடு நூலகம்须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
C. D.
4.若 ,则 的最小值为()
A. B.
C. D.
5.函数 的最小值为()
A. B.3
C. D.
6.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是()
8、D
【解析】直接利用二倍角公式,转化求解即可
【详解】解: ,则cos2x=1﹣2sin2x=1﹣2
故选D
【点睛】本题考查二倍角的三角函数,考查计算能力
9、A
【解析】先判断出 上单调递增,由 ,即可得到答案.
【详解】因为函数 是定义在R上的偶函数,所以 的图像关于y轴对称,且 .
人教版2023--2024学年度第二学期小学二年级数学期末测试卷及答案(含三套题)

…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2023--2024学年度第二学期期末测试卷及答案二年级 数学(满分:100分 时间:40分钟)题号 一 二 三 四 五 总分 分数一、细心读题,谨慎填写。
(每个算式2分,其余每空1分,共18分)1.泰山为五岳之首,总面积2万多公顷,主峰玉皇顶海拔约一千五百三十二米。
横线上的数写作( )。
2. 10个一千是( ),5017里面有( )个千、( )个十和( )个一。
3.从63里面连续减去9,减( )次后结果是0。
4.○÷5=8……☆,☆最大是( ),这时○是( )。
5. 8个鸡蛋大约重500克,( )个鸡蛋大约重2千克。
6. 4000克=( )千克 1千克-300克=( )克7.按规律填数。
( ),2050,2100,2150,( )。
8.学校庆祝“六一”,要在班级布置彩旗。
彩旗按“3红2绿1黄”的顺序排列,第35面彩旗是( )色。
9.看图填一填。
□÷□=□10.看秤填数。
二、反复比较,慎重选择。
(共15分)1.把12朵花平均分成3份,哪种分法是正确的?( ) A. B. C.2.下面是平移运动的是( )。
A.国旗缓缓升起B.风扇叶片的转动C.荡秋千3.一本故事书有40页,看了5页后,剩下的5天看完。
要求剩下的平均每天看几页,下面列式正确的是( )。
A.40-5÷5B.40÷5-5C.(40-5)÷54.一批货物有40箱,一辆小货车每次最多运6箱。
苏教版一年级上册期末考试数学试卷(共5套,含答案)

苏教版一年级上册期末考试数学试卷(共5套,含答案)3+9=12,5+9=14,4+7=11,4+2=6,8+7=15,6+9=15,12-10=2,8+8=16,13-3=10,9-6=3,5+7=12,2+8=10,4+3=7,+10=17,10-6=4,14-4-3=7,4++6=10,8+9-10=7,3+9-2=10,16-10+4=10,1+9+5=15,11-1-8=2,19-10-3=6.二、每小题2分,共30分。
1、1个十,7个一,16和18的中间。
2、10,1个一,20.3、12,13的后面。
4、1815,14,18.5、9-3<10+4<10+5+14+9+276+36-6<23+95+7,√。
6、4+7=11,8-3=5,7+4=11,8+3>11,4<10<7.三、每小题2分,共10分。
1、第三支。
2、9个。
3、13.4、10+7.5、11个。
四、每小题3分,共15分。
1、9棵。
2、3+1=4,4+3=7,7+3=10,10+3=13.3、2+1=3,3+2=5,5+3=8,8+5=13.五、每小题5分,共25分。
1、一共32个,卖出17个,还剩15个,17捆,7捆,8个,5个。
2、一共12只。
3、还剩10只。
4、8+9=17,17页。
二、每小题2分,共计10分。
1.第二个、第五个、第六个、第七个;2.10、10、20;3.20、19;4.20、19、17、16、14、8、10、14、16、20;5.<<=;6.7、10、5、6、5、9、10、10;7.18、5、3三、第1小题3分,第2题8分,每个算式2分,第3小时4分。
1.第二支最长;2.10个;3.13;4.第二个;5.9个四、第1小题每空2分,共10分,其它每小题5分。
1.14-4=10;2.6+5=11,5+6=11,11-5=6,11-6=5;3.12-4-4=4五、解决问题(25分,第1题10分,第2,3,4题每题5分)1.3、15、13、10、102.9+3=123.19-9=104.8+9=175.略XXX一年级上学期数学期末试卷一、直接写得数(计24分)1.1.4.19.2.112.103.20.2.20.11.10.8.34.=。
高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。
高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。
人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试题(一)一、选择题:(每小题5分,共50分) 1、下列计算中正确的是( )A 、633x x x =+ B 、942329)3(b a b a = C 、b a b a lg lg )lg(⋅=+ D 、1ln =e2、当时,函数和的图象只可能是( )3、若10log 9log 8log 7log 6log 98765⋅⋅⋅⋅=y ,则( )A 、()3,2∈yB 、()2,1∈yC 、()1,0∈yD 、1=y4、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、不增不减B 、增加9.5%C 、减少9.5%D 、减少7.84% 5、函数x x f a log )(= ( π≤≤x 2)的最大值比最小值大1,则a 的值( ) A 、2π B 、 π2 C 、 2π或π2D 、 无法确定 6、已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则B A ⋂等于( ) A 、{y |0<y <21} B 、{y |0<y <1} C 、{y |21<y <1} D 、 ∅ 7、函数)176(log 221+-=x x y 的值域是( )A 、RB 、[8,+∞)C 、]3,(--∞D 、[-3,+∞)8、若 ,1,10><<b a 则三个数ab b b P a N a M ===,log ,的大小关系是( )A 、P N M <<B 、P M N <<C 、N M P <<D 、M N P << 9、函数y = )A 、[12--,)] B 、(12--,)) C 、[12--,](1,2) D 、(12--,)(1,2)10、对于幂函数21)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A 、)2(21x x f +<2)()(21x f x f + B 、)2(21x x f +>2)()(21x f x f + C 、 )2(21x x f +=2)()(21x f x f +D 、无法确定二、填空题:(共7小题,共28分)11、若集合}1log |{},2|{25.0+====x y y N y y M x , 则N M 等于 __________;12、函数y =)124(log 221-+x x 的单调递增区间是 ;13、已知01<<-a ,则三个数331,,3a a a由小到大的顺序是 ;14、=+=a R e aa e x f xx 上是偶函数,则在)(______________; 15、函数=y (31)1822+--x x (3-1≤≤x )的值域是 ;16、已知⎩⎨⎧≥-<=-)2()1(log )2(2)(231x x x e x f x ,则=)]2([f f ________________; 17、方程2)22(log )12(log 122=+++x x 的解为 。
河北省沧州市2022-2023学年高一上学期期末数学试题(含答案解析)

河北省沧州市2022-2023学年高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}{}1,2,3,5,2,3,5,6,7A B ==,则A B ⋂的子集的个数为()A .5B .6C .7D .82.下列函数是幂函数的是()A .22y x =B .21y x =C .1y x -=-D .2xy =3.“lg lg a b <”是“33a b <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数()21,0πtan ,03x x f x x x ⎧-<⎪=⎨⎛⎫-≥ ⎪⎪⎝⎭⎩.设()0f a =,则()f a =()A .1-B .0C .12D .25.若1t >,则关于x 的不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集是()A .1|x x t t ⎧⎫<<⎨⎬⎩⎭B .1|x x t ⎧<⎨⎩或}x t >C .{|x x t <或1x t ⎫>⎬⎭D .1|x t x t ⎧⎫<<⎨⎬⎩⎭6.已知sin α=cos αtan 2α等于()A.2-B.2C2D.2)±7.函数sin cos y x x x =-的部分图象是()A.B.C .D .8.定义:对于()f x 定义域内的任意一个自变量的值1x ,都存在唯一一个2x 使得1=成立,则称函数()f x 为“正积函数”.下列函数是“正积函数”的是()A .()ln f x x=B .()exf x =C .()sin exf x =D .()cos f x x=二、多选题9.若“,0x M x ∃∈<”为真命题,“,3x M x ∃∈≥”为假命题,则集合M 可以是()A .(,1)-∞B .[]1,3-C .[)0,2D .()3,3-10.设0a b <<,且2a b +=,则()A .12b <<B .21a b -<C .1ab <D .123a b+≥11.已知函数()()sin 2(0π)f x x ϕϕ=+<<为偶函数,则()A .()f x 的图象关于直线πx =对称B .()f x 的最小正周期是πC .()f x 的图象关于点()2π,0-对称D .()f x 在区间()2,3上是增函数12.设函数()f x 的定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-+,则下列结论正确的是()A .7324f ⎛⎫=⎪⎝⎭B .()7f x +为奇函数C .()f x 在()6,8上为减函数D .方程()lg 0f x x +=仅有6个实数解三、填空题13.已知()222x f x =+,则()1f =__________.14.函数()22log 4y x =-的定义域是__________.15.在直角坐标系中,O 是原点,A1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__.16.若正实数0x 是关于x 的方程e ln x x ax ax +=+的根,则00e xax -=__________.四、解答题17.已知集合{|13}A x x =<<,{}24x B x=>∣.(1)求集合A B ⋃,B R ð;(2)若关于x 的不等式20x ax b ++<的解集为A B ⋂,求,a b 的值.18.已知函数||()2x f x =-(1)判断并证明函数()f x 的奇偶性;(2)判断函数()f x 在区间[0,)+∞上的单调性(不必写出过程),并解不等式(2)(21).f x f x +>-19.已知函数()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的单调增区间;(2)当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域.20.将函数()2cos 2sin g x x x x =-的图象向左平移π02ϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()()0f x f ≤恒成立,求ϕ;(2)若()f x 在7ππ,6⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.21.某书商为提高某套丛书的销售量,准备举办一场展销会,据市场调查,当每套丛书售价定为x 元时,销售量可达到()100.1x -万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.(1)求每套丛书利润y 与售价x 的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.22.已知函数()21log f x a x ⎛⎫=+ ⎪⎝⎭,其中a ∈R .(1)若()13f <,求实数a 的取值范围;(2)设函数()()()2log 425g x f x a x a ⎡⎤=--+-⎣⎦,试讨论函数()g x 的零点个数.参考答案:1.D【分析】先求A B ⋂中元素的个数,再求A B ⋂的子集的个数.【详解】因为集合{}{}1,2,3,5,2,3,5,6,7A B ==,所以{}2,3,5A B = ,所以A B ⋂的子集的个数为328=个.故选:D.2.B【分析】根据幂函数的概念,即可得出答案.【详解】B 项可化为2y x -=,根据幂函数的概念,可知函数2y x -=是幂函数,即函数21y x =是幂函数.ACD 均不是幂函数.故选:B.3.A【分析】根据充分条件以及必要条件的定义,分别判断充分性以及必要性即可得出答案.【详解】由lg lg a b <,根据函数lg y x =在()0,∞+上单调递增,可得0a b <<,由3y x =在R 上单调递增,则有33a b <,所以充分性成立;当33a b <时,由3y x =在R 上单调递增,可得a b <,在0a b <<的情况下,lg lg a b <不成立,所以必要性不成立.所以,“lg lg a b <”是“33a b <”的充分不必要条件.故选:A.4.D【分析】根据分段函数的解析式,结合已知求出a =.【详解】由已知可得,()π0tan 3f ⎛⎫=-= ⎪⎝⎭a =又(312f =-=,所以()2f a =.故选:D.5.A【分析】首先根据不等式的性质可得1t t <,进而将不等式转化为()10x t x t ⎛⎫--< ⎪⎝⎭,求解即可得出结果.【详解】因为()()111t t t t t+--=,1t >,所以10t t ->,所以1t t >.原不等式()10t x x t ⎛⎫--> ⎪⎝⎭可化为所以()10x t x t ⎛⎫--< ⎪⎝⎭,解得1x t t <<.所以,不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集为1|x x t t ⎧⎫<<⎨⎬⎩⎭.故选:A.6.C【分析】应用半角正切公式即可求值,注意法二:2α正切值的符号.【详解】方法一:∵sin α,cos 5α=,∴sin tan221cos ααα==-+.方法二:∵sin 05α=>,cos 0α=>,∴α的终边落在第一象限,2α的终边落在第一或第三象限,即tan02α>,∴tan 2.2α=-故选:C 7.C【分析】首先判断函数的奇偶性,即可排除AD ,又3333sin cos 102222y f ππππ⎛⎫===-<⎪⎝⎭,即可排除B.【详解】因为()sin cos y f x x x x ==-,定义域为R ,关于原点对称,又()()()()()sin cos sin cos f x x x x f x x x x f x =-+-=-+-==-,故函数()sin cos y f x x x x ==-为奇函数,图象关于原点对称,故排除AD ;又3333sin cos 102222y f ππππ⎛⎫===-<⎪⎝⎭,故排除B.故选:C.8.B【分析】根据“正积函数”的定义一一判断即可.【详解】对于A ,()ln f x x =,121ln ln 1x x ==⇒=,当11x =时,则不存在2x 满足情况,故A 不是正积函数;对于B ,()e xf x =,12121e e 10x x x x ==⇒=⇒+=,则任意一个自变量的值1x ,都存在唯一一个2x 满足120x x +=,故B 是正积函数;对于C ,()sin e xf x =,1212sin sin sin sin 1e e 1e 1x x x x +==⇒=⇒=,得12sin sin 0x x +=,当10x =时,则2sin 0x =,2πx k =,k ∈Z ,则2x 不唯一,故C 不是正积函数;对于D ,()cos f x x =,121cos cos 1x x ==⇒=,当[)1cos 0,1x ∈时,则不存在2x 满足情况,故D 不是正积函数.故选:B.9.AD【分析】由已知条件,写出命题,3x M x ∃∈≥的否定,即为真命题,四个选项逐一判断即可.【详解】由题意,0x M x ∃∈<为真命题,,3x M x ∀∈<为真命题,则应满足选项为集合{}3x x <的子集,且满足,0x M x ∃∈<,AD 选项均满足,B 选项当3x =时不符合,3x M x ∀∈<,故错误,C 选项不存在,0x M x ∈<,故错误.故选:AD 10.ABC【分析】结合选项及条件逐个判定,把2a b =-代入0a b <<可得A 正确,利用指数函数单调性可得B 正确,利用基本不等式可得C 正确,利用1的代换及基本不等式可得D 不正确.【详解】对于A ,0a b <<,且2,02a b b b +=∴<-<,解得12b <<,故A 正确;对于B ,a b < ,即0a b -<,0221a b -∴<=,故B 正确;对于C ,0a b <<,且2()2,14a b a b ab ++=∴≤=,当且仅当1a b ==时,等号成立,1ab ∴<,故C 正确;对于D ,0a b <<,2a b +=,∴()(1211212113332222b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当2b aa b=,即2,4a b ==-又((131330,33,222+-=<∴+<故D 错误.故选:ABC .11.ABD【分析】先利用偶函数求出ϕ,再利用周期公式求解周期,利用图象的性质求解对称性和单调性.【详解】因为()f x 为偶函数,所以ππ,2k k ϕ=+∈Z ,又0πϕ<<,所以π2ϕ=,即()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭.对于A ,由2π,x k k =∈Z ,得π,2k x k =∈Z .当2k =时,πx =,故()f x 的图象关于直线πx =对称,A 正确;对于B,()f x 的最小正周期是2ππ,2T ==B 正确;对于C,()()cos2,f x x f x =图象的对称中心为()ππ,0,42k k ⎛⎫+∈ ⎪⎝⎭Z C 错误;对于D ,令2π+π22π+2π,k x k k ≤≤∈Z ,则ππ+π+π,2k x k k ≤≤∈Z ,即π,π2⎛⎫⎪⎝⎭是()f x 的一个单调增区间;由于()()π2,3,π,2f x ⎛⎫⊆ ⎪⎝⎭在π,π2⎛⎫⎪⎝⎭上单调递增,D 正确.故选:ABD.12.BD【分析】由已知可推出()()22f x f x +=--,令32x =,可得7122f f ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,求出函数值,即可判断A 项;由题意可推出()f x 周期为8,结合()1f x -为奇函数,可判断B 项;根据()f x 的对称性,结合已知可推出()f x 在()2,0-上单调递增,进而根据周期性即可判断C 项;根据()f x 的性质画出图象以及lg y x =-的图象,由lg121-<-结合图象即可判断D 项.【详解】因为()1f x -为奇函数,所以()()11f x f x --=--,所以()()2f x f x -=--.因为()1f x +为偶函数,所以()()11f x f x +=-+,所以()()2f x f x -=+.所以有()()22f x f x +=--,所以()()26f x f x -=--,所以()()26f x f x +=-,即有()()8f x f x +=,所以()f x 的一个周期为8.对于A 项,因为()()22f x f x +=--,且21131224f ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭.令32x =,有713224f f ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为()1f x -为奇函数,()f x 的周期为8.故()()71f x f x +=-,()()71f x f x -+=--.所以()()()()7117f x f x f x f x -+=--=--=-+,从而()7f x +为奇函数,故B 正确;对于C 项,()21f x x =-+在区间(]1,0-上是增函数,且()f x 的图象关于点()1,0-对称,所以()f x 在()2,0-上单调递增,又()f x 周期为8,故()f x 在()6,8上单调递增,故C 项错误;对于D 项,作出()f x 与lg y x =-的大致图象,如图所示.其中lg y x =-单调递减且lg121-<-,所以两函数图象有6个交点,故方程()lg 0f x x +=仅有6个实数解,故D 正确.故选:BD.【点睛】方法点睛:根据抽象函数的奇偶性,可根据对称性得出解析式关系式,进而由两个关系式,即可得出函数的周期.13.2【分析】对x 赋值即可求得(1)f .【详解】()()0212022f f ==+=.故答案为:2.14.(]()2,01,2-⋃【分析】由已知,解不等式组2011040xx x x ⎧≥⎪-⎪-≠⎨⎪->⎪⎩,即可得出答案.【详解】要使函数有意义,则2011040xx x x ⎧≥⎪-⎪-≠⎨⎪->⎪⎩,解得20x -<≤或12x <<,所以函数的定义域为(2,0](1,2)-⋃.故答案为:(2,0](1,2)-⋃.15.(-1【分析】由已知∠AOx =30°,则∠BOx =120°,又OB=2,结合三角函数定义求点B 的坐标.【详解】依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°B (-1故答案为:(-116.0【分析】设()e xf x x =+,同构变形得到ln e e ln x ax x ax +=+,即()()ln f x f ax =,从而得到00ln x ax =,即00e x ax =,从而结果.【详解】令()e xf x x =+,则()f x 在()0,∞+上单调递增,e ln x x ax ax +=+,即ln e e ln x ax x ax +=+,故()()lnf x f ax =,∵正实数0x 是方程e ln x x ax ax +=+的根,()()00ln f x f ax ∴=,则00ln x ax =,得00e x ax =,即00e 0x ax -=.故答案为:017.(1){1}A B xx ⋃=>∣,{}R 2B x x =≤∣ð;(2)5a =-,6b =.【分析】(1)解出集合B ,根据并集以及补集的运算,即可求出答案;(2)先求出交集,进而根据一元二次不等式的解集,得出一元二次方程的根,代入即可求出答案.【详解】(1)解24x >可得,2x >,所以{2}B xx =>∣.因为{13}A xx =<<∣,所以{1}A B xx ⋃=>∣,{}R 2B x x =≤∣ð.(2)由(1)知,{23}A B xx ⋂=<<∣,所以20x ax b ++<的解集为{23}xx <<∣,所以20x ax b ++=的解为2,3.所以420930a b a b ++=⎧⎨++=⎩,解得56a b =-⎧⎨=⎩.所以,5a =-,6b =.18.(1)函数()f x 是R 上的偶函数,证明见解析(2)函数()f x 在[)0,∞+上单调递增,1,33⎛⎫- ⎪⎝⎭【分析】(1)利用偶函数的定义判断并证明函数为偶函数;(2)根据指数函数和复合函数及函数的加减合成的单调性规律判定函数的单调性,然后结合函数是偶函数,将不等式转化为221x x +>-,进而两边同时平方,等价转化为二次方程,求解即得.【详解】(1)证明:依题意,函数()f x 的定义域为R .对于任意R x ∈,都有()()22x x f x f x --===,所以函数()f x 是R 上的偶函数.(2)解:函数()f x 在[)0,∞+上单调递增.因为函数()f x R 上的偶数函数,所以()()221f x f x +>-等价于()()221f x f x +>-.因为函数()f x 在[)0,∞+上单调递增,所以221x x +>-,即23830x x --<,解得133x -<<,所以不等式()()221f x f x +>-的解集为1,33⎛⎫- ⎪⎝⎭.19.(1)()πππ,πZ 36k k k ⎡⎤-+∈⎢⎥⎣⎦;(2)[]0,3.【分析】(1)由正弦函数性质知在()πππ2π22πZ 262k x k k -≤+≤+∈上递增,即可求增区间;(2)应用整体法求π26x +的区间,再由正弦函数性质求值域.【详解】(1)由()πππππ2π22πππZ 26236k x k k x k k -≤+≤+⇒-≤+∈,所以函数()f x 的单调增区间是()πππ,πZ 36k k k ⎡⎤-+∈⎢⎥⎣⎦.(2)由ππ,63x ⎡⎤∈-⎢⎥⎣⎦,可得ππ5π2,666x -≤+≤.从而1sin 2,162πx ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以[]π2sin 210,36x ⎛⎫++∈ ⎪⎝⎭.所以()f x 的值域为[]0,3.20.(1)π6ϕ=(2)ππ,62ϕ⎡⎤∈⎢⎥⎣⎦【分析】(1)先化简()g x ,根据平移规律可得到()f x ,利用()0f 是函数的最大值即可求解;(2)由7ππ,6x ⎛⎫∈ ⎪⎝⎭可得πππ222π2,2π2662x ϕϕϕ⎛⎫++∈++++ ⎪⎝⎭,结合函数的周期可考虑区间ππ2,262ϕϕ⎛⎫++ ⎪⎝⎭,利用正弦函数的性质列出不等式即可【详解】(1)∵()()2πcos 2sin 21cos 22sin 216g x x x x x x x ⎛⎫=-=--=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,又()()0f x f ≤恒成立,∴()0f 是函数的最大值,故()ππ22π62k k ϕ+=+∈Z ,得ππ6k ϕ=+,k ∈Z ,∵π02ϕ<≤,∴π6ϕ=.(2)∵7ππ,6x ⎛⎫∈ ⎪⎝⎭,∴πππ222π2,2π2662x ϕϕϕ⎛⎫++∈++++ ⎪⎝⎭,令π226t x ϕ=++,所以()f x 在7ππ,6⎛⎫ ⎪⎝⎭上是单调函数可转化成()()2sin 1f x h t t ==-在ππ2π2,2π262ϕϕ⎛⎫++++ ⎪⎝⎭是单调函数,因为()2sin 1h t t =-的周期为2πT =,所以()2sin 1h t t =-在ππ2,262ϕϕ⎛⎫++ ⎪⎝⎭是单调函数,∵π02ϕ<≤,∴ππ7π2,666ϕ⎛⎤+∈ ⎥⎝⎦,ππ3π2,222ϕ⎛⎤+∈ ⎝⎦.∵()2sin 1h t t =-在ππ2,262ϕϕ⎛⎫++ ⎪⎝⎭是单调函数,∴ππ2,62π0,2ϕϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩∴ππ,62ϕ⎡⎤∈⎢⎣⎦.21.(1)()100200100100y x x x=--<<-,总利润为110(万元);(2)当90元时,每套利润最大为60元.【解析】(1)首先据销售量求得x 的范围,然后计算出供货价格,可得利润函数,令80x =代入计算出每套书的利润,再乘以销量可得总利润;(2)利用基本不等式可得最值.【详解】(1)∵0100.10x x >⎧⎨->⎩∴0100x <<()1010020200100100.1100y x x x x x ⎛⎫=-+=--<< ⎪--⎝⎭当80x =时,10080205510080y =--=-(元)此时销量为100.1802-⨯=(万件)总利润为255110⨯=(万元)(2)10020100y x x=---∵0100x <<∴1000x ->∴()100100808060100y x x ⎡⎤=-+-+≤-=⎢⎥-⎣⎦当且仅当100100100x x=--,即x =90元时,每套利润最大为60元..【点睛】本题考查基本不等式的实际应用,解题关键是确定利润函数,并凑出应用基本不等式的条件“一正二定”,然后再考虑“三相等”.22.(1)()1,7-;(2)答案见解析.【分析】(1)求出()1f ,根据对数函数的单调性,列出不等式,求解即可得到答案;(2)原题可转化为,结合()g x 的定义域,求方程()()24510a x a x -+--=根的个数.对a 的取值范围分类讨论,得出()()24510a x a x -+--=根的个数,结合函数()g x 的定义域即可得出答案.【详解】(1)因为()()221log 13log 8f a =+<=,所以018a <+<,即17a -<<,所以a 的取值范围为()1,7-.(2)由已知可得,()()()2log 425g x f x a x a ⎡⎤=--+-⎣⎦()221log log 425a a x a x ⎛⎫⎡⎤=+--+- ⎪⎣⎦⎝⎭.求函数()g x 零点的个数,即求方程()0g x =根的个数.由()0g x =,可得()221log log 425a a x a x ⎛⎫+=-+-⎡⎤ ⎪⎣⎦⎝⎭,即()1425a a x a x+=-+-,整理可得,()()24510a x a x -+--=.①当4a =时,可化为10x +=,解得=1x -,方程只有一个根,故此时函数()g x 有一个零点;②当3a =时,方程可化为2210x x ++=,解得=1x -,方程只有一个根,故此时函数()g x 有一个零点;③当4a ≠且3a ≠时,解方程()()24510a x a x -+--=得,=1x -或14x a =-.令()1u x a x=+,()()425v x a x a =-+-.则()()111u v a -=-=-,112444u v a a a ⎛⎫⎛⎫==- ⎪ ⎪--⎝⎭⎝⎭.(ⅰ)2a >且4a ≠且3a ≠,则10a ->且240a ->,此时有()()110u v -=->,11044u v a a ⎛⎫⎛⎫=> ⎪ --⎝⎭⎝⎭,故此时函数()g x 有两个零点;(ⅱ)12a <≤,则10a ->,240a -<,则()()110u v -=->,11044u v a a ⎛⎫⎛⎫=≤ ⎪ ⎪--⎝⎭⎝⎭,即14a -不在函数()g x 的定义域内,故此时函数()g x 有一个零点;(ⅲ)当1a ≤,则10a -≤,240a -<,则()()110u v -=-≤,11044u v a a ⎛⎫⎛⎫=< ⎪ ⎪--⎝⎭⎝⎭,即此时1-和14a -均不在函数()g x 的定义域内,故此时函数()g x 无零点.综上,当(],1a ∈-∞时,()g x 无零点;当(]{}1,23,4a ∈⋃时,()g x 有一个零点;当()()2,33,4(4,)a ∈⋃⋃+∞时,()g x 恰有2个零点.【点睛】方法点睛:结合()g x 的定义域,转化为求方程()()24510a x a x -+--=根的个数.然后对a 分类讨论,即可得出解析.。
2019-2020学年山东省菏泽市高一下学期期末数学试卷(A卷) (解析版)

2019-2020学年山东省菏泽市高一第二学期期末数学试卷(A卷)一、选择题(共8小题).1.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为()A.0.45 0.45B.0.5 0.5C.0.5 0.45D.0.45 0.52.复数z=的虚部为()A.2B.﹣2C.﹣3D.﹣3i3.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数4.如图是一个正方体的表面展开图,则图中“有”在正方体中所在的面的对面上的是()A.者B.事C.竟D.成5.加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为400N,则该学生的体重(单位:kg)约为()(参考数据:取重力加速度大小为g=10m/s2,≈1.732)A.63B.69C.75D.816.已知向量=(2,3),=(﹣1,2),若m+与﹣2共线,则m的值为()A.﹣2B.2C.D.7.如图所示是一样本的频率分布直方图,样本数据共分3组,分别为[5,10),[10,15),[15,20].估计样本数据的第60百分位数是()A.14B.15C.16D.178.已知正方体ABCD﹣A1B1C1D1棱长为4,P是AA1中点,过点D1作平面α,满足CP⊥平面α,则平面α与正方体ABCD﹣A1B1C1D1的截面周长为()A.4B.12C.8D.8二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得3分,有选错的得0分.9.给出如图所示的三幅统计图,则下列命题中正确的有()A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢10.在△ABC中,角A、B、C所对的边分别为a、b、c,下列结论正确的是()A.若b2+c2﹣a2>0,则△ABC为锐角三角形B.若A>B,则sin A>sin BC.若b=3,A=60°,三角形面积S=3,则a=D.若a cos A=b cos B,则△ABC为等腰三角形11.在△ABC中,D,E,F分别是边BC,AC,AB中点,下列说法正确的是()A.B.C.若点P是线段AD上的动点,且满足=+,则λ+2μ=1D.若△ABC所在平面内一点P满足=λ()(λ≥0),则点P的轨迹一定通过△ABC的内心12.如图,正方体ABCD﹣A1B1C1D1的棱长为1,动点E在线段A1C1上,F、M分别是AD、CD的中点,则下列结论中正确的是()A.FM∥A1C1B.BM⊥平面CC1FC.存在点E,使得平面BEF∥平面CC1D1DD.三棱锥B﹣CEF的体积为定值三、填空题:本大题共4小题,每小题5分,共20分。
北京高一下学期期末数学试卷含答案(共5套)

北京市丰台区高一第二学期期末考试数学试卷第一部分 (选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.如果a b >,那么下列不等式中一定成立的是A .a c b c +>+B .a b >C .c a c b ->-D .22a b >2.等比数列{}n a 中,21a =,42a =,则6a =A .22B .4C .42D .8 3.执行如图所示的程序框图,如果输入的2x =,则输出的y 等于A .2B .4C .6D .84.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是A .96B .128C .140D .152 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且3B π=,2b ac =,则△ABC 一定是 A .直角三角形B .钝角三角形C .等边三角形D .等腰直角三角形6.二次函数()2y ax bx c x =++∈R 的部分对应值如下表:x3- 2- 1- 0 1 2 3 4 y6- 04 6 6 4 0 6-则一元二次不等式20ax bx c ++>的解集是A .{|2,3}x x x <->或B .{|2,3}x x x ≤-≥或C .{|23}x x -<<D .{|23}x x -≤≤7.在数列{}n a 中,12n n a a +=+,且11a =,则1223349101111a a a a a a a a ++++= A .919B .1819C .1021D .20218.已知各项均为正数的等比数列{}n a 中,如果21a =,那么这个数列前3项的和3S 的取值范围是A .(],1-∞-B .[)1,+∞C .[)2,+∞D .[)3,+∞ 9.已知n 次多项式1110()n n n n n f x a x a x a x a --=++++,在求0()n f x 值的时候,不同的算法需要进行的运算次数是不同的.例如计算0kx (k =2,3,4,…,n )的值需要 k -1次乘法运算,按这种算法进行计算30()f x 的值 共需要9次运算(6次乘法运算,3次加法运算).现按右图所示的框图进行运算,计算0()n f x 的值共需要 次运算. A .2nB .2nC .(1)2n n + D .+1n10.如图,在正方体1111ABCD A B C D -中,点P 在正方体表面运动,如果11ABD PBD S S ∆∆=,那么这样的点P 共有 A .2个 B .4个 C .6个 D .无数个D 11B 1A D第二部分 (非选择题 共60分)二、填空题共6小题,每小题4分,共24分.11.从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:质量指标 值分组 [75,85)[85,95) [95,105)[105,115)[115,125]频数62638228则样本的该项质量指标值落在[105,125]上的频率为_____. 12.函数()(2)(02)f x x x x =-<<的最大值是_____.13.如图,样本数为9的三组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是 .14.已知两条不重合的直线,a b 和两个不重合的平面α,β,给出下列命题:①如果a α∥,b α⊂,那么a b ∥;②如果αβ∥,b α⊂,那么b β∥; ③如果a α⊥,b α⊂,那么a b ⊥;④如果αβ⊥,b α⊂,那么b β⊥. 上述结论中,正确结论....的序号是 (写出所有正确结论的序号). 15.如图,为了测量河对岸,A B 两点之间的距离.观察者找到了一个点C ,从C 可以观察到点,A B ;找到了一个点D ,从D 可以观察到点,A C ;找到了一个点E ,从E 可以观察到点,B C .并测量得到图中一些数据,其中23CD =,4CE =,60ACB ∠=,90ACD BCE ∠=∠=,60ADC ∠=,45BEC ∠=,则AB = .16.数列{}n a 满足11a =,112n n n a a -+⋅=,其前n 项和为n S ,则(1)5a = ; (2)2n S = .三、解答题共4小题,共36分.解答应写出文字说明,演算步骤或证明过程. 17.(本小题共9分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 6sin A C =,3c =.(Ⅰ)求a 的值; (Ⅱ)如果3cos 3A =,求b 的值及△ABC 的面积.18.(本小题共9分)某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下5组:第1组[)80,75,第2组[)85,80,第3组[)90,85,第4组[)95,90,第5组[]100,95,得到如图所示的频率分布直方图. (Ⅰ)求a 的值;(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).19.(本小题共9分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,点E 是棱PA 的中点,PB PD =,平面BDE ⊥平面ABCD .(Ⅰ)求证:PC //平面BDE ; (Ⅱ)求证:PC ⊥平面ABCD ;(Ⅲ) 设AB PC λ=,试判断平面PAD ⊥平面PAB 能否成立;若成立,写出λ的一个值(只需写出结论).20.(本小题共9分)设数列{}n a 满足12a =,12nn n a a +-=;数列{}n b 的前n 项和为n S ,且21(3)2n S n n =-. (Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)把数列{}n a 和{}n b 的公.共项..从小到大排成新数列{}n c ,试写出1c ,2c ,并证明{}n c 为等比数列.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区第二学期期末高一数学参考答案一、选择题(本题共10小题,共40分)二、填空题(本题共6小题,共24分)11.0.3 12.1 13.第三组14.②③ 15.16.(1)4;(2)122n +-(第16题第一空2分,第二空2分)三、解答题(本题共4小题,共36分) 17. (本小题9分)解:(Ⅰ)因为sin sin a cA C=以及sin A C =, …………2分所以a =,因为c =……………3分所以a = ……………4分(Ⅱ)因为2222cos a b c bc A =+-以及cos 3A =……………5分 所以22150b b --=,因为0b >, ……………6分 所以5b = ……………7分因为cos 3A =,0π<<A ,所以sin A =……………8分所以1sin 22ABC S bc A ∆==. ……………9分 18.(本小题9分)解:(1)因为各组的频率之和为1,(0.010.020.060.07)51a ⨯++++⨯=,解得0.04a = …………3分(2)由频率分布直方图知,第3,4,5组的学生人数之比为3:2:1. …………4分所以,每组抽取的人数分别为: 第3组:3636⨯=;第4组:2626⨯=;第5组:1616⨯=. 所以从3,4,5组应依次抽取3名学生,2名学生,1名学 生. …………7分 (3) 第3组 …………9分19.(本小题9分)证明:(Ⅰ)证明:设AC BD O =,连接OE , 因为底面ABCD 为正方形,所以O 是AC 的中点,又点E 是棱PA 的中点, 所以EO 是的PAC ∆中位线,所以EO // PC …………………1分 因为EO ⊂平面BDE ,PC ⊄平面BDE ,所以PC //平面BDE ; …………………3分(Ⅱ)证明:(法一)在PAB ∆和PAD ∆中, 因为AB AD =,PB PD =,PA PA =,所以PAB ∆≌PAD ∆,又点E 是棱PA 的中点,所以EB ED =, ………………5分 所以EO BD ⊥,因为平面BDE ⊥平面ABCD ,平面BDE 平面ABCD BD =,EO ⊂平面BDE所以EO ⊥平面ABCD , ………………7分 所以EO ⊥AC ,EO ⊥BD , 因为EO //PC所以PC ⊥AC ,PC ⊥BD ,又AC ∩BD=O所以PC ⊥平面ABCD . …………………8分(法二)连接PO因为底面ABCD 是正方形,所以O 是BD 的中点,BD ⊥AC ,又PB=PD ,所以PO ⊥BD ,又PO ∩AC =O ,PO ⊂平面PAC ,AC ⊂平面PAC 所以BD ⊥平面PAC又OE ⊂平面PAC , 所以BD ⊥OE , …………………5分 因为平面BDE ⊥平面ABCD ,平面BDE 平面ABCD BD =, EO ⊂平面BDE所以EO ⊥平面ABCD , …………………7分 所以EO ⊥AC ,EO ⊥BD , 因为OE ∥PC,所以PC ⊥AC ,PC ⊥BD ,又AC ∩BD=O所以所以PC ⊥平面ABCD . …………………8分 (Ⅲ) 不能成立 …………………9分20.(本小题9分) 解:(Ⅰ)由已知,当2n ≥时,112211[()()()]n n n n n a a a a a a a a ---=-+-++-+12(222)2n n --=++++2n =. …………………2分又因为12a =,所以数列{}n a 的通项公式为2n n a =.因为21(3)2n S n n =-,所以,211[3(1)(1)](2)2n S n n n -=---≥ 两式做差可得32n b n =-,且111b S ==也满足此式,所以32n b n =-. …………………4分(Ⅱ)由2nn a =,32n b n =-,可得1224c a b ===,24616c a b ===.…………………5分假设2kn m k c b a ===,则32=2k m -.所以112222(32)3(21)1k kk a m m ++==⋅=-=--,不是数列{}n b 中的项;2+2=2424(32)k k k a m +=⋅=-=3(42)2m --,是数列{}n b 中的第42m -项.所以+142=n m c b -=222k k a ++=,从而2+1242k n k n c c +==.所以{}n c 是首项为4,公比为4的等比数列. …………………9分(若用其他方法解题,请酌情给分)北京市东城区高一年级下学期期末考试数学试卷本试卷共100分,考试时长120分钟。
新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)

普通高中课程标准实验教科书——数学第二册[人教版]高中学生学科素质训练新课标高一数学同步期中测试本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.一个棱锥所有的棱长都相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥 2.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ3.已知高与底面的直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积 为 ( )A .π53500B .π5310000C .π5320000 D .π5325004.到空间四点距离相等的平面的个数为 ( )A .4B .7C .4或7D .7或无穷多 5.在阳光下一个大球放在水平面上, 球的影子伸到距球与地面接触点10米处, 同一时刻, 一根长1米一端接触地面且与地面垂直的竹竿的影子长为2米, 则该球的半径等于 ( ) A .10(5-2)米 B .(6-15)米C .(9-45)米D .52米6.已知ABCD 是空间四边形,M 、N 分别是AB 、CD 的中点,且AC =4,BD =6,则 ( )A .1<MN <5B .2<MN <10C .1≤MN ≤5D .2<MN <57.空间一个角的两边分别垂直于另一角的两边,则这两个角 ( )A .相等B .互补C .相等或互补D . 不确定8.已知平面α ⊥平面β ,m 是α 内一条直线,n 是β 内一条直线,且m ⊥n .那么,甲:m ⊥β ;乙:n ⊥α ;丙:m ⊥β 或n ⊥α ;丁:m ⊥β 且n ⊥α .这四个结论中,不正确的三个是( )A .甲、乙、丙B .甲、乙、丁9.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边 形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组10.棱台的两底面积分别为S 上、S 下、平行于底面的戴面把棱台的高自上而下分为两段之比 为m ∶n 则截面面S 0为 ( )A .nm mS nS ++下上B .n m S m S n ++下上C .(nm mS nS ++下上)2D .(nm S m S n ++下上)2第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.半径为a 的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为 .12.α 、β 是两个不同的平面,m 、n 是平面α 及β 之外的两条不同直线,给出四个论断:(1)m ⊥n (2)α ⊥β (3)n ⊥β (4)m ⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题___________.13.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分 别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= _____.14.还原成正方体后,其中两个完全一样的是.(1) 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体ABCD -A 1B 1C 1D 1中被截去一部分,其中EF ∥A 1D 1.剩下的几何体是什么?截取的几何体是什么?若FH ∥EG ,但FH<EG ,截取的几何体是什么?① ②③ ⑤ ⑥ ④④ ⑥ ①⑤ ③②① ⑤ ⑥ ④③ ②④ ② ⑥ ③ ①⑤16.(12分)有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合.①说明组合体是什么样的几何体?②证明你的结论.17.(12分)正四棱台的高,侧棱,对角线长分别为7cm,9cm,11cm,求它的侧面积.18.(12分)三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S-BCED的体积.19.(14分)如图,在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.20.(14分)如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.高一新数学期中测试题参考答案一、DBDDA ADBCD.二、11a3;12.①③④⇒②;13.7∶5;14.②③;三、15.五棱柱,三棱柱,三棱台。
人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)

【点睛】一般地,如果 为等差数列, 为其前 项和,则有性质:
(1)若 ,则 ;
(2) 且 ;
(3) 且 为等差数列;
(4) 为等差数列.
6.A
【解析】
【分析】
利用正弦定理将边转化为角得到 ,再由角C的范围可得选项.
【详解】因为 ,
所以由正弦定理得 ,所以 ,即 ,
又因为 为 的内角,
所以 .
解得 , ,
, ;
(2) ,
,
又 ,由题得 ,即 ,
,即
由题知 且 ,故 ,
故 ,
故只需考虑 , 时 , 时 , 时 ,
17.(10分)已知 中,点 .
(1)求直线 的方程;
(2)求 的面积.
18.(12分)已知函数 .
(1)当 时,求不等式 的解集;
(2)若关于x的不等式 的解集为R,求a的取值范围.
19.(12分)己知向量 , .
(1)若 ,其中 ,求 坐标;
(2)若 与 的夹角为 ,求 的值.
20.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.
故 ,
故答案为:
【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用 来求;(2)计算角, .特别地,两个非零向量 垂直的等价条件是 .
15.9
【解析】
【分析】
将 变形后利用基本不等式可求其最小值
【详解】 ,
,等号成立时 , .
故答案为:9.
【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.
福建省漳州市2022-2023学年上学期高一期末教学质量检测数学试卷(含答案)

漳州市2022-2023学年(上)期末高中教学质量检测高一数学试题本试卷共5页,满分150分,考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
1.已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则(A∪B)=A.{-2,3}B.{-2,1,3}C.{-2,-1,0,3}D.{-2,-1,0,2,3}2.已知角A同时满足sinA<0,tanA<0,则角A的终边一定落在A.第一象限B.第二象限C.第三象限D.第四象限3.设a=log20.3,b=0.8e,c=e0.8,则a,b,c的大小关系是A.a>b>cB.c>a>bC.c>b>aD.b>c>a4.某地通讯公司推出了两种手机资费套餐,如下表所示:已知小明某月国内主叫通话总时长为200分钟,使用国内数据流量为40兆,则在两种套餐下分别需要支付的费用为:______和_____A.75和93B.75.5和93C.76和93D.75.5和98高一数学试题第1页(共5页)5.函数f (x )=sin|x |·ln x 2的部分图象大致为6.若函数f (x )=2x +a ·2-3x )是奇函数,则a =A .−13B .13 C.-1 D.17.两数f (x )=tan (π2x +π3)的单调区间是A.(−53+2k ,13+2k )(k ∈Z ) B .[−53+2k ,13+2k ](k ∈Z )C.(−53+4k ,13+4k )(k ∈Z ) D .[−53+4k ,13+4k ](k ∈Z )8.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为cosh x =e x −e −x 2,相应的双曲正弦函数的表达式为sinh x =e x +e −x 2.设函数f (x )= ln sinh x cosh x ,若实数m 满足不等式f(3m 2+2m )<-ln (1+2e 2−1),则m 的取值范围为A.(-1,13)B.(-1,−23)∪(0,13)C.(−13,1)D.(−23,−13)u (0,1)二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.若函数f (x )=x α,则A.f (x )的图象经过点(0,0)和(1,1)B.当f (x )的图象经过点(-1,-1)时,f (x )为奇函数C.当f (x )的图象经过点(-1,1)时,f (x )为偶函数D.当α>0时,存在f (x )使得f(√3)<f(√2)10.函数f(x)={sin x,sin x≥cos xcos x,sin x<cos x,下列结论正确的是A.f(x)的值域是[−√22,1]B.当且仅当x=2kπ+π2,k∈z或x=2kπ,kez时,f(x)有最大值1C.当且仅当x=2kπ+5π4,k∈z时,f(x)有最小值-1D.当且仅当2kπ+π<x<2kπ+3π2,k∈z时,f(x)>011.函数f(x)=|x|−3x2−9,下列结论正确是A.f(x)图象关于y轴对称B.f(x)在[0,+∞)上单调递减C.f(x)的值域为(0,13] D.f(x)有最大值12.若函数f(x)=x sin x,则A.f(x)为偶函数B.存在实数b,使得函数g(x)=f(x)-b的零点恰有4个C.f(x)在(0,π2)上单调递增 D.方程f(x)=1在[-2π,2π]内有4个不同的解三、填空题:本大题共4小题,每小题5分,共20分.13.函数f(x)=2log a(2x-1)+1(a>0且a≠1)的图象恒过定点P,则点P的坐标为_____.14.已知扇形面积为4,圆心角为2rad,则扇形的周长为_____.15.已知4x=5y=10,12x +1y=_____.16.函数f(x)={|log12x|,x>0−2x−x2,x≤0,直线y=b与f(x)的图象四个交点的横坐标从左到右依次为x1,x2,x3,x4,则x1+x2=_____,x1∙x2∙x3∙x4的取值范围是_____.(本小题第一空2分,第二空3分)四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知集合A={x|x2-2x-3>0},B={x|y=1√x−1}.(1)求( A)∩B;(2)设集合C={x|a<x<a+1},若A∩C=∅,求a的取值范围.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的周期为π,最大值为2,且过点(0,-1).(1)求f(x)的解析式;(2)求f(x)在区间[0,π2]上的最大值和最小值.19.(12分)在平面直角坐标系xOy中,角α的始边为x轴的非负半轴,终边在第二象限且与单位圆交于点P,点P的纵坐标为45.(1)求sinα+cosα和tanα的值;(2)若将射线OP绕点O逆时针旋转π2,得到角β,求sin(β+3π)tan(π+α)cos(π−α)+sin(α+12).20.(12分)①f(ln2)=52;②f(x)为偶函数;③f(x)的图象经过g(x)=a x+1的图象所在的定点.从这三个条件中选一个补充在下面问题中,并解答下面的问题.问题:已知函数f(x)=e x−ae x,a∈R,且____.(1)求f(x)的解析式;(2)判断f(x)在区间[0,+∞)上的单调性,并用定义证明.注:如果选择多个条件分别解答,按第一个解答计分.1999年以来,漳州市连续每年11月18日承办海峡两岸花卉博览会,开创了两岸花卉直接交流的先河.近年来,漳州市委、市政府高度重视花卉苗木产业的培育和发展,将花卉苗木产业纳人全市“千百亿产业培育行动计划”,出台了多项扶持政策.某花卉苗木企业积极响应市里号召,决定对企业的某花卉进行一次评估.已知该花卉单价为15元,年销售10万棵.(1)据市场调查,若价格每提高1元,销售量将相应减少4000棵,要使销售的总收入不低于原收入,该花卉每棵售价最多为多少元?(2)为了抓住此次契机,扩大该花卉的影响力,提高年利润,企业决定立即对该花卉进行种值技术革新和营销策略改革,拟投入x(1≤x≤30)万元作为技改费和宣传费用,每棵售价定为(x+15)元,预估每棵成本为(5+1 x+1)元,销售量与投入费用的函数关系近似为S(x)=120x+104x2+11x+9万棵.试问:投入多少万元技改费和宣传费能获得最高利润,此时利润是多少万元?(利润=销售额-成本-技改费和宣传费)22.(12分)已知函数f(x)=log2(3+2x−x2)(x∈[1,1+√2]),h(x)=4x-a·2x+1.(1)求f(x)的值域;(2)对∀x1∈[1,1+√2],∃x2∈[0,1],使得h(x2)=f(x1)成立,求a的取值范围.。
高二数学上学期期末考试试卷含答案(共3套)

高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。
高一数学上学期期末考试试卷含答案(共3套)

高一级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面3. 已知集合,,则()A. B. C. D.4. 图中的直线的斜率分别是,则有()A. B. C. D.5. 设,,则()A. B. C. D.6. 方程在下面哪个区间内有实根()A. B. C. D.7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.11. 正四面体中,是棱的中点,是点在底面内的射影,则异面直线与所成角的余弦值为()A. B. C. D.12. 已知函数在闭区间上的值域为,则满足题意的有序实数对在坐标平面内所对应点组成图形为()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知两条平行直线分别过点,,且的距离为5,则直线的斜率是__________.15. 已知函数,若函数有3个零点,则实数的取值范围是__________.16. 如图,将一边为1的正方体沿相邻三个面的对角线截出一个棱锥,则三棱锥的内切球半径是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 求值或化简:(1);(2).18. 如图,正三角形的边长为6,,,点分别在边上,且,,相交于.(1)求点的坐标;(2)判断和是否垂直,并证明.19. 已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并证明你的结论;(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.20. 如图,在四棱锥中,底面,,,,为棱的中点.(1)求证:;(2)试判断与平面是否平行?并说明理由.21. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?22. 设,函数,其中.(1)求的最小值;(2)求使得等式成立的的取值范围.参考答案1【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。
高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级第二学期期末考试数学试题一、选择题(每小题5分,共50分) 1.若α是第四象限角,则πα-是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 2.电视台某节目组要从2019名观众中抽取100名幸运观众.先用简单随机抽样从2019人中剔除19人,剩下的2000人再按系统抽样方法抽取100人,则在2019人中,每个人被抽取的可能性 ( ) A .都相等,且为1002019 B .都相等,且为120 C .均不相等 D .不全相等3.同时掷两枚骰子,则向上的点数相等的概率为( ) A .361B . 121C .91D .61 4.已知向量)1,3(=a ,)3,3(-=b ,则向量a 在向量b 方向上的投影为( ) A .3- B .-1 C .3 D .1 5.函数x x y 2cos 2sin +=的周期为( ) A .4π B .2π C .π2 D .π6.执行如图所示的程序,已知i 的初始值为1,则输出的s 的值是( ) A .5 B .9 C .13 D .17 7.下列各点中,可以作为函数sin 3cos y x x =+图象的对称中心的是( )A .)0,3(πB .)0,32(πC .)0,6(π D .)0,65(π 8.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin 2g x x =的图象,则只要将()f x 的图象( )A .向右平移6π B .向右平移12π C .向左平移6πD .向左平移12π 9.已知1e ,2e 是两个单位向量,且夹角为23π,则21e t e -与21e e t -数量积的最小值为( )A .32B .32-C .12D .12-10.已知函数()sin cos()6f x x x π=-+在区间[0]3π,上()f x a ≤恒成立,则实数a 的最小值是( ) A .32-B .12-C .12D .32二、填空题(每小题5分,共20分)11.已知x 与y 之间的一组数据,则y 与x 的线性回归方程a bx y +=必过点______.12.已知tan 2α=,则sin 2α=______.13.在平面直角坐标系xoy 中,a 在x 轴、y 轴正方向上的投影分别是4、-3,则与a 同向的单位向量是______.14.从集合{}2 , 1, 2--=A 中随机选取一个数记为a ,从集合{}3 , 1, 1-=B 中随机选取一个数记为b ,则直线0=+-b y ax 不经过第一象限的概率为______. 三、解答题(每小题10分,共50分)15.已知)sin()tan()2sin()2cos()tan()23cos()2sin()(αππααπαπαπαππαα+---+--+=f . (1)化简)(αf ; (2) 若α是第二象限角,且51)23cos(-=-πα,求)(αf 的值. 16.在平面直角坐标系xOy 中,已知向量)1, 3(-=a ,)60sin ,60(cos 00=b (1)求证:b a 2=且b a ⊥;(2)设向量b t a x )4(++=,b t a y +=,且y x ⊥,求实数t 的值. 17.设向量)sin ,(cos αλα=a ,)sin ,(cos ββ=b ,其中0>λ,20πβα<<<,且b a =.(1)求实数λ的值; (2)若54=⋅b a ,且2tan =β,求αtan 的值. 18.已知向量)1 , 2(-=a ,)y , (x b =.(1)若,x y 在集合{}6,5,4,3,2,1中取值,求满足0>⋅b a 的概率;(2)若,x y 在区间[1,6]内取值,求满足0>⋅b a 的概率.19.某工厂提供了节能降耗技术改造后生产产品过程中的产量x (吨)与相应的生产能耗y (吨)的几组对照数据.(1)请根据表中提供的数据,用最小二乘法求出y 关于x 的线性回归方程a bx y +=;(2)试根据(1)求出的线性回归方程,预测产量为9(吨)的生产能耗. 相关公式:2222212211xn x x x y x n y x y x y x b nn n -++-++=,x b y a -=高一年级数学答案一、选择题(每小题5分,共50分)CADBD CBABD二、填空题(每小题5分,共20分)11.(2,6) 12.4513.43()55-, 14.92三、解答题(每小题10分,共50分)15.解:(1)由题意得αααααααααcos )sin )(tan (sin )sin )(tan )(sin (cos )(=------=f .(2)∵51sin )23cos(-=-=-απα,∴51sin =α.又α为第二象限角, ∴562sin 1cos 2-=--=αα,∴562)(-=αf .16.(11 2===,因为02323=-=⋅b a ,所以b a ⊥; (2)因为y x ⊥,所以0=⋅y x ,由(1)得:2222)2(44)4(][])4([+=++=++=+⋅++=⋅t t t b t t a b t a b t a y x 所以0)2(2=+t ,解得2-=t .17.解(1=知所以01sin cos 222=-+αλα.又因为1cos sin 22=+αα,所以0sin )1(22=-αλ.因为20πα<<,所以0sin 2≠α,所以012=-λ.又因为0>λ,所以1=λ.(2)由(1)知)sin ,(cos αα=a .由54=⋅b a ,得54sin sin cos cos =+βαβα,即54)cos(=-βα. 因为20πβα<<<,所以02<-<-βαπ,所以53)(cos 1)sin(2-=---=-βαβα.所以43)cos()sin()tan(-=--=-βαβαβα,因此21tan )tan(1tan )tan()tan(tan =--+-=+-=ββαββαββαα.18. (1)x,y 的所有取值共有6×6=36个基本事件.由0>⋅b a ,得2x y > ,满足0>⋅b a 包含的基本事件(x,y)为(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情形,故61366)0(==>⋅b a P .(2) 若x , y 在[1,6]上取值,则全部基本事件的结果为{}61,61,≤≤≤≤=Ωy x y x ,满足0>⋅b a 的基本事件的结果为{}02,61,61),(>+-≤≤≤≤=y x y x y x A .画出图形如图,正方形的面积为25=正方形S ,阴影部分的面积为44221=⨯⨯=阴影S , 故满足0>⋅b a 的概率为254.19.解:(1)由题意,根据表格中的数据,求得648754=+++=x ,446532=+++=y ,10641=∑=i i i y x ,154)(412=∑=i ix ,代入回归系数的公式,求得1=b ,则2-=-=x b y a ,故线性回归方程为2-=x y .(2)由(1)可知,当9=x 时,729=-=y ,则可以预测产量为9(吨)的生产能耗为7(吨).2018—2019学年度下学期期末考试高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1|01x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}1,0,1B =-,则A B 元素个数为( ) .0A .1B .2C .3D2.设(1,2),(1,1),a b c a kb ===+,若b c ⊥,则实数k 的值等于( )3.2A - 5.3B - 5.3C 3.2D 3.在ABC ∆ 中,若sin()cos cos()sin 1A B B A B B -+-≥,则ABC ∆ 是( )A.锐角三角形;B.直角三角形;C.钝角三角形;D.直角三角形或钝角三角形 4.已知,m n 是两条不同直线,,αβ是两个不同平面,则下列命题正确的是( ).A 若,αβ垂直于同一平面,则α与β平行 .B 若,m n 平行于同一平面,则m 与n 平行.C 若,αβ不平行,则在α内不存在与β平行的直线.D 若,m n 不平行,则m 与n 不可能垂直于同一平面5.已知等比数列{}n a 中,32a =,4616a a ⋅=,则101268a a a a --的值为( )6.设,且,则下列说法正确的是( )A. B. C. D.7.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包量成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为( )A. B. C. D.8. 有下面三组定义:①有两个面平行,其余各面都是四边形,且相邻四边形的公共边都互相平行的几何体叫棱柱; ②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台; ③有一个面是多边形,其余各面都是三角形的几何体是棱锥。
其中正确定义的个数是 ( ) A .0 B.1 C.2 D.39. 如图,直角梯形ABCD 中,AD DC ⊥,//AD BC ,222BC CD AD ===,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为( )A .32ππ+B .322ππ+C .622ππ+D .62ππ+10. 如图 Rt ABC ∆中,2ABC π∠=,2AC AB =,BAC ∠平分线交△ABC 的外接圆于点D ,设AB a =,AC b =,则向量AD =( )A.a b +B.12a b + C. 12a b +D. 23a b +11. ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21 B .21-3 C .-21-3 D .21+3 12. 已知αβ,为两个不重合的平面,,m n 为两条不重合的直线,且.m n αββ=⊂,记直线m 与直线n的夹角和二面角--m αβ均为1θ,直线n 与平面α所成的角为2θ,则下列说法正确的是( )A.若10,6πθ<<则122θθ> B. 若1,64ππθ<<则12tan 2tan θθ>C.若1,43ππθ<<则12sin sin θθ< D. 若1,32ππθ<<则123cos cos 4θθ> 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若关于x 的不等式()()13x x m +⋅-<的解集为()0,n ,则实数n 的值为_____.14.数列{}n a 是等差数列,11a =,公差[]1,2d ∈,且4101615a a a λ++=,则实数λ的最大值为______. 15.已知0,0a b >>且111,a b +=则32ba b a++的最小值等于 16.已知三棱锥P ABC -的所有顶点都在球O 的球面上,090,22,2BAC AB AC PA ∠====,PAC PAB ∠=∠,则当球O 的表面积最小时,三棱锥P ABC -的体积为三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)在中,.(Ⅰ)求的大小;(Ⅱ)求的取值范围.18. (本题满分10分)已知(1,2),(3,4),()a b c a b R λλ==-=+∈. (1)λ何值时,||c 最小?此时c 与b 的位置关系如何?(2)λ何值时, c 与a 的夹角最小? 此时c 与a 的位置关系如何?19. (本题满分12分)如图,在三棱柱111ABC A B C -中, 1ABC AA ⊥平面,底面三角形ABC 是边长为2的等边三角形, D 为AB 的中点.(Ⅰ)求证: 11//BC A CD 平面; (Ⅱ)若直线1CA 与平面11A ABB 所成的角为30︒,求三棱锥11B A CD -的体积. (注:此题用空间向量做不得分)20. (本题满分12分)已知n S 是数列{}n a 的前n 项和,31=a ,且)(32*1N ∈-=+n a S n n .(1)求数列{}n a 的通项公式;(2)对于正整数)(,,k j i k j i <<,已知k i j a a a μλ,6,成等差数列,求正整数μλ,的值;21. (本题满分12分)如图,在矩形ABCD 中,4,2AB BC ==,O 为DC 的中点,E 为线段OC 上一动点.现将AED ∆沿AE 折起,形成四棱锥D ABCE -. (Ⅰ)若E 与O 重合,且AD BD ⊥. (ⅰ)证明:BE ADE ⊥平面;(ⅱ)求二面角D AC E --的余弦值. (Ⅱ)若E 不与O 重合,且平面ABD ⊥平面ABC ,设DB t =,求t 的取值范围.(注:此题用空间向量做不得分)22. (本题满分12分)如图,矩形ABCD 是某生态农庄的一块植物栽培基地的平面图,现欲修一条笔直的小路MN (宽度不计)经过该矩形区域,其中MN 都在矩形ABCD 的边界上,已知8,6AB AD ==(单位:百米),小路MN 将矩形ABCD 分成面积为12,S S (单位:平方百米)的两部分,其中12S S ≤,且点A 在面积为1S 的区域内,记小路MN 的长为l 百米。