生物燃料电池(定稿)
生物燃料电池的工作机制
生物燃料电池的工作机制生物燃料电池(biofuel cells)是一种将生物质燃料转化为电能的装置。
它与传统的化石燃料电池不同,生物燃料电池通过利用微生物(如细菌)催化底物氧化反应,将其化学能转化为电能。
生物燃料电池可用于各种应用,如植入体医疗器械、环境传感器和可穿戴设备等。
首先,底物以及催化剂(微生物或酶)会被涂覆在阳极上。
阳极常用的材料是碳纳米管或导电聚合物,它们具有较高的导电性和生物相容性。
底物通常是可再生的生物质燃料,如葡萄糖、乳酸或甲醇等。
在生物燃料电池中,底物会通过溶液中的扩散过程到达阳极表面。
第二步是催化反应。
在阳极表面上,微生物或酶作为催化剂催化底物的氧化反应。
底物氧化会产生电子和正离子(H+)。
正离子会通过溶液中的离子交换膜(ion exchange membrane)传递到阴极,在此过程中底物会损失一定的能量。
而电子则通过阳极的表面电导材料传递到阴极。
第三步是电子传递。
由于离子交换膜的存在,离子无法通过离子交换膜与电子直接接触。
因此,在生物燃料电池中,电子必须通过外部电路传递到阴极。
这就产生了电流,电池的正极(阳极)与负极(阴极)之间形成了电势差。
最后,阴极会吸收进入的电子和离子,并与氧气(如来自空气中的氧气)结合发生还原反应,形成水或其他底物副产物。
这些副产物可以是可溶性的,也可以是固体沉淀。
总之,生物燃料电池利用微生物或酶作为催化剂,将底物氧化转化为电能。
它的工作机制包括底物扩散、催化反应和电子传递。
生物燃料电池具有许多优点,如可再生性、环境友好性和低能耗等,因此具有广泛的应用前景。
生物燃料电池的原理和实现
生物燃料电池的原理和实现随着全球能源需求的不断增长,越来越多的国家开始尝试寻找新的、环保的能源解决方案,其中之一就是生物燃料电池。
本文将阐述生物燃料电池的原理和实现。
一、生物燃料电池的原理生物燃料电池又称为微生物燃料电池,它是一种利用微生物代谢能力将有机废弃物等生物质转化为电能的设备。
其原理主要是通过微生物酶催化对有机废弃物进行分解和氧化,产生电子,随后将电子通过外接电路输出电能。
生物燃料电池的核心部件是阳极和阴极。
阳极通常由物理和化学方法制备的碳纤维织物或碳纳米管组成,阴极则是由金属或某些电催化物制成的。
在阳极上,微生物分泌的酶催化废物产生电子并释放质子,随后电子通过外接电路出流至阴极,形成电势差。
在阴极部分,电子和氧气结合,形成水和热能。
生物燃料电池还可以通过改变阳极和阴极的操作方式来产生更多的电力。
例如,通过缩小阳极和阴极的距离,可以减少电解质的浓度并增加电流密度,从而提高产生电能的效率。
二、生物燃料电池的实现根据不同的工作原理和出发点,生物燃料电池可以分为多种不同的类型。
常见的有微生物燃料电池、生物燃料电池和微型生物电池等。
微生物燃料电池的实现主要是通过将含有微生物的有机废弃物,如食品残渣、废水等,与阳极接触,然后通过外接电路输出电能。
该类型电池实现异常简单,仅需要一些基础的电路和模块就可以制造。
此外,微生物燃料电池不需要外部供电,操作简单,具有较高的实用价值。
生物燃料电池的实现则更加复杂。
该类型电池需要一定的工作原料和条件,如氧气等,从而使得其在实际应用中存在一定的局限性。
然而,生物燃料电池的功率输出大,正常工作时产生大量的电能,因此具有更广泛的应用前景。
微型生物电池的实现是通过微型技术的应用,如微流控技术,实现在微型尺度内的电化学过程。
由于微生物与电化学计量体系的结合,微型生物电池的结构和工艺比常规生物燃料电池更为先进。
总之,生物燃料电池是一种十分有前途的能源探索方向。
尽管目前其实际应用还处于起步阶段,仍需要不断完善和改进,但是相信大家可以想象到未来它的无限可能性。
生物燃料电池的原理和发展趋势
生物燃料电池的原理和发展趋势生物燃料电池的原理与发展趋势随着环境保护意识的加强,人们对于绿色能源的需求也越来越大,而生物燃料电池,作为一种新型的可再生绿色能源技术,备受关注。
那么,什么是生物燃料电池?它的原理是什么?它有哪些优缺点?未来它的发展趋势会如何?本文将对这些问题进行探讨。
一、生物燃料电池的原理生物燃料电池(biosensor fuel cell)是将废弃物质(如纸片、人尿等)中存在的生物燃料转化为电能的一种高效、清洁的技术。
生物燃料通常是由酶、细胞或微生物所产生的,通过电化学反应将其转化为电能。
生物燃料电池一般由两个电极和一个电解质层组成。
在生物燃料电池中,生物燃料(如葡萄糖)在阳极的作用下,通过氧化反应将电子释放出来,形成二氧化碳和水的化学反应。
电子从阳极流入电路产生电流,流到阴极处与氧气反应,得到电子和负离子,形成水。
由于阴极的氧化还原反应需要较高的电压,因此在电极内部需要提供合适电势差,需要添加阳极和电解质。
生物燃料电池可以通过多种方式实现。
例如,单电极生物燃料电池(single electrode fuel cell)、生物燃料池(biofuel cell)、微生物燃料电池(microbial fuel cell)和生物降解(biodegradation)等等。
其中,微生物燃料电池是应用最为广泛的一种。
微生物燃料电池是利用特定的微生物,在阳极上菌群生长及逆反应氧化过程中造成的电流生成电能。
这里的基本原理也就是反应过程中原子的电子释放到外电路流动,埋在菌体中。
这种结构及过程极大地提高了功率密度。
二、生物燃料电池的优缺点生物燃料电池的优点在于它所使用的生物燃料来自大自然,取之不尽用之不竭,这使得生物燃料电池成为一种非常有前途的可再生能源。
此外,生物燃料电池不像传统油耗电池那样产生有毒废物,它是一种非常清洁的能源,适用于不间断长时间储能与供应。
然而,与传统燃料电池相比,生物燃料电池的能量密度较低,电压较小,需要较大的电网转换器来实现电能的有效利用。
微生物燃料电池报告
微生物燃料电池1.前言能源危机是令当今各国头痛的问题,并引起世界广泛关注。
寻找新能源迫在眉睫。
生物质能源是现今备受推崇的新能源之一,其潜力正不断被挖掘。
微生物燃料电池(Microbial Fuel Cell,MFC)是生物质能源应用中的一种,是近年来迅速发展的新型燃料电池。
既可以降解废弃物,又能发电,确实是一种值得深究的变废为宝方式。
2.微生物燃料电池的发展19世纪30年代,英国植物学家Potter在研究细菌培养液的时候首次发现细菌能产生电流。
50年代,美国科学家利用宇航员的尿液和活细胞制造了一种能在外太空使用的生物燃料电池。
70年代,生物燃料电池的研究逐渐从以前的间接生物燃料电池转向直接生物燃料电池。
80年代,由于可作为小功率的电源,对微生物燃料电池的研究开始活跃。
90年代,用污水作为底物,达到净化污水同时获取电能的目的。
21世纪后,对微生物燃料电池的应用研究开始转向环保领域,受到众多环境学者的广泛关注。
3.微生物燃料电池的原理其本质是一种电化学电池,有阴阳两级,电极一般有炭纸和石墨两类。
中间一般用PEM膜(或盐桥)相隔。
阳极材料一般用石墨,阳极室充入待降解的污水或污泥,里面的微生物附着在电极上,在氧化降解底物的同时产生电子,电子通过外导线流入阴极,质子则通过PEM膜(或盐桥)进入阴极室,与电子、氧气结合生成水。
以葡萄糖底液为例:Anodic reaction:C 6H12O6 +6H2O → 6CO2 +24H++24e-Cathodic reaction:6O 2 +24H++24e-→ 12H2O在MFC的阳极室充入可降解有机物作为燃料来产电,这些可降解有机物可以是生活污水、工业废水、垃圾渗滤液、重金属、海水等。
其产电微生物有希万氏菌(Shewanella)、铁还原红育菌(Rhodofoferax ferrire-ducens)、硫还原地杆菌(Geobacter sulfurreducens)、沼泽红假单胞菌(Rhodopseudomonas palustris)、人苍白杆菌(Ochrobactrum anthropi)、铜绿假单胞菌(Pseudomonas aeruginosa)、丁酸梭菌(Clostridiumbutyrioum)、耐寒细菌(Geopsychrobacter electrodiphi-ous)等[1].微生物的产电主体主要是附着在电极上形成的微生物膜。
生物燃料电池的研究及应用
生物燃料电池的研究及应用生物燃料电池是一种利用生物催化反应将有机物或化合物(如葡萄糖、乳酸、乙醇等)在阳极部位氧化产生电流,在阴极部位还原氧气或氧化剂,通过这种方式产生电能的设备。
与传统燃料电池不同的是,生物燃料电池可以使用天然可再生的生物质作为燃料,因而具有环保、可持续等优点,被认为是一种很有潜力的新能源技术。
一、生物燃料电池的研究进展生物燃料电池核心是微生物电化学反应,包括供电菌、电解质和电极三个方面。
其中,供电菌是指在阳极部位附着的微生物(如葡萄球菌、酵母菌等),它通过氧化还原反应将有机物转化为电子和质子,电解质则是指阳极和阴极之间的材料,它可以使电子和质子在两个电极之间传递,从而形成电流,电极则是指两个将电子和质子分开的极。
目前,国内外学者对生物燃料电池的研究方向主要包括以下几个方面:1. 供电菌的筛选和优化。
研究发现,不同的微生物对于不同的底物具有不同的附着特性和电化学反应能力,如酵母菌对葡萄糖和乙醇的电化学反应能力较强,而光合菌对有机酸的电化学反应能力较强。
因此,科学家们通过筛选和优化微生物种类和培养条件,提高了生物燃料电池的发电效率。
2. 电解质的开发和改良。
电解质可以影响生物燃料电池的效率和稳定性。
传统的电解质(如氢氧化钠、磷酸盐缓冲液等)存在着环境污染和成本高等问题。
因此,科学家们研究开发了许多新型电解质,如聚合物电解质、离子液体电解质等,这些新型电解质具有环保、高效、稳定等优点。
3. 电极的制备和改进。
电极是生物燃料电池的重要组成部分,其性能直接影响到生物燃料电池的发电效率和稳定性。
目前,科学家们研究制备了许多新型电极材料,如碳纳米管、金属氧化物、高分子薄膜等,这些新型电极具有催化作用、导电性好等优点,能够提高生物燃料电池的发电效率和稳定性。
二、生物燃料电池的应用前景生物燃料电池具有很多优点,如环保,可持续,低成本等,被认为是一种很有潜力的新能源技术。
目前,生物燃料电池已经应用于以下几个方面:1. 生物燃料电池供电。
生物燃料电池的发展及应用
生物燃料电池的发展及应用一、前言在我们的生活中,许多设备、机器都需要能源的供应。
在传统的能源供应方式中,以石油、煤炭等化石能源为主,但是这些资源的开采和利用对环境的破坏是不可忽视的。
随着能源危机的日益加深和环境问题的愈演愈烈,人们开始不断寻找新的、更加环保的能源供应方式。
生物燃料电池的出现就是这样一个尝试,本文将介绍生物燃料电池的发展和应用。
二、生物燃料电池的概括生物燃料电池是一种利用活性生物质(如葡萄糖、氨、甲烷等)或废物(如厨余垃圾、污水等)在特定条件下进行氧化还原反应,产生电能的设备。
生物燃料电池通常由两个电极和介质组成,活性生物质被氧化还原后会散发出电子,然后通过电极和介质之间的连接传递到另一个电极,从而产生电流。
三、生物燃料电池的历史早在20世纪60年代,生物燃料电池的概念就已经被提出。
但由于当时的技术水平限制,生物燃料电池并没有得以广泛应用。
随着时间的推移和技术的不断更新,生物燃料电池逐渐得到发展。
1976年,来自英国的John Bockris教授和Claire Slade教授发明了第一个生物燃料电池,利用酪酸盐氧化还原反应实现能量转换。
随后,学者们利用酶催化电极上的氧化还原反应,并开发了以葡萄糖、脂肪酸等为原料的生物燃料电池。
20世纪80年代,研究人员开始尝试利用微生物实现生物燃料电池的工作。
1996年,Derek R. Lovley博士成功地利用铁还原菌作为电极的还原体,开发出第一台微生物生物燃料电池。
之后,微生物生物燃料电池得到了越来越多的研究。
目前生物燃料电池已经成为一种商业化的技术,ARPA-E和欧盟委员会都将其列为重点研究领域。
四、生物燃料电池的分类和原理四种常见的生物燃料电池类型包括:直接生物燃料电池、间接生物燃料电池、微生物燃料电池和纳米发电机。
1、直接生物燃料电池直接生物燃料电池是指直接使用生物质作为燃料,在电极上直接氧化还原产生电能。
该电池主要靠生物质氧化作用产生电子和质子,在阳极上对电极产生电位差,然后通过电子传导到阴极上与氧气还原为水,完成电荷平衡。
生物燃料电池技术及其在能源领域的应用
生物燃料电池技术及其在能源领域的应用近年来,随着对可再生能源的需求日益增加,生物燃料电池技术作为一种具有巨大潜力的能源转换技术备受关注。
生物燃料电池将生物质能直接转化为电能,可广泛应用于能源领域。
本文将介绍生物燃料电池技术的原理和分类,并探讨其在能源领域的应用前景。
生物燃料电池技术基本原理是通过将生物质能源转化为可利用的电能。
生物燃料电池包括微生物燃料电池和酶燃料电池两种类型。
微生物燃料电池利用微生物的代谢能力,将生物质废弃物或有机废水中的可降解物直接转化为电能。
酶燃料电池则采用特定的酶催化剂,将生物质能源在催化剂的作用下转化为电能。
微生物燃料电池的工作原理是通过微生物的代谢作用将生物质能源转化为电能。
常见的微生物燃料电池有微生物燃料电池(MFC)和微生物燃料电池(MBFC)。
MFC利用细菌、真菌等微生物将有机废弃物降解为电子和质子。
电子通过外部电路流动,质子通过离子交换膜流动,从而达到电能转化的目的。
MBFC则利用微生物的光合作用去除水中的有机污染物,同时产生电能。
酶燃料电池依赖于特定酶的催化作用将生物质能源转化为电能。
常见的酶燃料电池有葡萄糖酶燃料电池和乳酸酶燃料电池。
葡萄糖酶燃料电池通过将葡萄糖催化为葡萄糖酸,并同时产生电能。
乳酸酶燃料电池则将乳酸催化为丙酮酸,同时产生电能。
这些酶燃料电池可以根据所需的底物类型进行设计,并且具有高效能转化的特点。
生物燃料电池技术在能源领域有着广泛的应用前景。
首先,生物燃料电池可以利用废弃物资源,实现废物转换为能源的目标。
例如,通过利用农业、食品加工等领域产生的废弃物,可以通过生物燃料电池技术将这些废弃物转化为可再生的电能。
这不仅能够解决废物处理的问题,还能够为能源供给提供可再生的替代品。
其次,生物燃料电池技术在无线传感器网络(WSN)等领域具有一定的应用潜力。
由于WSN通常用于远程或难以维护的环境中,传统的电池供电方式会面临容量不足或更换困难等问题。
而使用生物燃料电池技术可以实现长期稳定的供电,使得WSN的应用范围更加广泛。
《2024年微生物燃料电池中产电菌与电极的作用机制及其应用》范文
《微生物燃料电池中产电菌与电极的作用机制及其应用》篇一一、引言微生物燃料电池(Microbial Fuel Cell,MFC)是一种利用微生物将有机物转化为电能的技术。
在过去的几十年里,MFC因其可持续性、环境友好性和低成本的特性,引起了科研人员的广泛关注。
产电菌作为MFC的核心组成部分,其与电极之间的作用机制对提高MFC的能源转换效率具有重要意义。
本文将深入探讨产电菌与电极的作用机制及其在MFC中的应用。
二、产电菌与电极的作用机制(一)产电菌的生理特性产电菌是一类能够利用有机物进行代谢并产生电流的微生物。
它们通过分泌电子传递体,如色素、醌类等,将有机物氧化过程中产生的电子传递给电极。
此外,产电菌的代谢活动还能够降低阳极区有机物的浓度,从而提高MFC的能源转化效率。
(二)产电菌与电极的相互作用在MFC中,产电菌附着在阳极上,通过其代谢活动将有机物氧化为二氧化碳和水,同时释放电子。
这些电子通过细胞膜上的电子传递体传递给阳极电极,进而形成电流。
因此,产电菌与电极之间的相互作用是MFC中能量转换的关键过程。
(三)电极材料与结构的影响电极材料和结构对产电菌的附着、生长以及电子传递效率具有重要影响。
常用的阳极材料包括碳基材料、金属氧化物等。
其中,碳基材料具有较高的导电性和良好的生物相容性,有利于产电菌的附着和生长。
此外,三维多孔结构的电极能够提供更大的表面积,有利于产电菌的增殖和电子传递。
三、MFC中产电菌与电极的作用机制的应用(一)提高MFC性能通过研究产电菌与电极之间的作用机制,可以优化MFC的运行条件,提高其能源转换效率。
例如,通过调整pH值、温度、底物浓度等环境因素,可以改善产电菌的代谢活动,从而提高MFC的电流输出和能源转化效率。
此外,通过优化电极材料和结构,可以增强产电菌与电极之间的相互作用,提高电子传递效率。
(二)生物电化学系统中的应用MFC作为一种生物电化学系统,具有在废水处理、生物传感器、生物燃料生产等领域的应用潜力。
生物燃料电池
微生物燃料电池结构及改进
微生物燃料电池组成
组成成分 阳极 阴极 阳极室 阴极室 质子交换膜 原料 石墨、碳纸、碳布、铂、铂黑、网状玻碳 石墨、碳纸、碳布、铂、铂黑、网状玻碳 玻璃、聚碳酸脂、有机玻璃 玻璃、聚碳酸脂、有机玻璃 质子交换膜、盐桥、玻璃珠、玻璃纤维和碳纸 标注 必需 必需 必需 非必需 必需
2.生物燃料电池的特点:
原料来源广泛; 操作条件温和; 生物相容性好; 生物燃料电池结构比较简单
3.分类
工作方式:微生物燃料电池和酶生物燃料 电池
电子转移:直接生物燃料电池和间接生物 燃料电池
几个概念
酶生物燃料电池:先将酶从生物体系中提取出来,然后利 用其活性在阳极催化燃料分子氧化,同时加速阴极氧的还 原; 微生物燃料电池:指利用整个微生物细胞作催化剂,依靠 合适的电子传递介体在生物组分和电极之间进行有效的电 子传递。 直接生物燃料电池:燃料在电极上氧化,电子从燃料分子 直接转移到电极上,生物催化剂的作用是催化燃料在电极 表面上的反应; 间接生物燃料电池:燃料不在电极上反应,而在电解液中 或其他地方反应,电子则由具有氧化还原活性的介体运载 到电极上去。
4.发展简史
1911,英国植物学家potter,开创; 剑桥大学cohen教授构建了微生物电池堆; 1970,生物燃料电池概念确定; 1980后,生物燃料电池输出功率有较大提高 2002,bond发现特殊微生物地杆菌; 2006,美国bruce教授、byung(韩国)和比利 时willy教授在MFC上做了大量研究。
大肠杆菌普通变形杆菌枯草芽孢杆菌梭状芽孢杆菌嗜水菌枯草芽孢杆菌梭状芽孢杆菌嗜水微生物燃料电池结构及改进微生物燃料电池结构及改进微生物燃料电池组成组成成分组成成分原料原料标注标注阳极阳极必需必需阴极阴极必需必需阳极室阳极室玻璃聚碳酸脂有机玻璃玻璃聚碳酸脂有机玻璃必需必需阴极室阴极室玻璃聚碳酸脂有机玻璃玻璃聚碳酸脂有机玻璃非必需非必需质子交换膜质子交换膜质子交换膜盐桥玻璃珠玻璃纤维和碳纸质子交换膜盐桥玻璃珠玻璃纤维和碳纸必需必需电极催化剂电极催化剂铂铂黑聚苯胺固定在阳极上的电子介体铂铂黑聚苯胺固定在阳极上的电子介体非必需非必需阳极是微生物氧化分解有机物的场所所以微生物阳极是微生物氧化分解有机物的场所所以微生物的量也就能影响产电量
生物燃料电池
加入其他的催化剂。
1.对材料的改性
• Zeikus等报道了用石墨阳极固定微生物来增加电流密度, 然
后用AQDS、NQ、Mn2+、Ni2+、Fe3O4、Ni2+来改性石墨作
为阳极。结果表明,这些改性阳极产生的电流功率是平板
石墨的115~212倍。
• Cheng等将用氨气预处理过的碳布作为MFC 的阳极,结果表
回路产生电流,而质子通过质子交换膜到达阴
极,与电子受体 (氧气)反应生成水。其阳极
和阴极反应式如下所示:
阳极反应:
(CH2O)n+nH2O
nCO2+4ne-+4nH+
阴极反应: 4e-+O2+4H+
阳极室
PEM
阴极室
微生物燃料电池工作原理
2H2O
生物燃料电池
• 间接MFC:需要外源中间体参与代谢,产
过程中的主要制约因素。
氧作为阴极反应的电子受体最大问题是在
水中的溶解度低。
搅拌情况、微生物最大生长率、微生物对
底物的亲和力、生物量负荷、操作温度和
酸碱度均对物质传递有影响。
MFC的最新研究方向
• 微生物电解池(MEC),一种新型的利用废水产氢技术。
由于产电细菌能够释放电子,所以可以利用MFC形式的反
环境污染治理
1、使用MFC技术进行生物修复
研究表明,MFC系统可以再厌氧条件下用于提高
被石油污染的地下水的生物修复速率。
2、用于难降解有机物的去除
当构建一个以葡萄糖和偶氮燃料为基质的生物阴
极型MFC时,污染物的去处速率显著加快,脱色率
得到提高。
3、制成BOD生物传感器,对受污染水体进行预警,
生物燃料电池的工作原理及其应用
生物燃料电池的工作原理及其应用生物燃料电池是一种利用微生物或酶类催化物氧化有机物生成电能的电池。
它是一种新型的可再生能源技术,可以利用生物质、有机垃圾、农业废弃物等可再生资源,将其转化为电能。
生物燃料电池具有结构简单、环保无污染、能量密度高、装置便携等优点,具有广泛的应用前景。
一、生物燃料电池的工作原理生物燃料电池的工作原理是通过微生物或酶类催化物将有机物氧化成无机物,从而产生电流。
生物燃料电池主要有两种工作机制:微生物燃料电池和酶催化燃料电池。
1. 微生物燃料电池微生物燃料电池是利用微生物催化物将废弃物或生物质转化为电能。
微生物燃料电池包括两种类型:一种是微生物生产电流燃料电池(MFC),另一种是微生物生产氢气燃料电池(MBFC)。
MFC的原理是利用微生物合成有机物质并在阳极上进行氧化反应,同时在阴极上进行还原反应,这种反应可以产生电流。
MBFC的主要反应是通过微生物将废弃物或生物质转化成氢气,然后在阳极上进行氧化反应,同时在阴极上进行还原反应,从而产生电流。
2. 酶催化燃料电池酶催化燃料电池是利用酶类催化物将废弃物或生物质转化为电能。
酶催化燃料电池主要分为直接电子转移酶催化燃料电池(DET-MFC)和间接电子转移酶催化燃料电池(IET-MFC)。
DET-MFC是直接将底物化学能转换为电能,该反应是通过电子转移方式实现的。
IET-MFC是通过酶类催化物介导电子转移实现的。
二、生物燃料电池的应用生物燃料电池具有广泛的应用前景,主要应用领域包括环境保护、生物传感、能源供应等。
1. 环境保护生物燃料电池可以通过利用生物质、有机垃圾等废弃物,将其转化为电能。
这种技术可以有效降低废弃物的排放量和环境污染,达到环境保护的目的。
2. 生物传感生物燃料电池可以被用作生物传感器,通过监测微生物代谢产物或酶催化物代谢产物来分析环境中的有害物质,如氨、硫化氢等。
这种技术可以在不使用外部电力和电池的情况下,实时监测水质、土壤和大气环境中的有害物质。
生物燃料电池的制备与性能
生物燃料电池的制备与性能生物燃料电池是利用生物体代谢产生的化学能转化为电能的一种新型电池。
与传统的化学电池相比,生物燃料电池的优势在于可以利用可再生生物质作为燃料,同时产生的二氧化碳等排放物对环境的影响很小。
本文将介绍生物燃料电池的制备与性能。
一、生物燃料电池的制备1. 材料的选择生物燃料电池的制备材料包括阴阳极、质子交换膜、催化剂等。
阳极材料通常是碳材料,如碳纳米管、石墨烯等,而阴极材料则需要具有较好的催化还原氧的能力,如铂、金、银等贵金属催化剂。
质子交换膜主要起到分离阴阳两极的作用,常采用聚四氟乙烯膜。
2. 制备方法生物燃料电池的制备方法主要包括生物燃料电池模块的组装、电化学沉积法和化学气相沉积法等。
生物燃料电池模块的组装需要将阳极、质子交换膜和阴极组装在一起,保证电极之间有足够的接触面积和良好的导电性能。
电化学沉积法是利用电化学方法,在阳极或阴极上沉积催化剂,以提高生物燃料电池的性能。
化学气相沉积方法则是利用化学或物理方法在阳极或阴极表面生长纳米结构的催化剂,以提高其活性。
二、生物燃料电池的性能1. 发电性能生物燃料电池的发电性能主要包括输出电压、输出电流、功率密度等指标。
输出电压是指生物燃料电池输出的电压,常用单位为伏特(V)。
输出电流是指生物燃料电池输出的电流,常用单位为安培(A)。
功率密度是指生物燃料电池的发电功率与电极面积之比,常用单位为瓦特/平方米(W/m²)。
2. 稳定性生物燃料电池的稳定性指电池可以持续地输出电能的能力。
其中,阴极一般是限制生物燃料电池稳态输出的关键。
阴极氧气还原反应(ORR)是阴极的一个重要过程。
ORR的反应速率决定了阴极反应速率和电池的最大输出功率密度。
因此,催化剂选择和阴极导电材料的表面能与催化剂结合特性对阴极反应速率和催化剂的长期稳定性具有相当重要的影响。
3. 经济性生物燃料电池需要的原材料比较简单,主要是可再生的生物质。
但是,生物燃料电池中使用的催化剂催化剂价格较高,同时生物燃料电池的制备过程也比较复杂,因此成本较高。
(完整版)生物电池
阴极反应:H2O2+2H++2e-→2H2O 普遍使用的以葡萄糖为燃料的酶电池
是模仿线粒体的反应机构而制成的, 线粒体是以葡萄糖为燃料的酶电池的 理想模型。
3生物原料电池的工作原理
生物电池的阳极由嗜糖酶和介质组成,阴极由释氧酶和介质组成,两 极都有一层玻璃纸隔离膜。阳极通过如下的酶氧化反应从糖(葡萄糖) 中分解出电子和氢离子:
MFC,英文全称为microbial fuel cell,是以微生物作为催化剂 将碳水化合物中的化学能转化为电能的装置。主要分为双室 MFC和单室MFC。双室MFC由阳极区和阴极区组成,中间用质 子交换膜分开。而单室MFC即省去了阴极区,阳极和阴极在同 一个室内工作。
在质子膜燃料电池(MFC)实际工作条件下
有一个质子交换膜将两极室分开。基 本反应类型分为四步: 1) 在微生物的作用下,燃料发生氧化 反应,同时释放出电子。 2)介体捕获电子并将其运送至阳极。 3) 电子经外电路抵达阴极,质子通过 质子交换膜由阳极室进入阴极室。 4)氧气在阳极接收电子,发生氧化还 原反应。
阳极反应: C6H12O6+6H2O→6CO2+24H++24e
2、多步反应型生物电池,指生 物体外的氧化还原物质发生氧化 还原反应制成的生物电池。
3、细胞型生物电池,指生物体 细胞外的氧化还原物质发生氧化 还原反应制成的生物电池。
它们的主要差别是反映场所不同。 分别是“于生物体内”,“于生物 体外”以及“与生物体细胞外”。
按催化剂的来源
1、微生物电池 微生物电池由阳极室和阴极室组成。
微生物燃料电池(MFC)的基本工作原理
微生物燃料电池
新型化学电源生物燃料电池及其发展前景摘要:微生物燃料电池是以微生物为催化剂,通过降解有机物将化学能转化成电能的一种新型发电装置。
它能够利用废弃物和生活垃圾等生物资源进行发电,还能有效地处理废水,并能从实际的可生物降解的有机物中生物制氢,为有效获取氢能开辟了新途径,在环境保护和新能源开发等领域具有广阔的应用前景,因此成为上述领域当前的研发新热点1.生物燃料电池简介1.1、生物燃料电池定义所谓的生物燃料电池(Biofuel cell),就是按照燃料电池的原理,利用生物质能将有机物(如糖类等)中的化学能直接转化成电能的一种电化学装置。
1.2、生物燃料电池分类目前有人将生物燃料电池分为间接型和直接型两种。
在间接型生物燃料电池中,由水的厌氧酵母或光解作用产生氢等电活性成分,然后在通常的氢- 氧燃料电池的阳极上被氧化。
在直接型生物燃料电池中,有一种氧化还原蛋白质作为电子由基质直接转移到电极的中间物根据电池中使用的催化剂种类,可将生物燃料电池分为微生物燃料电池和酶燃料电池两种类型。
1.3、两种生物燃料电池工作过程简介典型的微生物燃料电池由阳极室和阴极室组成,质子交换膜将两室分隔开。
它的基本工作原理可分为四步:(1) 在微生物的作用下,燃料发生氧化反应,同时释放出电子;(2) 介体捕获电子并将其运送至阳极;;(3) 电子经外电路抵达阴极,质子通过质子交换膜由阳极室进入阴极室;(4) 氧气在阴极接收电子,发生还原反应。
酶燃料电池:葡萄糖在葡萄糖氧化酶和辅酶的作用下失去电子被氧化成葡萄糖酸,电子由介体运送至阳极,再经外电路到阴极。
双氧水得到电子,并在微过氧化酶的作用下还原成水。
2 MFC 的工作原理典型的微生物燃料电池(M F C )微生物燃料电池工作原理图由阴极区和阳极区组成,两区域之间由质子交换膜分隔。
MFC 的工作原理是:在阳极表面,水溶液或污泥中的有机物,如葡萄糖、醋酸、多糖和其他可降解的有机物等在阳极微生物的作用下,产生二氧化碳、质子和电子。
生物燃料电池的原理及其应用
生物燃料电池的原理及其应用生物燃料电池(Biofuel Cell)是一种新型的电化学能源转换器,它的燃料是生物质、有机废物、葡萄糖等生物性载体,是一种“绿色能源”,具有很强的应用前景。
本文将介绍生物燃料电池的原理、特点及应用。
一、生物燃料电池的原理生物燃料电池主要是利用三个微生物相互协作来完成电解的过程,即“生物阳极”、“生物阴极”和“电解质”三个元素。
生物阳极是由微生物或其代谢产物构成的,如细菌、酵母、真菌等微生物。
生物阴极则是一种电化学催化剂,可以促进电子的传输和反应。
而电解质则是连接阳极和阴极的介质,起到传递离子的作用。
生物阳极的基本原理是在一个含有生物阳极微生物的电极表面上,将有机废物通过微生物的代谢反应改变成电子,电子随后传输到阴极上,并在阴极上与氧反应生成水。
整个过程中,电子的传输由生物阳极微生物代谢产生的酶催化和外部电压的作用来促进。
生物阴极的基本原理是利用催化剂催化产氧电极上的氧气还原成为水。
在阴极上,氧气被吸附在电极表面上,接受电子并与水合成气体。
这个过程被称为氧还原反应(ORR)。
当催化剂存在于阴极上时,氧气分子被催化剂催化来接受电子,并使反应更加容易进行。
电解质则是为生物燃料电池提供离子传输的介质。
主要是通过离子交换膜或直接加入电解质来实现。
二、生物燃料电池的特点生物燃料电池与传统燃料电池相比,有以下几个特点:1、燃料源广泛:可以利用葡萄糖、淀粉、木质素、生物质和有机废物等用作燃料,因此具有良好的环境可持续性。
2、低成本:相对于石油等化石燃料,生物燃料电池的燃料成本更为低廉。
3、低污染:生物燃料电池的废物是水,对环境污染轻微,符合环保理念。
4、生物燃料电池本身的组成比较简单,且能够在不同介质中运行,如液态,半固态,以及气态等,全方位的运行方式给其应用带来了很多便利。
三、生物燃料电池的应用1、生物燃料电池可以制备出电量稳定的微型电池,可以应用在微型传感器、微型医疗设备和其他物联网设备中。
生物燃料电池(MFC)
MFC1. 什么是生物燃料电池(MFC)(07/17/2007)从生物/微生物中提取电能在20世纪初就被发现,直到20世纪70年代陆续有研究文章发表.1980年开始,一些英国的研究者做了不少关于微生物燃料电池(microbial fuel cell---MFC)研究,持续了10年. 到90年代末,美国的一些研究者把这个题目找出来逐步"发扬光大"。
可能因为能源危机的问题,现在MFC的研究表现的越来越热.在这方面做的比较好的是比利时的一个研究组,他们的电池功率目前是最高的.Penn State的Bruce Logan发表的文章最多. 另外Umass的DR Lovley刚拿到一个huge grant $ 23 M, 估计接下来的几年会做出不少的东西.MFC和Fuel cell显著的区别就是anode: MFC在anode里用微生物或者生物酶做催化剂,一般没有Pt.因为生物的存在,anode的温度就不可能很高,一般MFC的运行温度在室温和37C之间.燃料则是"有机物",用于microbe生长. microbes在降解有机物(比如葡萄糖)的时候,产生protons 和electrons,其余的原理就和fuel cell一样了.MFC的cathode也用Pt或者其他化学药品(例如ferricyanide) 来促进反应. MFC产生的功率远小于Fuel cell,最高也就是几W/m2,现在可能提高了一些. 因为MFC和fuel cell应用不同,所以不需要那么高的功率输出. 另外,MFC可能会用于大型反应器,所以anode 的电极不大会用carbon paper,而用一些表面机更大的,象graphite granular;现在计算MFC功率的时候,一般用anode volume (W/m3),而不是电极表面积. MFC 的future application可能是废水处理过程,因为废水可以提供"免费"的有机物让微生物来降解,并且产生电能,一箭双雕. 目前废水处理过程也产生能量,比如甲烷气(methane). 因为methane还需要额外的步骤来发电,而MFC可以一步到位,所以如果MFC可以有high efficiency,比传统的废水处理过程要有不少优势(如果可以达到高效的话).MFC2. 微生物燃料电池中生物阴极的应用(09/04/2007)发展背景微生物燃料电池(microbial fuel cell - MFC)是一种特殊的电化学电池. 它通过微生物在阳极降解有机物产生电子. 而在阴极, 阳极产生的电子和正离子还原氧气,最终产物为水. 电子从阳极到阴极的传输产生电流. 第一个生物电流的实验证明是在十八世纪晚期,Luigi Galvani发现,当用金属导体把青蛙腿连接起来的时候, 有电流反应产生. 为了进一步研究生物电流, Michael C. Potter在1911年建立了第一个微生物燃料电池. 1931年, Barnett Cohen发现在阳极加入铁氰化钾(potassium ferricyanide) 或者苯醌(benzoquinone) 作为电子传输中介物,可以提高电流. 虽然在二十世纪六十年代微生物燃料电池成为一个研究热点, 但是研究人员还无法成功地建造一个可以持续运行的实验装置. 八十年代,英国的研究人员H. Peter Bennetto 成功利用单种细菌和电子传输中介物通过氧化有机物来发电. 同时, 日本的研究人员发现光合自养型的细菌可以把光能转化成电能. 在过去的十年中,因为全球能源危机问题, 微生物燃料电池引起了越来越广泛的关注. 研究的方向包括理解电子传输的机理和建造实用的反应器装置.非生物阴极非生物阴极大多利用氧气为最终电子接收物,也有研究过氧化氢作为阴极氧化物. 因为氧气还原效率在碳/石墨表面很低, 所以通常情况下,阴极反应需要催化剂或者电子传输中介物. 铂是目前使用最广泛的阴极催化剂,但是其材料昂贵, 催化性能容易被一些特殊物质污染.另外, 微生物燃料电池阴极溶液的pH值会随反应而升高, 从而限制铂的催化能力. 电子传输中介物大多是一些含有过渡金属的化合物,比如含铁和钴的物质.生物阴极传统的微生物燃料电池是”半生物性的”,因为只有阳极存在生物反应,而阴极通常采用金属催化剂来完成还原氧气的反应. 但是, 微生物在阴极的生长是不可避免的. 研究人员已经发现了几种在阴极的生物新陈代谢过程,为研究生物阴极开启了大门. 相比于非生物阴极,生物阴极有如下优点: (一) 建造和运行微生物燃料电池的费用可能被降低,因为不再需要贵重金属催化剂, 也不需要添加化合物来作为电子传输中介; (二) 生物阴极可以提高微生物燃料电池的可持续性; (三) 生物阴极里的微生物活动可以被用来产生有用的物质或者去处污染物. 总的说来,生物阴极可以被分为好氧(氧气为最终电子接受物)和厌氧(其他非氧气物质为最终电子接受物)生物阴极.好氧生物阴极氧气是应用最广泛的阴极电子接受物. 氧气有很高的氧化还原电位, 而且大量存在于空气中,降低了使用费用. 好氧生物阴极的一个研究重点是利用过渡金属化合物, 包括锰和铁,协助电子从阴极传输过氧气. 高价位的金属充当临时电子接受物, 从阴极接受电子,通过微生物的”呼吸作用”被还原成低价位金属. 然后低价位的金属被氧气氧化回到高价位, 将电子传输给氧气. 在这个循环过程中,电子从阴极被传送到氧气. 另一种好氧生物阴极则是通过藻类的光合作用为阴极反应提供氧气. 实际应用中, 上述的这些机理可能同时发生. 例如, 研究人员发现海洋生物膜可以提高氧气还原效率. 在这个过程中, 锰化物可能参与电子传输; 另外,藻类的生长也不可避免.厌氧生物阴极在没有氧气的时候,其他物质, 例如硝酸盐,硫酸盐,铁化物和锰化物, 也可以作为最终电子接受物. 其中, 硝酸盐,铁化物和锰化物具有接近氧气的新陈代谢活性,是潜在的替代氧气的阴极电子接受物. 厌氧生物阴极的一个优点就是可以防止氧气通过正离子交换膜渗透到阳极,从而影响到阳极的厌氧微生物生长. 目前为止, 只有硝酸盐和硫酸盐被用于研究. 硝酸盐(+0.74V)的氧化还原电位比硫酸盐(-0.22V)更接近氧气(+0.82V), 所以更适合做为阴极电子接受物. 利用硝酸盐进行阴极反应, 与硝化反应类似,唯一不同的地方是, 硝化反应通过氧化有机物得到电子, 而生物阴极则依靠阴极供给电子. 比利时的研究人员已经成功将硝酸盐用于阴极的还原反应, 为微生物燃料电池应用在污水处理中的可行性提供了进一步的实验证明.小结生物阴极是一项使微生物燃料电池更具优势和可持续性的技术. 在实现这项技术之前, 我们必须理解阴极的生物电子传输机制, 以便于更合理地选择和利用微生物.MFC3. 微生物燃料电池中的共生现象(09/18/2007)共生现象在自然界普遍存在, 比如动物体内的寄生细菌降解一些动物肠胃无法消化的物质,同时也获取用于自身生长的能量. 再比如, 一种小鸟从鳄鱼的嘴中获取食物, 即帮助鳄鱼清洁了牙齿,同时也利用鳄鱼的嘴做为保护自己的场所, 两者和睦相处. 共生现象有几种类别, 有双方彼此都受益的,也有一方受益另一方不受益, 甚至还有一方受益而另一方受害的. 在废水处理中, 也存在共生现象. 一个典型的代表就是厌氧消化过程中,发酵细菌将复杂的碳水化合物分解成相对简单的有机物(酸). 这些发酵产物随后被其他细菌消食, 例如,醋酸化合物可以被甲烷菌(注: 严格意义上, 甲烷菌不是细菌-bacteria, 而是archaea)利用产生甲烷气体. 微生物燃料电池的阳极类似于废水处理中的厌氧消化过程, 因此, 微生物之间的共生现象不可避免. 最近, 宾州州立大学和麻省大学艾莫斯特分校的研究人员先后发表论文, 从不同的角度研究和探讨了阳极的共生现象.宾州州立大学的研究人员利用细菌Clostridium cellulolyticum分解纤维素, 其产物被另一种细菌Geobacter sulfurreducens用于厌氧呼吸(anaerobic respiration), 产生电子和电流. 纤维素是一种富含有机物的生物物质, 也是一种潜在的生物能源(bioenergy)的载体. 但是它很难被直接利用,需要进行预处理和水解成为简单的碳水化合物,比如葡萄糖. 只有很少的一些微生物(bacteria and fungi)或者特殊的生物酶可以水解纤维素, 产物包括氢气, 醋酸物和乙醇. Clostridium是一种专性厌氧细菌, 因其降解纤维素的特殊能力而受到工业届的广泛重视. 在这项研究中, 科研人员设计了对照实验, 证明C. cellulolyticum可以分解纤维素,但无法产生电流; G. sulfurreducen无法利用纤维素生长,因而也没有电流产生. 但是,当把两种细菌混合起来的时候,微生物燃料电池产生出了电流. 而且, 当G. sulfurreducen存在的时候, 纤维素(carboxymethyl cellulose-CMC)的降解效率比C. cellulolyticum单独生长的时候提高了18%. 这项研究的创新之举在于首次利用特殊的细菌在微生物燃料电池降解非水溶性的有机物, 并且用实验展示了两种细菌在发电过程中的共生关系. 此外, 实验结果也进一步论证了发酵过程和厌氧呼吸过程的结合可能比单一菌种的活动更加有利于能量的产生.麻省大学艾莫斯特分校的研究则是关于两种都可以进行厌氧呼吸,利用三价铁做为电子接受物的细菌, Geobacter sulfurreducens和Pelobacter carbinolicus. 前者是已知的可以发电的细菌, 而后者被大量发现于建立在水沉积物中的微生物燃料电池的阳极上. 通常意义上, 可以还原三价铁氧化物的细菌都可以利用阳极作为电子接受物, 但是实验结果表明P. carbinolicus基本不具备这样的能力. 科研人员发现, 当乙醇作为微生物燃料电池的燃料, G. sulfurreducens不能够代谢这种燃料; P. carbinolicus可以将乙醇用于生长,但是不能产生电流. 混合生长的时候, 乙醇被P. carbinolicus转化为氢气和醋酸物, 然后G. sulfurreducens 利用这些产物发电. 共焦显微镜(confocal)和对16S rRNA基因的分析表明, 两种细菌在阳极表面的数量几乎相等, 但是在阳极水溶液中, 绝大多数是P. carbinolicus. P. carbinolicus 是第一种可以还原三价铁氧化物却不能在微生物燃料电池中产生电流的细菌. 与其他可以产生电流的细菌相比, P. carbinolicus缺乏外细胞膜的细胞色素(cytochrome), 一种被认为是连接细胞内部和阳极的可导电的蛋白质.微生物燃料电池研究的一个关键问题就是理解阳极微生物的活动和它们之间的相互作用. 利用单一菌种(pure culture)来研究共生现象将对认识阳极微生物的新陈代谢和电子传输过程有重要的帮助.MFC 4. 沉积物微生物燃料电池工作原理沉积物微生物燃料电池(Sediment Microbial Fuel Cell) 的工作原理与微生物燃料电池(Microbial Fuel Cell) 类似, 但是反应器结构要简单很多. 在沉积物微生物燃料电池中, 作为阳极的电极被埋在水底沉积物的浅层中(1-10厘米深), 而作为阴极的电极则悬于阳极上方的水中. 不同于常规的微生物燃料电池, 沉积物微生物燃料电池不需要使用离子交换膜将阳极和阴极分开, 而是利用水中溶解氧浓度由浅至深逐渐减少自然地把阳极和阴极分成缺氧区和有氧区. 因此, 在沉积物和水体的界面上自然形成了一个氧化还原的梯度, 使阴,阳电极之间可以产生大约0.7 V的开路电压. 水底沉积物含有多种厌氧细菌, 可以将经过多年沉降积累的有机物分解, 并把电子传输给阳极. 而悬在含溶解氧相对高的水中的阴极则接受电子, 完成氧气还原反应. 一些特殊的沉积物微生物燃料电池采用牺牲阳极和生物阴极(参见下文).优缺点沉积物微生物燃料电池的优点就是结构简单, 不需要太多的维护, 建造和运行费用低. 在自然水体中的长期运行会在阴极形成生物膜, 有可能帮助氧气还原反应. 但是,沉积物微生物燃料电池一般都不使用阴极催化剂, 而且沉积物中的有机物含量有限, 所以其功率输出也很有限. 沉积物微生物燃料电池的运行条件不象其他微生物燃料电池那样得到严格的控制, 在自然条件下会产生波动, 也会影响到功率输出. 此外, 因为水中溶解氧浓度随着水深不断降低, 沉积物微生物燃料电池不可能应用于太深的水体中, 也就是说, 不可能应用于离陆地太远的水体中. 华盛顿大学(圣路易斯) 的研究人员设计了一种可旋转的阴电极, 希望利用水流或者海潮来推动阴极旋转, 通过旋转将空气中的氧气带入水中, 提高阴极附近的溶解氧浓度.实际应用因为输出功率低, 沉积物微生物燃料电池的应用大多是为远程监测仪器提供电能. 这类电子设备不需要太高的电能, 也不需要频繁地维护. 尽管如此, 它依然是微生物燃料电池中最有可能在短期内投入到实际应用中的一种. 美国海军研究实验室已经研制开发了一种沉积物微生物燃料电池, 称为Benthic Unattended Generator, 简称BUG. 这种BUG被放置在河水或者海水底部, 为监测空气温度, 气压, 相对湿度和水温的电子仪器提供电能, 数据通过无线发射器(也由BUG 提供电能) 传输到附近的海军研究实验室. 蒙大拿州立大学的研究人员设计了一种由金属镁作为牺牲阳极, 和生物沉积锰化物作为阴极的沉积物微生物燃料电池. 该电池被设置在河底, 为一个无线传感器提供电能. 随着对微生物燃料电池的认识的不断加深和越来越广泛的新材料应用, 沉积物微生物燃料电池还可能被用做生物修复, 或者生态修复的一种手段.MFC5 微生物燃料电池阳极的电子传输机制生物燃料的前景因其潜在的环境影响和原材料来源等问题受到科学届的质疑. 但是, 随着储量有限的fossil fuel不断消耗, 寻求可再生能源成为全球性的紧急问题. 未来可替代性的能源组成应该是多元化的, 能源需求应该被多种形式分担, 既包括某些可提供大规模长期能源的形式, 也包括可提供局部小规模需求的形式.微生物燃料电池(microbial fuel cell – MFC) 是一种新型的”废水–能源” 转化方式. MFC的”原材料”是废水和废物, 不存在与人类争夺粮食(比如,生物乙醇的生产)的问题; 其过程也是清洁环境的过程, 因此它的环境影响是积极的. MFC不可能成为主要的能源提供者, 但是满足局部小规模的能源需求还是可行的. 目前, MFC研究的最主要问题就是理解微生物与电极(阳极; 绝对大部分阴极都是非生物性的)之间的相互作用(电子传输过程), 这是进一步提高MFC功率输出的基础. 虽然具体的电子传输机制还不是十分清楚, 但是在大体上,研究人员总结了两种电子传输机制: 直接电子传输(direct electron transfer – DET) 和间接电子传输(mediated electron transfer – MET). 笔者认为, 电子传输机制还可以按照另一种方式分类: 微生物的新陈代谢过程, 即, 微生物是否通过电子传输获得自身生长的能量. 电子传输实际上就是微生物的呼吸过程(respiration). 就好象人要通过呼吸氧气生存,微生物也需要通过”呼吸过程”获得生长的能量. 在这个过程中, 微生物分解有机和无机物质(electron donor), 产生电子, 并传输到最终电子接受物(terminal electron acceptor). 对于好氧微生物来说, 最终电子接受物为氧气; 而厌氧微生物的最终电子接受物为(亚)硝酸盐,(亚)硫酸盐,金属化合物和二氧化碳等等. 在MFC的阳极,电子接受物则为电极.当微生物可以通过”呼吸”阳极获得生长的能量, 同时产生电流时, 它们可以通过DET或者MET 来传输电子. 在DET过程中, 细菌和电极有直接的接触,并利用细胞外膜的可导电性的蛋白质作为电子中介物,将电子传输到电极上. 研究人员发现, Geobacter的一些菌种在利用电极生长的时候, 某些细胞外膜蛋白(outer membrane protein)有很高的表达, 意味着这些蛋白质可能做为电子传输的中介物. 此外, Geobacter 和Shewanella的某些菌种会产生一种可导电的纳米线(nanowire),既可以连接临近的细菌形成生物膜结构, 还可以传导细菌新陈代谢产生的电子. 通过nanowire, 距离电极一定距离的细菌也有可能参与到MFC的电流产生过程中. MET是另一种主要的电子传输过程, 因为可以利用电子中介物质(electron mediator)传输电子, 细菌不需要和电极有直接的接触. 早期的研究主要通过添加人工合成的化学物质来提高电流输出, 间接证明了电子中介物质的作用. 近年来, 研究人员发现Pseudomonas aeruginosa 可以产生自己的电子中介物- pyocyanin. 当相关的基因被删除后, 电流产量下降很多. 阳极可以诱导pyocyanin的产生. 细菌重复利用这种电子中介物至少11次.在阳极生长的微生物中, 也有很多细菌不能进行”电极呼吸”, 但是它们可以通过新陈代谢的产物间接地参与到电流产生的过程中. 这些产物可以和阳极进行非生物性反应, 从而产生电子以及电流. 在对Bacteroides thetaiotaomicron的研究中, 科研人员发现, 当这种细菌在阳极生长的时候, MFC的电流显著增长, 减缓细菌生长的同时也降低了电流产生. 但是, 基因芯片(DNA Chip)的对比分析显示, 无论细菌是否生长在MFC的阳极上, 其基因表达都没有显著差别, 表明这种细菌不能利用阳极作为电子接受物, 因而也不可以进行”电极呼吸”. 其生长与电流产生之间的关系, 可能是由于新陈代谢产物与电极之间的非生物反应形成的.对于研究电子传输机制, 使用单一菌种有很多优势. 但是, 在一个复杂的阳极环境中(含有多种微生物的菌群), 电子传输的机制不是唯一的, 可能是上述几种过程的混合.前言生物燃料电池是燃料电池中特殊的一类。
微生物燃料电池 详细
微生物燃料物 • Electricigens:指那些能够在厌氧条件下完全氧化有机物成 CO2,然后把氧化过程中产生的电子通过电子传递链传递 到电极上产生电流的微生物,同时微生物在电子传递过程 中获得能量支持生长。 • 产电微生物种类:大肠杆菌、普通变形杆菌、枯草芽孢杆 菌、梭状芽孢杆菌、嗜水气单胞菌等
动力学问题解决途径 : 1)选择产电效率高的菌种; 2)选择适合的不同菌种进行复合培养,使之在电池 中建立这种所谓的共生互利关系,以获得较高的输出 功率; 3)增大阳极的表面积。
内阻问题:
内电阻的微降会显著地提高输出功率,说明其在提高电 池的输出功率方面具有重要作用。 1)PEM对内阻的影响 2)PEM和电极的空间距离对内阻的影响 3)电极间距离和电极表面积对系统内电阻的影响
传递问题: 反应物到微生物活性位间的传质阻力和阴极区电子 最终受体的扩散速率是电子传递过程中的主要制约因 素。 氧作为阴极反应的电子受体最大问题是水中的溶解 度低。
各种形式的微生物燃料电池
电子传递 • 细胞膜直接传递电子 其电子直接从微生物细胞膜传递到电极,呼吸链中细胞色 素是实际电子载体;提高电池功率,关键在于提高细胞膜 与电极材料的接触效率。 • 由中间体传递电子 氧化态中间体 还原态中间体 排除体外 电极表面被氧化
• 间接MFC:需要外源中间体参与代谢,产生电子才能传递 到电极表面,如脱硫弧菌、普通变形杆菌和大肠杆菌等; • 直接MFC:代谢产生的电子可通过细胞膜直接传递到电极 表面;如地杆菌、腐败希瓦式菌和铁还原红螺菌等;
生物燃料电池的应用及未来发展趋势
生物燃料电池的应用及未来发展趋势生物燃料电池(Biofuel Cells)是一种独特的能源转换系统,它可以直接将生物质作为燃料,利用微生物的代谢活动产生电能。
相较于传统燃料电池,生物燃料电池具有体积小、重量轻、成本低、环保等诸多优势,因此在环境保护、可再生能源等领域有着广泛的应用前景。
一、生物燃料电池的基本原理生物燃料电池的基本原理与传统的燃料电池类似,都是利用半反应产生电子,并通过电极串联的电路客观电流。
但不同的是,生物燃料电池使用的是生物质作为燃料,它会通过微生物的代谢过程中产生氧化还原反应,从而释放电子,进而产生电能。
例如,微生物可以将有机化合物如葡萄糖、淀粉质等分解成有机酸,并释放出一些电子,这些电子可以通过电极与氧发生还原反应(即氧还原成水),最终产生电能。
这种产生电能的方式被称为“微生物燃料电池”(Microbial Fuel Cell)或简称MFC。
二、生物燃料电池的应用生物燃料电池在环保、医学、军事等领域有着广泛的应用。
1.环保领域生物燃料电池是一种高效、低成本的能源转换系统,它可以将生活废水、农业废水等有机废物转化成可再生的能源,可以解决废弃物的处理问题。
同时,生物燃料电池也是一种低碳的能源,其产生的二氧化碳排放量较低,有助于减少空气污染。
2.医学领域生物燃料电池可以利用人身体内的生物质作为燃料,产生电能供体内植入装置使用。
例如,人工心脏、神经刺激器等医疗设备需要电源供应,而传统电源的使用存在着诸多问题,如引线脱落、电池耗尽等,而采用生物燃料电池则可以大大减少这些问题的发生。
3.军事领域生物燃料电池可以利用环境中的可再生能源,如行者燃料、纸张等作为燃料,不需要依赖外部电源,很适合于一些无法获取电源的环境中使用,如战场、荒野等。
三、生物燃料电池的未来发展趋势1.提高转换效率当前,生物燃料电池的转换效率较低,限制了其在特定领域的使用。
因此,如何提高生物燃料电池的转换效率是未来发展的一个重要目标。
微生物燃料电池技术
微生物燃料电池技术
微生物燃料电池技术是一项新兴的、能源领域中将取代传统能源和可再生能源来满足多样化能源需求的新型技术。
其最大的特点是使用活性微生物来维持电池的反应,为我们提供持续的能源供应。
微生物燃料电池的工作原理是将碳源(如木炭,煤油,糖等)和氧结合在特定条件(如温度,酸碱度和气压)下,利用活性微生物来持续产生电流,从而产生一定电压。
一旦电池连接设备,即可提供可持续的电能。
微生物燃料电池的优势主要体现在实现容量稳定,维护费用低,结构小巧,效率高,使用方便,以及不会造成污染等方面。
首先,微生物燃料电池的实现容量确实可以获得稳定。
由于微生物的生物反应可以持续的提供能量,所以它的行稳定性相对比较好,其可持续性也得以得到保证。
其次,微生物燃料电池的维护费用也是相对较低。
它基本上不需要额外投入,只要每隔一段时间进行清洁和更换,并及时补充新的微生物就能保持良好的性能。
另外,微生物燃料电池的结构小巧,易于携带和使用,可以为我们提供可靠的便携式能源支持能力。
此外,微生物燃料电池还可以提供较高的可再生能源转化效率,使人们能更快更有效地使用可再生能源来满足自身的日常能源需求。
最后,微生物燃料电池还是一种无污染技术,只产生小量的有害废气,因此对环境的损害很小。
综上所述,微生物燃料电池技术具有容量稳定、维护费用低、结构紧凑、效率高、
使用方便和无污染的优点,所以是未来替代传统能源和可再生能源满足多样能源需求的一种潜在技术。
如果能够得到合理的应用,微生物燃料电池必将成为我们新的时代的重要能源来源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、目的:
构筑多酶催化体系,分步氧化乙醇并最终把乙醇氧化成 CO2,实现六电子转移,把更多的化学能转化为电能。
二、酶电极生物燃料
3、工作原理:
二、酶电极生物燃料
4、材料和方法:
修饰电极的制备
(Ts溶液)
(GC)
(烘干)
亚甲基蓝溶液 (酶)
二、酶电极生物燃料
5、负极反应:
三、特性参数
1.电流密度(j):描述通过装置的电流强弱的物理量 公式:j=I/A (单位:A m-2) 2.功率密度(P):装置能输出最大的功率除以整个装置的 面积 公式:P=P总/A (单位:W m-2)
三、特性参数
3、电池电压计算:
Ecell=EC-EA-∑I Re EC:阴极电位 EA:阳极电位
四、展望
(1)寻找合适的电极材料,通常为多维、多孔、多向 的导电材料,进一步提高酶型生物燃料电池的电流密度 和输出功率; (2)寻求能够彻底催化氧化底物的方法,使催化电流 达到最大; (3)拓宽酶型生物燃料电池的应用领域和范围; (4)延长酶型生物燃料电池的使用寿命。
(2)酶型生物燃料电池:
优点:1.传质过程电能转化效率高; 2.酶催化剂浓度浓度高,产生更高的电流密度和输出功率; 缺点:1.功率密度低,寿命短,能源利用率低; 2.短期内,酶型生物燃料电池无法走出实验室,无法大量进入实用领域。
二、酶电极生物燃料
1、背景:
1.染料由于具有很好的电化学活性,能介导一些生物大分子; 2.一般的酶型生物燃料电池只能把乙醇氧化成乙醛实现两电子 转移。
一、概述
1、特点:
①燃料来源广泛 ②反应条件温和 ③生物相容性好 ④催化剂类型多种多样
一、概述
2、生物燃料电池的分类
按催化剂类型:
(1)微生物燃料电池 (2)酶型生物燃料电池
一、概述
3、比较
(1)微生物燃料:
优点:1.电池的寿命较长,可以达到五年; 2.许多微生物燃料电池可以完全氧化底物燃料; 缺点:1.生物燃料电池电流密度低导致输出功率低,其应用上受到限制。
生物燃料电池
指导老师:孟春 教授 主讲人:蔡甜甜 主要成员: 蔡甜甜、林翠红、杨扬、杨玉生、郑诨龙、王恒 时间:2016年12月20日
生物燃料电池
一、概述 二、酶电极生物燃料 Nhomakorabea三、特性参数
四、展望
一、概述
生物燃料电池是一种以生物催化剂代替传统 的金属催化剂的一种特殊的燃料电池,被认为是 一种新型的绿色能源。