第四章 拉普拉斯变换

合集下载

第四章 拉普拉斯变换

第四章 拉普拉斯变换

即,收敛域相应平移一 Res0 个
Res 0 a
例:求衰减的正弦函数 t sin t的象函数, 0 e 解: sin t

s
2 2
Res 0
令f (t ) sin t 则F ( s)

s2 2
由频移性质: e t sin t e t f (t ) F (s )
0为收敛轴,如图所示
F(s)的拉氏逆变换为
1 f (t ) F ( s) F ( s)e st ds 2j f (t ) F (s) 记为
1
五、一些常用函数的拉氏变换 1.阶跃函数
u (t )
2.指数函数
Hale Waihona Puke 0e st e st dt s
单边拉氏变换 当f(t)为有始函数时,即t<0时f(t)=0
则 F ( s ) f (t )e st dt
0
记为F ( s ) f (t )
1 f (t ) F ( s )e st ds 2j f (t ) 0
t0 t0
f (t ) F (s) f (t )e st dt
0
在半平面Re(s ) 0上一定存在,积分 f (t )e st dt在 Re(s ) 1 0
0

上绝对一致收敛, ( s )在 Re(s )为解析函数。其收敛域 Re(s ) 0, F 为
注:零点、极点相抵消,为不可观测状态。例: 1 1 1 s 1 s 1 s 2 其中s=-1为不可观测状态。 四、复频移特性 若 f (t ) F ( s), Res 0

第四章 拉普拉斯变换、连续时间系统的 s 域分析

第四章 拉普拉斯变换、连续时间系统的 s 域分析
+
+
1 vC (0 ) s

-
1 1 VC ( s) I C ( s) vC (0 ) sC s
Vc(s)
-
(四)延时特性(时域平移)

第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
f (t )u(t ) F (s)
f (t t0 )u (t t0 ) e st0 F ( s )
0

s j
F ( s) f (t )e dt
st 0

单边拉氏变换
FB ( s ) f (t )e st dt


双边拉氏变换
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
2. 拉氏逆变换
f1 (t ) f (t )e
1 f (t ) 2
在算子符号法中,由于未能表示出初始条件的作用,只 好在运算过程中作出一些规定,限制某些因子相消。而拉氏 变换法可以把初始条件的作用计入,这就避免了算子法分析 过程中的一些禁忌,便于把微积分方程转化为代数方程,使 求解过程简化。
(三)单边拉氏变换的收敛域
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟 j
f1 (t )
t0
t
cos(0 )sin(1t ) sin(0 )cos(1t ) 1 cos(0 ) s sin(0 ) F (s) 2 2 0 1t0 2 2 s 1 s 1
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
例2:求 (t 1)u (t 1), t 1, t 1, (t 1)u (t 1),
f1 (t ) f (t )e t

信号与系统-拉普拉斯变换ppt

信号与系统-拉普拉斯变换ppt
38
部分分式展开法(m<n)
1.第一种情况:单阶实数极点
F(s)
(s
p1 )(s
A( s ) p2 )(s
pn )
p1 , p2 , p3 pn为不同的实数根
F (s) k1 k2 kn
s p1 s p2
s pn
求出k1, k2 , k3 kn ,即可将F s展开为部分分式
2. 第二种情况:极点为共轭复数
第四章 拉普拉斯变换
u
1
•优点: 求解比较简单,特别是对系统的微分方程进
行变换时,初始条件被自动计入,因此应用更为 普遍。 •缺点: 物理概念不如傅氏变换那样清楚。
2
本章内容及学习方法
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频 域分析。
对于f te t 是F j 的傅里叶逆变换
f t e t 1 F j ej td

两边同乘 以e t
f t 1 F j e j t d

其中: s j ; 若取常数,则d s jd
积分限:对 : 对s : j
j
所以
f t 1
j
F
s
estd s
整理得:
Y (s)
2F (s) s2 5s
6
(s
5) y(0 ) y(0 ) s2 5s 6
26
电感元件的s域模型
iL(t) L vL(t)
vL(t)
L
d
iL(t) dt
设 LiL(t) IL(s), LvL(t) VL(s)
应用原函数微分性质
VL (s) LsI L (s) iL (0 ) sL I L (s) LiL (0 )

第四章 拉普拉斯变换

第四章 拉普拉斯变换

F ( s a)
1 s F a a

df (t ) dt
SF(s) f (0 )
F ( s ) f 1 ( 0 ) s s

t

f ( ) d
12
拉氏变换的基本性质(2) 1 s F 尺度变换 f (at) a a
初值定理
t 0
lim f ( t ) f ( 0 ) lim SF ( s )
n! s n 1 1
s2 1
e
st 0
11
5.3 拉氏变换的基本性质(1)
线性
k i f i (t )
i 1
n
k .LT [ f (t )]
i 1 i
n
时移 尺度变换
f (t t0 )u(t t0 )
e
st 0
F ( s)
f (at)
f (t )e
at
频移
微分 积分
例:衰减余弦的拉氏变换
S F0 ( S ) LT [cos t ] 2 2 S
f (t ) e
t
cost
频移特性
S F (S ) 2 2 (S )
15
例:求下式的拉氏变换
f (t )
f (t ) sin t[u(t ) u(t 1)]
f (0

)
S
lim S F ( S ) lim
S F( S )
S
1 S 1 sa
f ( )
lim
S 0
lim
S
S 0
1 0 sa
注意:f(t)=e-at u(t),
若a>0,则终值为0 若a<0,则终值不存在 如果原信号是等幅震荡或增长的, 则其终值不存在。

4.拉普拉斯变换

4.拉普拉斯变换
24
1 1 1 F (S ) ( ) S j S j 2 S 2 2 S
拉 普 拉 斯 变 换
例:衰减余弦的拉氏变换
通 信 与 信 息 系 统 学 科 组
.
S F0 ( S ) LT [cos t ] 2 2 S
f (t ) e
t
cost
频移特性
)
12
(0 t T )
拉 普 拉 斯 变 换
拉普拉斯变换收敛域性质

通 信 与 信 息 系 统 学 科 组
.


X(S)的ROC在S平面内由平行于jw轴的带状区域组成。 对有理拉普拉斯变换来说,ROC内不包括任何极点。 如果x(t)是有限持续期,并且是绝对可积的,那么ROC就 是整个S平面。 如果x(t)是右边信号,而且如果Re{s}= 0 这条线位于 ROC内,那么Re{s} > 0 的全部s值都一定在ROC内。 如果x(t)是左边信号,而且如果Re{s}= 0 这条线位于 ROC内,那么Re{s} < 0 的全部s值都一定在ROC内。 如果x(t)是双边信号,而且如果Re{s}= 0 这条线位于 ROC内,那么ROC就一定是由s平面的一条带状区域所组成, 直线Re{s}= 0 位于带中。
通 信 与 信 息 系 统 学 科 组
.

变换等于 f(t)ε(t)的双边拉普拉斯变换,所以,单边拉普拉 斯变换的收敛域与因果信号双边拉普拉斯变换的收敛域相同, 即单边拉普拉斯变换的收敛域为平行于jω轴的一条直线的右边
区域,可表示为
Re[s] 0
17
拉 普 拉 斯 变 换
常用信号的拉氏变换
该变换称为单边拉普拉斯变换。单边拉普拉斯变换收

第四章拉普拉斯变换

第四章拉普拉斯变换

1 1 [tu (t )] [u (t )] 2 s s 2 2 [t u (t )] 3 s
n! [t u (t )] n 1 s
n
[ (t t0 )] (t t0 )e dt e
st 0
[ (t )] (t )e dt e
1 2 1 1 FB (s) s 2 s 1 (s 1)(s 2 )
1
2
f (t )
j
2 1 0
1
e 2t u (t )
e1t u (t )
1
2

0
f (t )
t
j
1 2 0
e 2t u (t )
e dt
e
( s ) t
s
0
1 , ( ) s
(二)阶跃信号 u (t )
[u (t )] e dt
st 0

e
st
(三)tnu(t) (n为正整数) u (t )]
n

0
t st t e dt e s

F ( )

f (t )e
jt
dt
1 f (t ) 2
t j t



F ( )e j t d
e t得 引入衰减因子
令s j
F ( s)

F1 ( ) [ f (t )e ]e



d t f (t )e


n 1 d f (t ) n n r 1 ( r ) [ n ] s F ( s) s f (0) dt r 0 n

青海大学 化工应用数学 拉普拉斯变换资料

青海大学 化工应用数学 拉普拉斯变换资料

例2 求函数 f (t ) e

st
s R. 的拉氏变换
解 ℒ f (t ) est e pt dt e( p s ) t dt 1 0 0 ps
Re p s
1 e ps
st
例3 解
0 求单位斜坡函数 t t
二 位移性质
1
L [ F ( p a)] e f (t )
at
1
1.拉普拉斯逆变换的性质
三 延迟性质
L [e
1
pa
F (p)]=u(t-a)f(t-a)
四 相似性质
1 p L F (ap ) f ( ) a a
1
1.拉普拉斯逆变换的性质
五 微分性质
L [ F ( p)] (1) t f (t )
解:
1 令 f (t ) 1 由于 F ( p ) 所以 p d d 1 1 L[t ] F ( p) ( ) 2 dp dp p p n! n 可以依次类推 L[t ] n 1 。 p
2)拉氏变换式对参数P的导数
利用导数性质求解:L[t cos t ] 和L[t e2t ]
Hale Waihona Puke p L[sin t ] [ p 2 cos 0] p 1 p [ p 2 1] p 1
1 2 p 1
2)拉氏变换式对参数P的导数
dn 若L[f(t)] F(p), 则, n L[f(t)] F (n) p L[( t) n f (t )] dp
1 n 2 3 例已知 L[1] ,求 t , t , t 和 t 的拉普拉斯变换。 p
1 PS
所以
f t 1 et

第4章拉普拉斯变换

第4章拉普拉斯变换

第四章 连续信号与系统的S 域分析1、如下方程和非零起始条件表示的连续时间因果LTI 系统,()()t f dt dft y dt dy dty d 524522+=++ 已知输入()()t e t f t ε3-=时,试求(1)系统的零状态响应;(2)判断系统的稳定性解:(1) 方程两边取拉氏变换;()()()()4552455222+++=⋅+++=⋅=s s s s F s s s s F s H s Y()()()t e e e t y s s s s s s s s Y t t t zs z ε⎪⎭⎫ ⎝⎛--=+-+-+=+++⋅+=---4221212142122111459221(2) 对于因果连续系统,()s H 的全部极点位于s 平面的左半平面, ()t h 才是衰减信号,由此可以得出,在复频域有界输出的充要条件是系统函数()s H 的全部极点位于s 平面的左半平面,若系统函数的极点是虚轴上的单阶共轭极点。

则系统临界稳定,若系统函数的极点在右半平面,则系统不稳定,如下图。

该题中,()114145522+++=+++=s s s s s s H ,其极点分别为4,121-=-=s s ,都在左半平面,所以系统稳定。

2、如下方程和非零起始条件表示的连续时间因果LTI 系统()()()()⎪⎩⎪⎨⎧==+=++--30,20223'22y y t f dt dft y dt dy t d y d已知输入()()t e t f t ε3-=时,试用拉普拉斯变换的方法求系统的零状态响应()t y zs 和零输入响应()t y zi , 0≥t 以及系统的全响应()0,≥t t y 。

解:方程两边取拉氏变换()()()()()()[]()()()()()()()()()()()()()()()t e e e t y t e e t y s s s s s s Y t e e e t y s s s s s s s s Y s s s s s s s s Y s s F s F s y y sy s Y s s t t t t t zi zi t t t zs ZS εεε⎪⎭⎫ ⎝⎛+--=+-=+++-=+++=⎪⎭⎫ ⎝⎛-+-=+-++++-=+⋅+++=++++++⋅+++=+=+=---+++-----------213225751725239232132512123325312312223632312312;3112030'023*********22。

拉普拉斯变换.

拉普拉斯变换.

二、拉普拉斯变换的优点
利用拉普拉斯变换可以将系统在时域内的 微分与积分的运算转换为乘法与除法的运算, 将微分积分方程转换为代数方程,从而使计算 量大大减少。利用拉氏变换还可以将时域中两 个信号的卷积运算转换为s域中的乘法运算。 在此基础上建立了线性时不变电路s域分析的 运算法,为线性系统的分析提供了便利。同时 还引出了系统函数的概念。
• 难点:拉普拉斯变换在求解微分方程的优点
一、拉普拉斯的产生和发展
傅里叶变换分析法在信号分析和处理等方面 (如分析谐波成分、系统的频率响应、波形失真、 抽样、滤波等)是十分有效的。但在应用这一方法 时,信号f(t)必须满足狄里赫勒条件。而实际中会 遇 到 许 多 信 号 , 例 如 阶 跃 信 号 (t) 、 斜 坡 信 号 t(t) 、单边正弦信号 sint(t) 等,它们并不满足 绝对可积条件,从而不能直接从定义而导出它们的 傅里叶变换。虽然通过求极限的方法可以求得它们 的傅里叶变换,但其变换式中常常含有冲激函数, 使分析计算较为麻烦。
十九世纪末,英国工程师亥维赛德(O.Heaviside, 1850~1925)发明了算子法,很好地解决了电力工 程计算中遇到的一些基本问题,但缺乏严密的数 学论证。后来,法国数学家拉普拉斯(P. S. Laplace,1749~1825)在著作中对这种方法给予严 密的数学定义。于是这种方法便被取名为拉普拉 斯变换,简称拉氏变换。----因为是“拉普拉斯” 这个人定义的。
三、本章内容简介
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频
域分析。
最后介绍系统函数以及H(s)零极点概念,并根据他
们的分布研究系统特性,分析频率响应,还要简略介绍 系统稳定性问题。

第四章拉普拉斯变换

第四章拉普拉斯变换

拉氏变换定义
如有界非周期信号 ; 有稳定幅度的周期信号 0;
随时间成正比增长的信号 0; 按指数eat 增长的信号 a。
0系统:若某些信号在0点有跳变且已知f (0 ) 则 F (s)
def


0
f (t )e st dt
2. 基本信号的单边拉氏变换 (1)阶跃函数
时间微分性质(续)
t 0 时, f t 0 ,且无原始储能, 若 f t 为有起因信号,即
即 f ( 0 ) f ( 0 ) 0 2 f ( t ) sF ( s ) f ( t ) s F ( s ), 则 ,
常用函数的拉氏变换表可查用。
3. 常用信号的拉氏变换(f(t), t>0)
1 阶跃函数 u (t ) , 0 1 s
L
L 2 冲激函数 (t )
1,
3 指数函数 e
at
1 , -a sa
L
常用信号的拉氏变换(f(t), t>0)
单边周期信号的拉氏变换(续)
(2)周期性脉冲的拉氏变换
f T ( t ) f 1 ( t ) f 1 ( t T ) f 1 ( t 2T )
FT ( s ) F1 ( s ) F1 ( s )e sT F1 ( s )e 2 sT F1 ( s )(1 e
S T 2
1 0
t
T 2

2 T
2 T sin t[u (t ) u (t )] T 2
信号加窗 第一周期
(1 e ) 2 2 S
LT
sT 2

第四章 拉普拉斯变换.

第四章 拉普拉斯变换.

法,最后介绍拉普拉斯变换的应用.
4.1 拉普拉斯变换的概念
本节介绍拉普拉斯变换的定义、拉普拉斯变换的存在定理、 常用函数的拉普拉斯变换,以及拉普拉斯变换的性质.
4.1.1 拉普拉斯变换的定义
傅里叶变换要求进行变换的函数在无穷区间 有定义,在任一有限区间上满足狄利克雷条件,并要求
存在.这是一个比较苛刻的要求,一些常用的
定义4.1.1 设 实函数

上有定义,且积分

为复参变量) 对复平面
上某一范围
收敛,则由这个积分所确定的函数 (4.1.1)
称为函数
的拉普拉斯变换,简称拉氏变换(或称为
像函数),记为
(说明:有的书籍记:

为函数
的拉氏变换)
,即
综合傅氏变换和拉氏变换可见,傅氏变换的像函数是一个 实自变量为 的复值函数,而拉氏变换的像函数则是一个复 变数 的复值函数,由式(4.1.1)式可以看出,
函数,如阶跃函数
,以及
等均不满足这
些要求.另外,在物理、线性控制等实际应用中,许多以时间
为自变量的函数,往往当
时没有意义,或者不需要知道
的情况.因此傅里叶变换要求的函数条件比较强,这
就限制了傅里叶变换应用的范围.
(t )
为了解决上述问题而拓宽应用范围,人们发现对于任意一 个实函数 ,可以经过适当地改造以满足傅氏变换的基本
第四章 拉普拉斯变换
拉普拉斯变换理论(又称为运算微积分,或称为算子微积分) 是在19世纪末发展起来的.首先是英国工程师亥维赛德(O.Heaviside) 发明了用运算法解决当时电工计算中出现的一些问题,但是缺乏严 密的数学论证.后来由法国数学家拉普拉斯(place)给出了严密 的数学定义,称之为拉普拉斯变换方法.

ch_04_01(拉普拉斯变换)

ch_04_01(拉普拉斯变换)
t
j
LT存在的条件:
0
若有常数 , 使得当 时, lim f (t )e t
t

收敛轴
则f (t )e t 在 的全部范围内绝对可积, LT积分存在。因此F ( s )的收敛域为: .
lim f (t )e t 0 ( 0 )
设f (t ) sin t

sin (t t0 ) …
sin (t t 0)u(t )
t0
sintu(t t 0)
t0

sin (t to)u(t t 0)


0 根据时移特性:LT [sin 0 (t t0 )u(t t0 )] 2 e st 2 s 0
f 2 (t )
at
求两信号微分之后所对应信号的LT
F ( s) F ( s) sa
采用 0

系统
F ( s) F ( s) sa
f1 (t )
df1 s L[ ] sF1 ( s ) f1 (0 ) dt sa
df2 s L[ ] sF2 ( s) f 2 (0 ) 1 dt sa
LT
s F ( s) s
n r 0
n 1
n r 1
f (0 )
(r )

*几点说明
A.如果所处理的函数为有始函数 即 f (t ) 0 则 f (0 ), f ' (0 ), f ( n1) (0 ) t0
df 都为零.那么 L[ dt ] sF ( s) d n f (t ) L[ ] s n F ( s) dt n
若f(t)在t=0有跃变,其微分在t=0处出现冲激. B.为了不使t=0点的冲激丢失,在单边拉氏变 换中一般采用 0 系统.而且采用 0 系统, 对解决实际问题较为方便.

第四章拉普拉斯变换及S域分析

第四章拉普拉斯变换及S域分析
过0的垂直线为收敛轴, 0在S平面内称收敛坐标
例题及说明
1.满足lim t
f
(t) e
t



σ0 的信号成为指数阶信号;
2.有界的非周期信号的拉氏变换一定存在;
3.lim tne t 0 0 t
4. lime te t 0 α t
看出:将频率变换为复频率s,且只能描述振荡的 重复频率,而s不仅能给出重复频率,还给出振荡幅 度的增长速率或衰减速率。
三.拉氏变换的收敛域
收敛域:使F(s)存在的s的区域称为收敛域。 记为:ROC(region of convergence) 实际上就是拉氏变换存在的条件;
其中0与f t 有关,
P250 4-1
第三节
拉氏变换的基 本性质
一.线性
例题: 已知 则 同理
二.原函数微分 证明: 推广:
电感元件的s域模型
设 应用原函数微分性质
三.原函数的积分
证明:
① ②


电容元件的s域模型
四.延时(时域平移)
证明:
例题 4-3-1
已知
五.s域平移
证明:
例4-6
求eα t cosω0t的拉氏变换
举例4-8:
已知 F (s) 10(s 2)(s 5) , s(s 1)(s 3)
求其逆变换
解:部分分解法 F(s) k1 k2 k3 (m n) s s 1 s 3
其中k1 sF (s) s0 10(s 2)(s 5) 100 (s 1)(s 3) s0 3
部分分式展开法 (1)极点为单实根的情况 ( p1 pn )
分解

信号与系统第四章知识点

信号与系统第四章知识点

第四章 拉普拉斯变换—连续信号s 域分析一、考试内容(知识点)1.拉普拉斯变换的定义及其性质、拉普拉斯逆变换; 2.系统的复频域分析法; 3.系统函数)(s H ;4.系统的零极点分布决定系统的时域、频域特性; 5.线性系统的稳定性;6.拉普拉斯变换与傅里叶变换之间的关系。

二、内容(知识点)详解1.拉普拉斯变换的定义、收敛域(1)变换式与反变换式dt e t f t f s F st -∞⎰-==0)()]([)(L ds e s F js F t f stj j ⎰∞+∞--==σσπ)(21)]([)(1L )(s F 称为)(t f 的象函数,)(t f 称为)(s F 的原函数。

下限值取-0,主要是考虑信号)(t f 在t =0时刻可能含有冲激函数及其导数项也能包含在积分区间之内。

(2)收敛域在s 平面上,能使式0)(lim =-→∞t t e t f σ满足和成立的σ的取值范围(区域),称为)(t f 或)(s F 的收敛域。

2.常用时间函数的拉普拉斯变换(1)冲激函数 )()(t t f δ= 1)(=s F)()()(t t f n δ= n s s F =)((2)阶跃函数 )()(t u t f = ss F 1)(= (3)n t (n 是正整数) t t f =)( 21)(s s F =2)(t t f = 32)(s s F =n t t f =)( 1!)(+=n s n s F(4)指数信号 t e t f α-=)( α+=s s F 1)(t te t f α-=)( ()21)(α+=s s F t n e t t f α-=)( ()1!)(++=n s n s F αt j e t f ω-=)( ωj s s F +=1)( (5)正弦信号、余弦信号系列)sin()(t t f ω= 22)(ωω+=s s F)cos()(t t f ω= 22)(ω+=s ss F)sin()(t e t f t ωα-= 22)()(ωαω++=s s F)cos()(t e t f t ωα-= 22)()(ωαα+++=s s s F )sin()(t t t f ω= 222)(2)(ωω+=s ss F )cos()(t t t f ω= 22222)()(ωω+-=s s s F )()(t sh t f ω= 22)(ωω-=s s F )()(t ch t f ω= 22)(ω-=s ss F (6) ∑∞=-=0)()(n nT t t f δ sT e s F --=11)(∑∞=-=00)()(n nT t f t f sTes F s F --=1)()(0 3.拉普拉斯变换的基本性质象函数)(s F 与原函数)(t f 之间的关系为:)]([)(t f s F L = (1)线性(叠加性)∑∑===⎥⎦⎤⎢⎣⎡ni i i n i i i s F a t f a 11)()(L ,其中i a 为常数,n 为正整数。

第四章拉普拉斯变换及s域分析详解

第四章拉普拉斯变换及s域分析详解

F[ f (t)e t ] f (t)e te jtdt f (t)e( j)tdt F ( j)
令s j,则上式为
Fb (s)
f (t)est dt
2015.10
安徽工程大学机电学院信息工程系
5
第四章 拉普拉斯变换及s域分析
4 单边拉普拉斯变换
由于在实际问题中所遇到的大部分信号都是因果的, 即f(t)=0(t<0)
t
收敛区为s平面的右半平面。
2015.10
安徽工程大学机电学院信息工程系
10
第四章 拉普拉斯变换及s域分析
常见函数的拉式 变换如右,这6对 变换对需牢记
u(t) 1 s
(t) ห้องสมุดไป่ตู้1
et 1
s
tn
n! s n 1
sin t
s2
2
cos t
s2
s
2
t
1 s2
2015.10
安徽工程大学机电学院信息工程系
定义单边拉式正变换为 F (s) f (t)estdt 0-
说明:
①s是复参量,s j, F(s)是以s为自变量的复变函数 ②积分下线定为0 ,包括了 (t),从而无需计算0-到0+的跳变
③拉氏正反变换的简记形式 F (s) L[ f (t)] 或 f (t) F (s) f (t) L1[F (s)] 或 F (s) f (t)
新得到的信号满足绝对可积条件,因此其傅里叶 变换存在。
2015.10
安徽工程大学机电学院信息工程系
4
第四章 拉普拉斯变换及s域分析
3 引出拉普拉斯变换
由前述可知
lim f (t)e t ( 为实数)容易收敛。

第四章 拉普拉斯变换

第四章 拉普拉斯变换

例:
1 es 2 已 知 X (s) ( ) , 求 x (t ) ? s 1 X ( s ) 2 (1 2e s e 2 s ) s
x(t ) tu(t ) 2(t 1)u(t 1) (t 2)u(t 2)
8、复频域积分性: 若x(t) X(s),则
第四章 拉普拉斯变换 连续时间系统的s域分析
傅立叶变换的局限性:
1) 工程中一些信号不满足绝对可积条件,如u(t);
t e ( 0) ; 2) 有些信号不存在傅立叶变换如
3) 求反变换时,求 (-∞,∞)上的广义积分,很困难; 4) 只能求零状态响应,不能求零输入响应。
为了克服傅立叶变换的局限性,采用拉普拉斯变换。
T ( t ) ( t nT )
0

x s(t) x(nT) (t nT)
0

1 L T ( t ) 1 e sT
X s ( s ) x ( nT ) e nsT
n0

4、复频移性: 若x(t) X(s),则
x(t)e j 0 t X( 0 )
x(t)e s 0 t X (s s 0 )
例:
cos(0t )u (t )
t
s e cos 0 t s 2 02 0 t 同理:e sin 0 t 2 s 02
s 2 2 s 0
5、时域微分性:
若x(t) X(s),则
拉普拉斯变换:
• 将信号分解成 e
st
的线性组合;
• 是分析连续时间信号与系统的另一工具; • 可用来分析傅立叶变换所不能分析的系统,不如傅立叶变换那么清楚。

第四章拉普拉斯变换(4)

第四章拉普拉斯变换(4)

Hs
Vo s Es
R
sC sL
1
sC Es
冲激响应
s2
1 2s
1
2
s
iL 0
0
因而
f3t
t δ xd
0
x
f30
t δ xd x
0
F2 s
1 s
F δ
t
1 s
f20
3 s
F3 s
1 s
F δ
t
1 s
f3 0
1 s
这是应用微分性质应特别注意的问题。
由图4-3(b)知
L f1t sFs 0 3
则F1 s
3 s
L f2t sFs 2 1
则F2
s
3 s
f3
卷积
f t f1t f1t
f1 t
于是,根据卷积性质
1
而 所以
Fs F1sF1s
F1s
1 s
1
es
Fs
1 s2
1 es
2
o
1
t
图4-2(c)
例4-3
应用微分性质求图4-3(a)中的 f1t, f2(t), f3t象函数 下面说明应用微分性质应注意的问题,图4-3(b)是 f1t, f2t, f3t 的导数 f1t, f2t, f3t 的波形。
显然
d2 f t
L
dt2
Lδ t 2δ t
1δ t
2
1 es
2
根据微分性质
L
d2 f dt
t
2
s2F
s
f 0
sf
0
由图4-2(b)可以看出
f 0 0, f 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章拉普拉斯变换第一题选择题1.系统函数H(s)与激励信号X(s)之间 B 。

A、是反比关系;B、无关系;C、线性关系;D、不确定。

2.如果一连续时间系统的系统函数H(s)只有一对在复平面左半平面的共轭极点,则它的h(t)应是 B 。

A、指数增长信号B、指数衰减振荡信号C、常数D、等幅振荡信号3.一个因果稳定的连续系统,其H(s)的全部极点须分布在复平面的 A 。

A、左半平面B、右半平面C、虚轴上D、虚轴或左半平面4.如果一连续时间系统的系统函数H(s)只有一个在左半实轴上的极点,则它的h(t)应是B 。

A、指数增长信号B、指数衰减振荡信号C、常数D、等幅振荡信号5.一个因果稳定的连续系统,其H(s)的全部极点须分布在复平面的 A 。

A 左半平面B 右半平面C 虚轴上D 虚轴或左半平面6.若某连续时间系统的系统函数H(s)只有一对在复平面虚轴上的一阶共轭极点,则它的h(t)是D 。

A 指数增长信号B 指数衰减信号C 常数D 等幅振荡信号7.如果一连续时间系统的系统函数H(s)只有一对在虚轴上的共轭极点,则它的h(t)应是DA、指数增长信号B、指数衰减振荡信号C、常数D、等幅振荡信号8.如果系统函数H(s)有一个极点在复平面的右半平面,则可知该系统 B 。

A 稳定B 不稳定C 临界稳定D 无法判断稳定性9.系统函数H(s)是由 D 决定的。

A 激励信号E(s)B 响应信号R(s)C 激励信号E(s)和响应信号R(s)D 系统。

10.若连续时间系统的系统函数H(s)只有在左半实轴上的单极点,则它的h(t)应是 B 。

A 指数增长信号B 指数衰减信号C 常数D 等幅振荡信号11、系统函数H(s)与激励信号X(s)之间 BA、是反比关系;B、无关系;C、线性关系;D、不确定。

12.关于系统函数H(s)的说法,错误的是 C 。

A 是冲激响应h(t)的拉氏变换B 决定冲激响应h(t)的模式C 与激励成反比D 决定自由响应模式13.若某连续时间系统的系统函数H(s)只有一个在原点的极点,则它的h(t)应是 C 。

A 指数增长信号B 指数衰减振荡信号C 常数D 等幅振荡信号 14.系统函数)2)(1(1)(+++=s s s s H ,对应的微分方程为 B 。

A )()(2)(t f t y t y =+' B )()()(2)(3)(t f t f t y t y t y +'=+'+'' C 0)(2)(=+'t y t y D )()()(2)(3)(t f t f t y t y t y '+''=+'+'' 15.已知系统的系统函数为)23(2)(2+++=s s s s s H ,系统的自然频率为 B 。

A -1 , -2B 0 ,-1 , -2C 0, -1D -2第二题、填空题1、信号t e t x 2)(-=的拉普拉斯变换=)(s X4(2)(2)s s -+ 收敛域为22σ-<<2、连续时间系统稳定的条件是,系统函数H(s)的极点全部位于 s 平面的左半开平面。

3、函数t te t f 2)(-=的单边拉普拉斯变换为F(s)=2)2(1+s , 函数)2)(4(3)(++=s s s s F 的逆变换为: 6e -4t -3e -2t 。

4、函数)2sin()(t e t f t -=的单边拉普拉斯变换为F(s)=4)1(22++s 。

函数231)(2+-=s s s F 的逆变换为:t t e e --2。

.5、函数t t t f cos 2sin )(+=的单边拉普拉斯变换为F(s)=1122++s s 。

函数324)(+=s s F 的逆变换为:t e232-。

6、函数t e t f t ωcos )(-=的单边拉普拉斯变换为F(s)=22)1(1ω+++s s , 函数231)(2+-=s s s F的逆变换为:)()(2t u e e t t -。

7、已知系统函数1)(2+=s s s H ,起始条件为:0)0(,1)0(='=--y y ,则系统的零输入响应y zi (t )= (cos ()t u t ⋅ ) 8、函数at e t f --=1)(的单边拉普拉斯变换为F(s)=)(a s s a+,函数6554)(2+++=s s s s F 的逆变换为:)()37(23t u e e t t ---。

9、函数t e t t f 73)(2)(--=δ的单边拉普拉斯变换为F(s)=732+-s , 函数)2)(4(3)(++=s s s F 的逆变换为=)(t f )()(2342t u e e t t---。

10、已知系统函数11)(+=s s H ,激励信号x (t)=sin t u(t),则系统的稳态响应为45)t - 11、已知系统函数H (s )=1)1(12++-+k s k s ,要使系统稳定,试确定k 值的范围( 11k -<< )。

第三题判断题1.若L =)]([t f 则),(s F L )()]([00s F e t t f st -=- ( √ )2.L )1sin(121-=⎥⎦⎤⎢⎣⎡+--t s e s ( × ) 3.拉氏变换法既能求解系统的稳态响应,又能求解系统的暂态响应。

( √ ) 4.系统函数H(s)是系统零状态响应的拉氏变换与输入信号的拉氏变换之比(√) 5.一个因果稳定的连续系统,其H (s)的全部极点须分布在复平面的虚轴或左半平面上。

(×)6.若已知系统函数)1(1)(+=s s s H ,激励信号为)()(2t u e t x t -=,则系统的自由响应中必包含稳态响应分量。

( √ )7.系统函数H(s)是系统冲激响应h(t)的拉氏变换。

( √ )8.系统函数H(s)与激励信号E(s)成反比 (× ) 9.系统函数与激励信号无关 ( √ ) 10.系统函数H(s)极点决定系统自由响应的模式。

(√) 11.某系统的单位冲激响应h(t)=e 2t u(t-1)是稳定的。

(×) 12.系统函数H(s)若有一单极点在原点,则冲激响应为常数。

( √ ) 13.线性时不变系统的单位冲激响应是由系统函数决定的,与激励无关。

(×) 14.一个信号如果拉普拉斯变换存在,它的傅里叶变换不一定存在。

(√) 15.由系统函数H(s)极点分布情况,可以判断系统稳定性。

(√) 16.利用s=jw ,就可以由信号的拉普拉斯变换得到傅里叶变换。

(×) 17.拉普拉斯变换的终值定理只能适用于稳定系统。

(√) 18.系统函数H(s)的极点决定强迫响应的模式。

(×) 第四题计算题1、求下列信号的拉普拉斯变换 1). tteα- 2). ()U at b -,0a > 3). 0cos t e t αω- 4). [cos ()]dt tU t dt5). (2)tU t - 解: 1). as e at +↔-1, ()211a s a s ds d te at +=⎪⎭⎫ ⎝⎛+-↔- 2.) ()s a bs a be s e a s a a b t a U b at U --=↔⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=-111 3.) t e at 0cos ω-,220cos ωω+↔s s t , ()2020cos ωω+++↔-a s a s t e at4.)()[]t tU dt dt cos , ()1cos 2+↔s s t tU , ()[]1cos 22+↔s s t tU dt d , ()[]()2212cos +-↔s s t tU dt d t5). (2)(2)(2)2(2)tU t t U t U t -=--+-1()U t s ↔,21()tU t s ↔,221(2)(2)s t U t e s ---↔∴()ss e s s e s s t tU 222221212--+=⎥⎦⎤⎢⎣⎡+↔-2、求下列拉氏变换的原函数1). 1(1)ss e -- 2).21s e s -⎛⎫- ⎪⎝⎭ 3). 21(1)s + 4). 21se s - 5). 33232s s s s ++解1). ()()()∑∑∞=∞=--=-*↔-⋅00111n n sn t U n t t U e s σ 2). ()()[]()()[]()()()()()44222221122--+---=--*--↔-⋅---t U t t U t t tU t U t U t U t U se s e ss3).()()()11112--↔+-t U e t s t4).()()1112--↔-t U t e ss5). []()t U e e s s s s s s s s s tt ---↔+-+=++=++22232211222323 3.已知如下图所示,求系统函数。

+-2u +-()f t221()1111s RLCH s Ls s s Cs RC LC R Ls Cs +==++++4.已知系统阶跃响应为)()1()(2t u e t g t--=,为使其响应为)()1()(22t u te et r t t----=,求激励信号)(t e 。

解:)()1()(2t u e t g t--=,则系统冲激响应为)(2)()(2t u e dtt dg t h t -== 系统函数 2s 2)(+=s H 2zs )2s (12s 1s 1)s (R +-+-= 2s s 1)s (H )s (R )s (E 21zs +-==∴)()211()(2t u e t e t--=∴ 5、已知某系统阶跃响应为)()(t u e t e t -=,零状态响应为)()221()(32t u e e e t r t t t +-=--,求系统的冲激响应)(t h ,并判断该系统的稳定性。

解: 11)(+=s s E 3221)1(21)(-++-+=s s s s R zs则:3821233)1(22121)()()(-+++=-++++-==s s s s s s s E s R s H zs )()8()(23)(32t u e e t t h t t ++=∴-δ因为系统函数有一极点在复平面有半平面,故该系统不稳定。

6、 线性时不变系统,在以下三种情况下的初始条件全同。

已知当激励)()(1t t e δ=时,其全响应)()()(1t u e t t r t -+=δ;当激励)()(2t u t e =时,其全响应)(3)(2t u e t r t -=。

相关文档
最新文档