数学建模:排队论4

合集下载

数学建模排队论

数学建模排队论

数学建模排队论(最新版)目录一、数学建模与排队论简介二、数学建模的方法与应用三、排队论的概念及其应用四、数学建模在排队论中的应用案例五、总结正文一、数学建模与排队论简介数学建模是一种运用数学方法来描述和解决实际问题的科学方法,其目的是通过建立数学模型,揭示问题的本质,从而为解决实际问题提供理论依据。

而排队论是研究随机服务系统中顾客等待现象的一种数学理论,主要用于分析和优化服务系统的性能,以提高服务效率和顾客满意度。

二、数学建模的方法与应用数学建模的方法主要包括概率论、统计学、微分方程等。

这些方法在各个领域都有广泛的应用,如在经济学中分析市场需求、预测价格波动;在生物学中研究生物种群的数量变化等。

数学建模在排队论中也有着重要的应用,可以帮助我们理解顾客等待现象,优化服务系统。

三、排队论的概念及其应用排队论主要研究服务系统中的顾客到达、服务、离开等过程,以及顾客等待时间、服务时间等随机变量。

排队论的应用领域非常广泛,涉及到服务行业、交通工程、通信系统等。

通过排队论的分析,可以有效地优化服务系统的结构和策略,减少顾客等待时间,提高服务质量。

四、数学建模在排队论中的应用案例以一家医院挂号为例,我们可以通过数学建模和排队论来分析和优化挂号流程。

首先,我们可以建立一个概率模型,描述病人到达、挂号、就诊等过程。

然后,通过分析模型中的参数,如到达率、服务率等,可以得到病人等待时间的分布,从而为优化挂号流程提供依据。

例如,可以通过增加挂号窗口、提高挂号效率等措施,来减少病人的等待时间。

五、总结数学建模与排队论在实际应用中相辅相成,通过建立数学模型,可以更好地理解和优化排队现象。

数学建模排队论

数学建模排队论

排队论课件
15
讨论系统处于平衡状态下的性质:
记 pn (t ) 为时刻t时系统处于状态n概率,即系统的瞬时分布 根据前面的约定,我们将主要分析系统的平衡分布,即当系统到 达统计平衡时时所处状态 n 概率,记为
pn , 又记:
N 系统处于平衡状态时队长,其均值为L,称为平均队长
N q 系统处于平衡状态时排队长,其均值为
P
n 0

n
1
有:
1 Cn P0 1 n1
于是:
P0
1 1 Cn
n 0
排队论课件
20
六、M/M/S等待制排队模型
1、单服务台模型 ①队长的分布
M / M /1/
记 pn PN n(n 1,2,) 为系统到达平衡状态后队长 N的概率分布, 注意到 n , n 0,1,2,,
排队论课件
L W
Lq Wq
25
2、多服务台模型
M /M /s/
记 pn PN n(n 1,2,) 为系统到达平衡状态后队长 N的概率分布, 注意到对个数s个服务台系统,有:
n n s
记 s s s
并设 s 1, 则:
n 1,2, s ns

M/D/1


D/M/1


M/E k/1

排队论课件Biblioteka 29结束语
排队论是专门研究带有随机因素,产生 拥挤现象的优化理论。也称为随机服务 系统。 排队论应用十分广泛。
排队论课件
30
n , n 0,1,2,,

n Cn n! s s!

数学建模.排队论共35页

数学建模.排队论共35页

谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
Байду номын сангаас
数学建模.排队论
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

数学建模之排队问题

数学建模之排队问题

排队问题教程一:复习期望公式()i i p a X P ==,∑=ii i p a EX ,()()∑=ii i p a g X Eg二:排队问题单个服务台排队系统问题(比如理发店只有一个理发师情况):假定顾客到达时间间隔()λ/1~e X 分钟,每个顾客接受服务的时间长度为()μ/1~e Y 分钟,假定1)、在时间段[]t t t ∆+,内有一个顾客到达的概率为()2t o t ∆+∆λ 2)、在时间段[]t t t ∆+,内有两个或以上顾客到达的概率为()2t o ∆ 3)、在时间段[]t t t ∆+,内有一个顾客接受完服务离开概率为()2t o t ∆+∆μ 4)、在时间段[]t t t ∆+,内有两个或以上顾客离开的概率为()2t o ∆用()t p n 表示在t 时刻,没有离开的顾客数(由于指数分布无记忆性,正在接受服务的顾客还需要接受的服务时间和任何一个顾客的接受服务时间同分布)。

记t 时刻在服务系统总人数n 的概率为()t p n ,则在t t ∆+时刻在服务系统总人数n 的概率()t t p n ∆+由以下几个不相容部分构成a):t 时刻有n 个顾客,时间段[]t t t ∆+,内没有顾客到达,也没有顾客离开,概率 ()t p t o t t o t n ))(1))((1(∆-∆-∆-∆-μλb):t 时刻有n 个顾客,时间段[]t t t ∆+,内有1顾客到达,有1顾客离开,概率 ()t p t t n ⋅∆⋅∆μλc):t 时刻有n-1个顾客,时间段[]t t t ∆+,内有1顾客到达,没有顾客离开 概率()t p t o t t n 1))(1(-∆-∆-∆μλd):t 时刻有n+1个顾客,时间段[]t t t ∆+,内没有顾客到达,有1个顾客离开 概率()t p t o t t n 1))(1(+∆-∆-∆λμ e):其他情况,概率()t o ∆由上面分析,()()()()()()()t o t p t t t p t t p t t t t p ∆+∆-⋅∆+⋅⋅∆-+⋅∆⋅∆=∆+1000111λμλμλ()()[]()()()t o t p t o t t t p t o t t t t t o t t o t t p t t p n n n n ∆+∆-∆-∆+∆-∆-∆+∆⋅∆+∆-∆-∆-∆-=∆++-11))(1())(1())(1))((1(λμμλμλμλ,1≥n简写()()()()()()00111p t t t p t t t p t o t λμλ+∆=-∆⋅+∆⋅-∆+∆()()[]()()()t o t p t t p t t t t p t t p n n n n ∆+⋅∆+⋅∆+∆-∆-=∆++-11)1)(1(μλμλ即()()()()()t o t p t t p t t p t t p ∆+⋅∆+⋅∆⋅-=-∆+1000μλ()()()()()()()t o t p t t p t t t p t p t t p n n n n n ∆+⋅∆+⋅∆+∆+-=-∆++-11μλμλ因此得到()()()()t p t p t p 100⋅+⋅-='μλ()()()()()()t p t p t p t p n n n n 11+-⋅+⋅++-='μλμλ假定()k t k p t p −−→−∞→,()()0−−→−∞'→t k t p 得到 010=⋅+⋅-p p μλ()011=⋅+⋅++-+-n n n p p p μλμλ把0p 当作已知,求解通项n p >将p(1)用)0(/p μλ代入得()()()n n n n p p p p μλμλλμμλμ001=→-+-=再,由1=∑kkp,我们得到()10=∑∞=n np μλ,>因此μλμ-=0p , nnn p p ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=μλμλμμλ0 问题1:系统平均有几个人没有离开?解答:系统有n 个人没有离开的概率n p ,因此,系统中滞留人数平均∑∞=0n n np>问题2:系统中排队等待服务平均有几个人?()∑∞=-11n npn>问题3:系统中平均每个人排队等待时间?解答:当一个顾客进入系统中,发现前面已经有n 个顾客在系统中,则他排队等待的平均时间就是这n 个顾客的平均服务时间总和(由于指数分布无记忆特性,不管正在接受服务的顾客已经服务了多少时间,其还要接受的服务时间依然服从相同的指数的分布)因此系统中平均每个人排队等待时间为nn pn∑∞=0μ>问题4:系统中每个顾客逗留时间平均?解答:每个顾客平均排队用时+每个顾客平均服务用时为所求 >。

-数学建模排队论模型[精编文档]

-数学建模排队论模型[精编文档]
机器发生故障需要维修
顾客
工人 病人 敌机 机器
服务台
公共汽车 医生 高炮 修理工
排队系统队列除了有形的还有无形的。
在上述顾客-服务台组成的排队系统中,顾客到来 的时刻与服务台进行服务的时间一般来说是随不同 的时机与条件而变化的,往往预先无法确定。因此, 系统的状态是随机的,故而排队论也称随机服务系 统。
最简单流应 x(t) :t 具 0有以下特征称
(1)流具有平衡性
对任何 a 和0 0 t1 t,2 tn x(a ti ) x(a)
的分布只取决于 t1,t2,而,t与n 无关a。
(2)流具有无后效性
(1 i n)
对互不交接的时间区间序列 ai ,bi (1 i, n)
x(bi ) 是x(a一i ) 组相互独立的随机变量。
N
pn
, 1
n0
1
p0
N 1
(1
)
1 N1
1 1
N
n p0 1
n0
1
pn
N 1
(1
)
n
1 N1
1 1
系统的各项指标
N
L
N
npn
n0
2
(N 1) N1
1
1 N1
1 1
Lq
N
(n
n0
1) pn
N 2
N N 1
N N1
1 1 N1
1 1
N 1
排队论模型
排队论模型
一、排队论的基本概念 二、单通道等待制排队问题
(M/M/1排队系统) 三、多通道等待制排队问题
(M/M/c排队系统)
一、排队论的基本概念
(一)排队过程 1.排队系统

数学建模.排队论讲解

数学建模.排队论讲解

P1
(m 1)
(m n 1) (m n)
P2
Pn 1
Pn
Pn 1
2



由状态转移图,可以建立系统概率平衡方程如下: P 1 mP 0, Pn 1 (m n 1)Pn 1 [(m n) ]Pn , 1 n m 1 Pm Pm 1 ,
E (T ) 1
n!
e

1.5 排队系统的常用分布
同样,对顾客服务时间常用的概率分布也是负指数分布, 概率密度为: t
f (t ) e
(t 0)
其中 表示单位时间内完成服务的顾客数,也称平均服务率. 3)爱尔朗分布:
(k ) k t k 1 kt 分布密度函数: f k (t ) (k 1)! e (t 0, k , 0)
N k k
模型的各数量指标参数如下: 1)系统里没有顾客的概率 1 1 N 1 P
0
1 1
1 1 N
2.2 系统容量有限的 M / M / 1/N / 模型
n P P0,n N 2)系统里有n个顾客的概率 n
3)在系统里的平均顾客数
3)服务时间的分布——在多数情况下,对每一个顾客的服务 时间是一随机变量,其概率分布有定长分布、负指数分布、 爱尔朗分布等.
1.3 排队系统的符号表示(Kendall符号)
根据不同的输入过程、排队规则和服务台数量,可以形成 不同的排队模型,为方便对模型的描述,通常采用如下的符 号形式:
X /Y / Z / A/ B /C
式中 表示平均到达率与平均服务率 之比,称为服务强度.
2.1 标准的 M / M / 1 模型

数学建模港口问题-排队论

数学建模港口问题-排队论

数学建模港⼝问题-排队论排队模型之港⼝系统本⽂通过排队论和蒙特卡洛⽅法解决了⽣产系统的效率问题,通过对⼯具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使⽤计算机模拟仿真(蒙特卡洛法)对⽣产系统的整个运⾏过程进⾏模拟,得出最后的结论。

好。

关键词:问题提出:⼀个带有船只卸货设备的⼩港⼝,任何时间仅能为⼀艘船只卸货。

船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。

⼀艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。

那么,每艘船只在港⼝的平均时间和最长时间是多少?若⼀艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少?卸货设备空闲时间的百分⽐是多少?船只排队最长的长度是多少?问题分析:排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统⼯作过程的数学理论和⽅法,⼜称随机服务系统理论,为运筹学的⼀个分⽀。

本题研究的是⽣产系统的效率问题,可以将磨损的⼯具认为顾客,将打磨机当做服务系统。

【1】M M:较为经典的⼀种排队论模式,按照前⾯的Kendall记号定义,前//1⾯的M代表顾客(⼯具)到达时间服从泊松分布,后⾯的M则表⽰服务时间服从负指数分布,1为仅有⼀个打磨机。

蒙特卡洛⽅法:蒙特卡洛法蒙特卡洛(Monte Carlo)⽅法,或称计算机随机模拟⽅法,是⼀种基于“随机数”的计算⽅法。

这⼀⽅法源于美国在第⼀次世界⼤战进研制原⼦弹的“曼哈顿计划”。

该计划的主持⼈之⼀、数学家冯·诺伊曼⽤驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种⽅法,为它蒙上了⼀层神秘⾊彩。

(2)排队论研究的基本问题1.排队系统的统计推断:即判断⼀个给定的排队系统符合于哪种模型,以便根据排队理论进⾏研究。

2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。

数学建模:第五章 排 队 论

数学建模:第五章 排  队  论
17
令 T0 = 0 Tn :第 n 个顾客到达时刻, Xn:第 n 个顾客与第 n-1 个顾客到达的时间间隔。 则有
T0 T1 Tn
X n Tn Tn1 , n 1,2,
18
一般假定 { Xn }是独立同分布的,并记其分布函数 为 A( t )。关于{ Xn }的分布,排队论中经常用到的 有以下两种: ➢定长分布(D):顾客相继到达时间间隔为确定 的常数。
Wq(t):时刻 t 到达系统的顾客在系统中的等待时间。
pn(t):时刻 t ,系统中有 n 个顾客的概率。
44
pn(t)
过渡状态
平稳状态
t
45
上述指标一般都是和系统运行的时间有关的随机变量 ,求这些随机变量的瞬时分布一般都是很困难的。 相当一部分排队系统,在运行了一定时间后,都会趋 于一个平稳状态(或称平衡状态),平稳状态下这些 指标和系统所处的时刻无关。
19
➢Poisson流(M):顾客相继到达时间间隔的密度 函数为:
e t
a(
2. 排队
损失制排队系统
有限排队
队长有限排队系统
排队
混合制排队系统 等待时间有限排队系统
逗留时间有限排队系统 无限排队(等待制排队系统)
21
(1)有限排队
有限排队:排队系统中的顾客数是有限的,即系统 的空间是有限的,当系统被占满时,后面再来的顾 客将不能进入排队系统。
顾客相继到达时间 单个服务台
间隔为负指数分布
顾客源无限
M / M / 1 / ∞ / ∞ / FCFS
服务时间为负指数
分布
系统容量为无限
先到先服务
39
X/Y/Z/A/B/C
省略后三位

数学建模之排队论

数学建模之排队论
排队系统一般有三个基本组成部分:1.输 入过程;2.排队规则;3.服务机构。
Ë ¿ ¹ Í Ô ´
Ë ¿ ¹ Í µ ½ ´ ï
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
· þ Î ñ ¹ æ Ô ò
þ Î · ñ » ú ¹
ë È À ¥
¼ 1 Å ¶ Í Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
17
2. 排队规则
③随机服务(RAND) 。即当服务台空 闲时,不按照排队序列而随意指定某个顾客 去接受服务,如电话交换台接通呼叫电话就 是一例。 ④优先权服务(PR)。如老人、儿童先 进车站;危重病员先就诊;遇到重要数据需 要处理计算机立即中断其他数据的处理等, 均属于此种服务规则。
18
2. 排队规则
8-3 到达间隔时间分布和服务时间 的分布
一个排队系统的最主要特征参数是顾客 的到达间隔时间分布与服务时间分布。 要研究到达间隔时间分布与服务时间分 布需要首先根据现存系统原始资料统计 出它们的经验分布,然后与理论分布拟 合,若能照应,我们就可以得出上述的 分布情况。
31
一、经验分布
经验分布是对排队系统的某些时间参数根据 经验数据进行统计分析,并依据统计分析结果假 设其统计样本的总体分布,选择合适的检验方法 进行检验,当通过检验时,我们认为时间参数的 经验数据服从该假设分布。 分布的拟合检验一般采用χ2检验。由数理统 计的知识我们知:若样本量n充分大(n≥50),则 当假设H0为真时,统计量总是近似地服从自由度 为k-r-1的χ2分布,其中k为分组数,r为检验分布 中被估计的参数个数。
2. 排队规则
这是指服务台从队列中选取顾客进行服务的顺序。 可以分为损失制、等待制、混合制3大类。 (1)损失制。这是指如果顾客到达排队系统时, 所有服务台都已被先来的顾客占用,那么他们就 自动离开系统永不再来。 典型例子是,如电话拔号后出现忙音,顾客 不愿等待而自动挂断电话,如要再打,就需重新 拔号,这种服务规则即为损失制。

数学建模-排队论

数学建模-排队论

①模型特点
顾客总体为m个,每个顾客到达并经过服 务台后,任然回到原来总体,所以任然可 以到来。
②系统的稳态概率 Pn ;
1
P0 m m! ( )i
i0 (m i)!
Pn
m! (m n)!
(
)n
P0
,1
n
m
③系统运行指标 a、 系统中平均顾客数(队长期望值)
Ls m (1 P0)
排队论
(Queueing Theory)
生活中处处可见的排队现象
商店、超市等收款处排队付款 车站、民航、港口等售票处依次购买车船票 各种生产系统、存储系统、运输系统等一系
列现象 大型网游登陆前的排队等等
基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理 论,是研究由顾客、服务机构及其排队 现象所构成的一种排队系统理论。
PnP10
P1 0 Pn1 (
) Pn
0
n 1
(3)
这是关于 Pn 的差分方程,表明了各状态间的转移 关系,可以用下图表示:
0
1
n-1
n
n+1
由上式可得 Pn ( / )n P0 令 / 1(否则队列将
排至无限远),由概率性质知
Pn 1
n0

Pn
的关系带入,
P0
n
n0
1
P0 1
求 limPn(t) Pn,此时系统的状态概率分布不再随时间变化 n
(4)利用 Pn 求系统运行指标
①队长:系统中的顾客数,期望记为 Ls ②排队长:系统中排队等待覅物的顾客数,期望记为 Lq ③逗留时间:一个顾客在系统中的停留时间,期望记为 Ws ④等待时间:一个顾客在系统中排队等待的时间,期望记

数模排队论

数模排队论

如何考虑随机因素,设计合理方案,建立数学模 型,一方面提供服务的服务机构即公交公司的线
路设计合理,能够赢得顾客,获得利益;另一方 面被服务的顾客能够在被服务的过程中,排队等 候的时间最短,这都是上述问题要解决的,也是 排队论的主要研究内容.
二、排队论的基本知识
1.背景介绍
排队论是研究排队现象的理论和应用的学科,是 专门研究由于随机因素影响而产生的拥挤现象的科学. 20世纪初丹麦数学家、电气工程师爱尔朗把概率论应 用于电话通话问题,从而开创了这门应用数学科学. 20世纪30年代中期,费勒引进了生灭过程,排队论 才被数学界承认为一门重要的学科.20世纪40年代排 对论在运筹学这个新领域中成了一个重要的部分.20 世纪50年代初肯德尔对排对论作了系统的研究,他用
(iii) 顾客流的概率分布.或称相继顾客到达的时间 间隔的分布.这是求解排队系统有关运行指标问题 时,首先需要确定的指标.顾客流的概率分布一般 有定长分布、二项分布、泊松流(最简单流)、爱尔 朗分布等若干种. (2).排对规则 指服务台从队列中选取顾客进行 服务的顺序.一般可以分为损失制、等待制和混 合制等3大类. (i)损失制 指如果顾客到达排队系统时,所有 服务台都被先到的顾客占用,那么他们就自动 离开系统永不再来.
5分钟,车辆满载率不应超过120%,一般也不要
低于50%. 试根据这些材料和要求,为该线路设计一个 便于操作的全天(工作日)的公交车调度方案 包括两个起点站的发车时刻表;一共需要多少 辆车;这个方案以怎样的程度照顾到了乘客和 公交公司双方的利益;等等.
2.问题分析:
对于第一个问题,关于公交车的调度方案,
(ii)服务方式. 这是指在某一时刻接受服务的顾客数, 它有单个服务和成批服务两种. (iii)服务时间的分布.在多数情况下,对每一个顾客的 服务时间是一随机变量.

数学建模中的排队论问题

数学建模中的排队论问题

数学建模中的排队论问题数学建模是运用数学方法来解决实际问题的一种学科,而排队论则是数学建模中的一个重要问题。

排队论是研究人们在排队等待时所产生的等待时间、服务时间、队列长度等问题的数学理论。

在各个领域中,排队论都有广泛的应用,例如交通运输、生产调度、服务管理等。

排队论的基本概念包括顾客、服务台、队列、到达率、服务率等。

顾客是指等待服务的个体,可以是人、机器或其他物体。

服务台是为顾客提供服务的地方,可以是柜台、服务窗口或机器设备。

队列是顾客排队等待的区域。

到达率是指单位时间内到达队列的顾客数量。

服务率则是指单位时间内服务台完成服务的顾客数量。

排队论的目标是通过数学模型来分析和优化排队系统,以提高效率和服务质量。

常用的排队论模型有M/M/1, M/M/c, M/M/∞等,其中M表示到达率和服务率满足泊松分布,1表示一个服务台,c表示多个服务台,∞表示无穷多个服务台。

在现实生活中,排队论的应用非常广泛。

以交通运输为例,交通流量大的道路上常常出现拥堵现象。

排队论可以用来研究交通信号灯的时序控制,从而减少交通阻塞和等待时间。

排队论还可以应用于生产调度问题,如工厂的生产线、餐馆的点餐队列等,通过优化排队系统可以提高生产效率和顾客满意度。

除了基本的排队论模型,还有许多扩展模型用于解决更复杂的实际问题。

例如,考虑到顾客的不满意程度,可以引入优先级排队模型。

考虑到服务台设备可能发生故障,可以引入可靠性排队模型。

排队论也可以与优化算法相结合,寻找最佳的服务策略和资源配置。

在数学建模中,解决排队论问题通常需要进行数学推导、建立数学模型、进行仿真实验以及进行实际数据的拟合和验证。

通过数学建模的方法,可以对排队系统的性能进行全面评估,从而提出改进方案和决策策略。

综上所述,数学建模中的排队论问题在实际应用中具有重要的意义。

通过研究排队论,可以优化排队系统,提高效率和服务质量。

随着科技的进步和数据的丰富,排队论的研究将在各个领域中得到更广泛的应用和发展。

排队问题-数学建模

排队问题-数学建模

第九届“新秀杯”校园数学建模竞赛摘要医院有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson流,诊断时间服从负指数分布。

根据题目所给信息,可以很明显看出本题是单服务台的排队模型,因此需要用到排队理论来求解这些问题。

本题需要用到排队理论中最简单的M/M/1/∞/∞模型,通过对病人到来及诊断时间的统计研究,得出这些数量指标的统计规律。

针对问题一,通过分析任意时刻t内到达的病人数为n的概率,使用数学期望的方法,,可以得出平均病人数及等待的平均病人数。

由题目给出条件病人的到来服从参数为λ的泊松分布,诊断时间服从参数为μ负指数分布,可以得出病人的平均看病所需时间及病人平均排队等待时间。

以及分析该医院的服务强度,可以粗略的分析该科室的工作状况。

针对问题二,在问题一的条件基础下,要求99%的病人有座位。

可以先假设出座位个数,由于每个时刻病人到来的个数是随机且独立,不可能同时到达两批病人,考虑到来病人的个数与座位之间的关系,考虑病人数不同时,有座位的概率不同。

所以用独立事件概率的加法可以得出概率需要大于等于0.99,从而反推出所需座位数。

针对问题三,分析问题可得,需要求出单位平均损失可以通过题目每小时病人到来数可以得出平均每天医院到来数。

根据问题一结论,可以得出平均看病所花时间,从而求出每天的平均损失。

针对问题四,只需要利用问题一,问题二,问题三的结论并改变医生每小时诊断时间,嵌套进来就能求解。

关键字:排队理论M/M/1/∞/∞模型数学期望Poisson流负指数分布一、问题提出某单位医院的一个科室有一位医生值班,经长期观察,每小时平均有4个病人,医生每小时可诊断5人,病人的到来服从Poisson流,诊断时间服从负指数分布。

(1)试分析该科室的工作状况:(2)如要求99%以上的病人有座,该科室至少设多少座位?(3)如果该单位每天24小时上班,病人因看病1小时而耽误工作单位要损失30元,这样单位平均损失多少元?(4)如果该科室提高看病速度,每小时平均可诊断6人,单位每天可减少损失多少?可减少多少座位?二、模型的准备根据题目所给信息,可以很明显看出本题是单服务台的排队模型,日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。

数学建模排队论

数学建模排队论

数学建模排队论
排队论是数学中的一个分支,主要研究排队系统的性质与特征。

排队系统是指存在一个或多个顾客到达某个服务设施,并等待服务的过程。

排队论的目标是通过数学方法研究这些系统的行为和性能,并提供优化方案。

排队论的主要研究内容包括:排队模型的建立、排队系统的性能度量、排队系统的稳定性与稳定条件、排队系统的解析解和数值解等。

排队模型通常包括顾客到达过程、服务设施的服务过程和排队规则等要素,用以描述各种不同类型的排队系统。

排队论的应用广泛,包括但不限于以下领域:
1. 交通流量分析:排队论可用于研究交通流量的稳定性和优化信号控制。

2. 队列管理:排队论可以应用于零售业、餐馆等地方的队列管理,用以提高服务效率和顾客满意度。

3. 通信网络:排队论可以用于分析数据包的排队和延迟问题,优化网络资源利用率。

4. 生产与制造:排队论可以用于分析生产线上的工人排队和设备故障等因素,优化生产效率。

5. 医疗系统:排队论可以应用于研究医院门诊和急诊的排队问题,优化资源分配和患者等待时间。

总之,排队论是一门重要的数学理论,通过研究排队系统的性能与优化方法,可以提高各种系统的效率和质量,对于实际问题的解决有着重要的应用价值。

( - 数学建模)排队论模型

( - 数学建模)排队论模型

(- 数学建模)排队论模型第五讲排队论模型【修理工录用问题】工厂平均每天有一台机器发生故障而需要修理,机器的故障数服从泊松分布。

修理一台机器平均花费20元。

现有技术水平不同的修理工人A 和B,A种修理工平均每天能修理1.2台机器,每天工资3元;B种修理工平均每天能修理1.5台机器,每天工资5元,两种修理工修理机器的时间为负指数分布。

问工厂录用哪种工人较合算?本讲主要内容1. 排队论的基本概念2. 单服务台的排队模型3. 多服务台的排队模型4. 排队系统的最优化问题5. 数学建模实例:校园网的设计和调节收费问题5.1 排队论的基本概念5.1.1 什么是排队系统排队论也称随机服务系统理论,它是20世纪初由丹麦数学家Erlang应用数学方法在研究电话话务理论过程中而发展起来的一门学科,在实际中有广泛的应用。

它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。

现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。

排队的内容虽然不同,但有如下共同特征:(1)有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。

(2)有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。

由顾客和服务员就组成服务系统。

(3)顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。

为了叙述一个给定的排队系统,必须规定系统的下列组成部分:1.输入过程即顾客来到服务台的概率分布。

排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。

我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。

所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lq L 0.533 0.4 0.133
W L/ 0.533/ 4 0.133
Wq Lq / 0.133 / 4 0.033
21
作业
利用Matlab软件中Simulink中的SimEvents模块仿真M / D / 1 过程。
22
爱尔朗服务时间模型 标准 M / Ek / 1 / ∞ / ∞ / FCFS 模型
14
适合下列条件的排队系统
到达过程:顾客源无限,顾客单个到来,相互独立, 一定时间内到达数服从泊松分布。
排队规则:单队,队长没有限制,先到先服务。 服务机构:单服务台,顾客服务时间为定长分布。 系统容量:没有限制。
15
下面来确定当系统达到稳定状态之后,系统的各平 稳数量指标,这些指标包括: L:平均队长。 Lq:平均排队长。 W:平均逗留时间。 Wq:平均等待时间。
2(1 )
2 (1 0.8)
根据Little公式:
Lq L 2.8 0.8 2
W L/ 2.8 / 0.4 7
Wq Lq / 2 / 0.4 5 12
作业
利用Matlab软件中Simulink中的SimEvents模块仿真M / G / 1 过程。
13
定长服务时间模型 标准 M / D / 1 / ∞ / ∞ / FCFS 模型
8
解:
e y1,y 1
f
(
y)
0,y 1
单位时间顾客到达数: λ = 1 /2.5 = 0.4 人/分钟 单位时间顾客离开数:µ= 1 /2 = 0.5 人/分钟
ρ = λ /µ= 0.4 / 0.5 = 0.8
9
(1)平均逗留时间和平均等待时间。 即 W 和 Wq 。 W 1 1 10(分钟)
L
2
2(1
)
Lq
L
W L /
Wq Lq /
18
例 某实验室有一台自动检验机器性能的仪器,要求 检验机器的顾客按泊松分布到达,每小时平均 4 个 顾客,检验每台机器所需时间为 6 分钟,求 (1)在检验室内机器台数。 (2)等候检验的机器台数。 (3)每台机器在室内消耗时间。 (4)每台机器平均等待检验的时间。
第六节 一般服务时间 M / G / 1模型
前面研究的排队系统的服务时间都为负指数分布,
本节讨论服务时间是任意分布的情况:
顾客到达过程服从泊松分布。 顾客服务时间服从任意分布。
1
按下述三种情况讨论: 一般服务时间:M / G / 1 / ∞ / ∞ / FCFS 定长服务时间:M / D / 1 / ∞ / ∞ / FCFS 爱尔朗服务时间:M / Ek / 1 / ∞ / ∞ / FCFS
,只要知道λ 、E(T)和 Var[T],就能求出队长。
6
由 M / M / 1 模型的Little 公式可知:
L Biblioteka 22Var[T ] 2(1 )
Lq
L
W L /
Wq Lq /
7
例 有一售票口,已知顾客按平均 2 分 30 秒的时间间 隔的负指数分布到达。顾客在售票口前服务时间平 均为 2 分钟: (1)若服务时间也服从负指数分布,求顾客为购票 所需的平均逗留时间和等待时间。 (2)若经过调查,顾客在售票口前至少要占用 1 分 钟,且认为服务时间服从负指数分布是不恰当的, 而应故从以下概率密度分布,求顾客的逗留时间和 等待时间。
16
因为服务时间 T 为间隔 D 的定长分布,故 E(T)= D
和 Var[T]=0 。由P-K公式可知:
Pollaczek-Khintchine(P-K) 公式
L 2 2Var[T ], E[T ] 2(1 )
2 2(1 )
17
由 M / M / 1 模型的Little 公式可知:
2
一般服务时间模型 标准 M / G / 1 / ∞ / ∞ / FCFS 模型
3
适合下列条件的排队系统 到达过程:顾客源无限,顾客单个到来,相互独立, 一定时间内到达数服从泊松分布。 排队规则:单队,队长没有限制,先到先服务。 服务机构:单服务台,顾客服务时间相互独立,分 布是一般的,但其期望值 E[T] 和方差 Var[T] 已知。 系统容量:没有限制。
19
解:服务时间为定长分布,其分布函数的期望值 和方差分别为
E[T]=6(分钟)=0.1(小时) Var[T]=0
20
根据P-K公式:
E[T ] 4 1 0.4
10
L 2 2Var[T ] 0.4 0.42 42 0 0.533
2(1 )
2 (1 0.4)
根据Little公式:
4
下面来确定当系统达到稳定状态之后,系统的各平 稳数量指标,这些指标包括: L:平均队长。 Lq:平均排队长。 W:平均逗留时间。 Wq:平均等待时间。
5
Pollaczek-Khintchine(P-K) 公式
L 2 2Var[T ], E[T ]
2(1 )
由P-K公式可知:不管服务时间 T 符合什么样的分布
每个服务台的服务时间均为 1/kμ),则这 k 个服务
台的总服务时间 T 服从 k 阶爱尔朗分布,其概率密
度为:
fT
(t)
(kt )k1
(k 1)!
ke kt,t
0
T T1 Tk
25
负指数分布 fT (t ) k ek t,t 0
E[T ] 1
k
1
Var[T ] k 2 2
23
适合下列条件的排队系统 到达过程:顾客源无限,顾客单个到来,相互独立, 一定时间内到达数服从泊松分布。 排队规则:单队,队长没有限制,先到先服务。 服务机构:k 个服务台串联,每个服务台的服务时 间相互独立,并服从相同的负指数分布。 系统容量:没有限制。
24
设 T1,…,Tk 是 k 个服务台的服务时间,每个服 务台的服务时间均服从参数为kμ的负指数分布(即
0.5 0.4
Wq
0.8 0.5 0.4
8(分钟)
10
(2)对服务时间的概率分布函数进行分析,可 求得该分布函数的期望值和方差。
E[Y ] 2 Var[Y ] 1
11
根据P-K公式:
E[T ] 0.4 2 0.8
L 2 2Var[T ] 0.8 0.82 0.42 1 2.8
相关文档
最新文档