19线路纵断面设计解析PPT课件
合集下载
路线纵断面图的绘制及施工量计算精品PPT课件
桥梁的类型、孔径、跨数、长度、里程桩号和设计水位;涵洞的类型、孔径和里程 桩号;
其它道路、铁路交叉点的位置、里程桩号和有关说明等。
图的下部几栏表格,注记以下有关测量和纵坡设计的资料:
l) 在图纸左面自下而上填写直线与曲线、桩号、填挖土、地面高程、设计高程、坡 度和距离等栏,上部纵断面图上的高程按规定的比例尺注记,但先要确定起始高程 (如图中0+000桩号的地面高程)在图上的位置,且参考其它中桩的地面高程,使绘 出的地面线处于图上的适当位置。
(3) 路线纵断面图的绘制及施工量计算 纵断面图(pro)既表示中线方向的地面起伏,又可在其上进行纵坡设计,是线路设计和施工
的重要资料。
纵断面图以中桩的里程为横坐标、其高程为纵坐标进行绘制。
常用的里程比例尺有1:5000、1:2000、1:1000几种。 为了明显地表示地面起伏,一般取高程比例尺比里程为比例尺的10~20倍。
图。 如图13-27中的细实线所示,绘制时,先标定中桩位置,
由中桩开始,逐一将特征点画在图上,再直接连接相邻点,即绘出横断面的地面线。
横断面图画好后,经路基设计,先在透明纸上按与横断面图相同的比例尺分别绘出 路堑、路堤和半填半挖的路基设计线,称为标准断面图,
然后按纵断面图上该中桩的设计高程把标准断面图套在实测的横断面图上。 也可将路基断面设计线直接画在横断面图上,绘制成路基断面图, 该项工作俗称“戴帽子”。图13-27粗实线所示为半填半挖的路基断面图。 根据横断面的填、挖面积及相邻中桩的桩号,可以算出施工的土、石方量。
(1) 施工控制桩的测设(construction control peg location)
由于路线中线桩在施工中要被挖掉或堆埋,为了在施工中控制中线位置,需要在不 易受施工破坏、便于引测、易于保存桩位的地方测设施工控制桩,其方法如下:
其它道路、铁路交叉点的位置、里程桩号和有关说明等。
图的下部几栏表格,注记以下有关测量和纵坡设计的资料:
l) 在图纸左面自下而上填写直线与曲线、桩号、填挖土、地面高程、设计高程、坡 度和距离等栏,上部纵断面图上的高程按规定的比例尺注记,但先要确定起始高程 (如图中0+000桩号的地面高程)在图上的位置,且参考其它中桩的地面高程,使绘 出的地面线处于图上的适当位置。
(3) 路线纵断面图的绘制及施工量计算 纵断面图(pro)既表示中线方向的地面起伏,又可在其上进行纵坡设计,是线路设计和施工
的重要资料。
纵断面图以中桩的里程为横坐标、其高程为纵坐标进行绘制。
常用的里程比例尺有1:5000、1:2000、1:1000几种。 为了明显地表示地面起伏,一般取高程比例尺比里程为比例尺的10~20倍。
图。 如图13-27中的细实线所示,绘制时,先标定中桩位置,
由中桩开始,逐一将特征点画在图上,再直接连接相邻点,即绘出横断面的地面线。
横断面图画好后,经路基设计,先在透明纸上按与横断面图相同的比例尺分别绘出 路堑、路堤和半填半挖的路基设计线,称为标准断面图,
然后按纵断面图上该中桩的设计高程把标准断面图套在实测的横断面图上。 也可将路基断面设计线直接画在横断面图上,绘制成路基断面图, 该项工作俗称“戴帽子”。图13-27粗实线所示为半填半挖的路基断面图。 根据横断面的填、挖面积及相邻中桩的桩号,可以算出施工的土、石方量。
(1) 施工控制桩的测设(construction control peg location)
由于路线中线桩在施工中要被挖掉或堆埋,为了在施工中控制中线位置,需要在不 易受施工破坏、便于引测、易于保存桩位的地方测设施工控制桩,其方法如下:
道路勘测设计 纵断面设计(新)课件
纵断面设计的基本原则
满足行车安全与舒适性要求
合理设置坡度、坡长和竖曲线半径,确保车 辆安全、顺畅行驶。
经济性原则
在满足使用功能的前提下,尽量减少工程量 ,降低工程造价。
考虑排水要求
根据地形和气候条件,合理设置坡度,确保 排水顺畅。
协调性原则
纵断面设计与道路线形其他要素相协调,如 平面线形、横断面设计等。
在城市道路纵断面设计中,要特别注 意避免陡坡、急弯等不利因素,保证 行车安全和舒适度。
高速公路纵断面设计实例
高速公路纵断面设计要满足高速 行车的要求,合理设置纵坡、竖 曲线半径等参数,提高道路的线
形指标。
高速公路的纵断面设计还需要考 虑地形、地质、水文等自然条件 ,充分利用地形地势,减少工程
量,降低工程造价。
基于景观要求的纵断面设计优化
总结词:注意事项
详细描述:在基于景观要求的纵断面设计时,应注意避免对周围环境的破坏和影响。同时,应充分考 虑当地的文化特色和历史遗产,尊重和保护当地的风俗习惯和传统建筑。此外,应加强景观规划和设 计的管理和监督,确保设计的可行性和实施效果。
THANKS
感谢观看
控制高程的校核
在确定控制高程后,应进行校核, 检查是否满足规范要求和实际情况 ,如有需要可进行适当调整。
纵断面图的绘制与调整
纵断面图绘制
根据设计标高、控制点和控制高 程等数据,绘制道路的纵断面图 ,清晰地表示出道路的起伏变化
。
纵断面图调整
在绘制纵断面图的过程中,应结 合实际情况和设计要求,对图进 行必要的调整,以使设计更加合
隧道进出口
隧道进出口是道路勘测设计的难点之一,需要考虑地形、地质、气象等因素, 同时要满足行车视距、通风、照明等方面的要求。在进出口处应设置缓冲段, 以减少车辆进出隧道时的明暗适应时间。
交通类—路线纵断面图(工程制图课件)
03 资料表部分
➢ 路线纵断面图的测设数据表与图样上下对齐布 置,以便阅读。这种表示方法较好地反映出纵 向设计在各桩号处的高程、填挖方量、地质条 件和坡度,以及平曲线与竖曲线的配合关系。
03 注意事项
➢ (1)线型 从左向右按桩号大小绘制,设计线用粗实线,地面线用细实线,地下水位线应采用双点划
线及水位符号表示。 ➢ (2)变坡点
当路线坡度发生变化时,变坡点应用直径2mm 的中粗线圆圈表示,切线用细实线表示,竖曲 线用粗实线表示。
图5 道路变坡点处的图示方法
凸曲线
凹曲线 水准点
圆管涵
图4 纵断面图中的凹曲线与凸曲线
02 图样部分
4、工程构筑物
道路沿线的工程构筑物如桥 梁、涵洞等,应在设计线的上方 或下方用竖直引出线标注,竖直引 出线应对准构筑物的中心位置, 并注出构筑物的名称、规格和里 程桩号。
02 图样部分
5、水准点
沿线设置的测量水准点也应 标注,竖直引出线对准水准点,左 侧注写里程桩号,右侧写明其位 置,水平线上方注出其编号和高程。
分,一般图样画在图纸的上部,资料表 布置在图纸的下部。
02 图样部分
图2 某公路路线纵断面图
1线和地面 的高程。
绘制时一般竖向比例要比水平比例放 大10倍。
为了便于画图和读图,一般还应在 纵断面图的左侧按竖向比例画出高程标尺。
02
图样部分
2、设计线和地面线
道路的设计线用粗实线表示,原地面线用细实线表示。 设计线上各点的标高通常是指路基边缘的设计高程。 原地面线是根据原地面上沿线各点的实测中心桩高程绘制的。
设计线 原地面线 图3 设计线、原地面线示意图
02
图样部分
3、竖曲线
道路纵断面图.ppt
带中线或行车道中线处标高。
? 4.1最大纵坡系指各级道路纵坡的最大限值。它是根据汽车的动力特性、 道路等级、自然条件、保证车辆以适当的车速安全行驶而确定的。
? 在机动车和非机动车混合行驶的道路上,确定设计容许最大纵坡时,还 要注意考虑非机动车上、下坡的安全和升坡能力。根据国内有关城市的 调查资料分析,适于自行车行驶的纵坡宜在2.5%以下。
? 5.1坡长限制
?
1. 陡坡坡长限制---最大
?
当设计纵坡连续较大时,会导致发动机功率降低,从而将影响行车
速度与安全。因此,为保证行车安全,应限制陡坡的坡长,并在该坡长
处相应设置缓和坡段。即在纵坡长度达到限制坡长时,设置较小纵坡路
段。缓和坡段的纵坡应不大于3%,其长度应符合坡段最小长度的规定。
?
R——竖曲线半径(m); i1,i2——相邻纵坡度,上坡为正,下坡为负; ω——相邻纵坡的代数差,ω>0时为凸形竖曲线,ω<0时为凹形竖曲线; T——竖曲线切线长度(m); L——竖曲线长度(m); E——竖曲线外距(m); x——竖曲线上任一点距起点或终点的水平距离(m); y——竖曲线上任一点距切线的纵距(m)。
? 8.1竖曲线计算的目的是确定设计纵坡上指定桩号的设计标高。当设计线确定 后,根据确定的设计线坡度各转折角的大小,考虑选用竖曲线半径,并进行 各项要素计算。竖曲线的各基本要素如下图所示,可按下列近似公式计算:
?
ω=i1 - i2
T ? 1 Rg?
2
L=2T
y=x2/2R
E ? T2 ? L2 ? Rg? 2 2R 8R 8
一般来说,为使道路上汽车行驶快速和安全,纵坡值应取小一些。但在挖 方路段,设置边沟的低填方路段和横向排水不畅的路段,特别是多雨地 区,为了保证满足排水的要求, 减少路面积水形成水雾、水漂等对行 车安全不利的情况,规定了道路的最小纵坡应大于或等于0.3%。如遇特 殊困难,其纵坡度必须小于0.3%时,则公路边沟纵坡应另行设计,城市 道路应设置锯齿形街沟。
? 4.1最大纵坡系指各级道路纵坡的最大限值。它是根据汽车的动力特性、 道路等级、自然条件、保证车辆以适当的车速安全行驶而确定的。
? 在机动车和非机动车混合行驶的道路上,确定设计容许最大纵坡时,还 要注意考虑非机动车上、下坡的安全和升坡能力。根据国内有关城市的 调查资料分析,适于自行车行驶的纵坡宜在2.5%以下。
? 5.1坡长限制
?
1. 陡坡坡长限制---最大
?
当设计纵坡连续较大时,会导致发动机功率降低,从而将影响行车
速度与安全。因此,为保证行车安全,应限制陡坡的坡长,并在该坡长
处相应设置缓和坡段。即在纵坡长度达到限制坡长时,设置较小纵坡路
段。缓和坡段的纵坡应不大于3%,其长度应符合坡段最小长度的规定。
?
R——竖曲线半径(m); i1,i2——相邻纵坡度,上坡为正,下坡为负; ω——相邻纵坡的代数差,ω>0时为凸形竖曲线,ω<0时为凹形竖曲线; T——竖曲线切线长度(m); L——竖曲线长度(m); E——竖曲线外距(m); x——竖曲线上任一点距起点或终点的水平距离(m); y——竖曲线上任一点距切线的纵距(m)。
? 8.1竖曲线计算的目的是确定设计纵坡上指定桩号的设计标高。当设计线确定 后,根据确定的设计线坡度各转折角的大小,考虑选用竖曲线半径,并进行 各项要素计算。竖曲线的各基本要素如下图所示,可按下列近似公式计算:
?
ω=i1 - i2
T ? 1 Rg?
2
L=2T
y=x2/2R
E ? T2 ? L2 ? Rg? 2 2R 8R 8
一般来说,为使道路上汽车行驶快速和安全,纵坡值应取小一些。但在挖 方路段,设置边沟的低填方路段和横向排水不畅的路段,特别是多雨地 区,为了保证满足排水的要求, 减少路面积水形成水雾、水漂等对行 车安全不利的情况,规定了道路的最小纵坡应大于或等于0.3%。如遇特 殊困难,其纵坡度必须小于0.3%时,则公路边沟纵坡应另行设计,城市 道路应设置锯齿形街沟。
《铁路线路纵断面》课件
变化
坡向定义
坡向变化类型
坡向是指线路纵断面上任意一点所处位置 的倾斜方向。
坡向变化包括顺向坡、反向坡和回头坡等 。
坡向变化影响
设计原则
坡向变化对线路的排水系统、防护工程和 线路的美观度有影响。
在设计中,应尽量保持坡向的连续性和一 致性,避免不必要的坡向变化,以提高线 路的美观度和安全性。
坡型的变化
坡长的优化设计
总结词
坡长是铁路线路纵断面设计中需要考 虑的重要因素,它影响着线路的土石 方工程量和排水系统的设计。
详细描述
在坡长优化设计中,应根据地形起伏 变化和排水要求,合理确定坡长,以 减少土石方工程量,降低施工难度和 成本。
坡向的优化设计
总结词
坡向是铁路线路纵断面设计中需要考虑的重要因素,它影响着线路的排水和运营 安全。
坡型定义
坡型是指线路纵断面上不同坡度的组合形 式。
坡型变化影响
坡型变化对线路的土石方工程量、排水系 统和线路的安全稳定性有影响。
坡型变化类型
坡型变化包括直线型、折线型和曲线型等 。
设计原则
在设计中,应根据工程地质条件和环境因 素,合理选择坡型,以降低工程难度和成 本,同时确保线路的安全稳定运行。
04
详细描述
在坡向优化设计中,应结合地形、地质、气候等自然条件,合理选择坡向,以保 证排水顺畅,提高线路的运营安全性和稳定性。
坡型的优化设计
总结词
坡型是铁路线路纵断面设计中需要考虑的重要因素,它影响 着线路的景观和行车舒适性。
详细描述
在坡型优化设计中,应结合地形、地质、气候等自然条件, 以及行车舒适性和景观要求,合理选择坡型,以提高线路的 美观性和舒适性。
优化排水系统,提高线路效率
坡向定义
坡向变化类型
坡向是指线路纵断面上任意一点所处位置 的倾斜方向。
坡向变化包括顺向坡、反向坡和回头坡等 。
坡向变化影响
设计原则
坡向变化对线路的排水系统、防护工程和 线路的美观度有影响。
在设计中,应尽量保持坡向的连续性和一 致性,避免不必要的坡向变化,以提高线 路的美观度和安全性。
坡型的变化
坡长的优化设计
总结词
坡长是铁路线路纵断面设计中需要考 虑的重要因素,它影响着线路的土石 方工程量和排水系统的设计。
详细描述
在坡长优化设计中,应根据地形起伏 变化和排水要求,合理确定坡长,以 减少土石方工程量,降低施工难度和 成本。
坡向的优化设计
总结词
坡向是铁路线路纵断面设计中需要考虑的重要因素,它影响着线路的排水和运营 安全。
坡型定义
坡型是指线路纵断面上不同坡度的组合形 式。
坡型变化影响
坡型变化对线路的土石方工程量、排水系 统和线路的安全稳定性有影响。
坡型变化类型
坡型变化包括直线型、折线型和曲线型等 。
设计原则
在设计中,应根据工程地质条件和环境因 素,合理选择坡型,以降低工程难度和成 本,同时确保线路的安全稳定运行。
04
详细描述
在坡向优化设计中,应结合地形、地质、气候等自然条件,合理选择坡向,以保 证排水顺畅,提高线路的运营安全性和稳定性。
坡型的优化设计
总结词
坡型是铁路线路纵断面设计中需要考虑的重要因素,它影响 着线路的景观和行车舒适性。
详细描述
在坡型优化设计中,应结合地形、地质、气候等自然条件, 以及行车舒适性和景观要求,合理选择坡型,以提高线路的 美观性和舒适性。
优化排水系统,提高线路效率
第三章 道路纵断面设计分析
x2 2R
后半支计算:
h后半支
(L x)2 2R
x L-x
§3.3 竖曲线设计
3.缓坡段 在纵断面设计中,当陡坡的长度达到限制坡长时,应安排一段缓坡 ,用以恢复在陡坡上降低的速度。同时,从下坡安全考虑,缓坡也是 需要的。一般情况下,缓坡段的纵坡应不大于3%,其长度应不小于最 短坡长。
§3.3 竖曲线设计
竖曲线: 竖曲线的凸、凹性: 竖曲线的作用: 竖曲线的线形: 一、竖曲线的数学模型 二次抛物线竖曲线方程:
第三章 道路纵断面设计
§3.1 概述
主
要
§3.2 纵坡设计
内
容
§3.3 竖曲线设计
§3.4 纵断面设计
§3.1 概述
一、纵断面与纵断面设计图 纵断面: 纵断面线: 纵断面设计线: 纵断面设计图: 道路纵断面: 道路纵断面设计图: 公路路线纵断面设计图样例,见教材P89页图3-1 二、纵断面图上的线形要素 地面线: 设计线: 设计线基本要素:
设 计 速 度(km/h)
3
4
纵
5
坡
6
坡
度
7
(%)
8
9
10
120
100
80
60
40
30
20
900
1000
1100
1200
700
800
900
1000
1100
1100
1200
600
700
800
900
900
1000
500
600
700
700
800
500
500
600
300
300
《铁路线路纵断面》课件
将设计结果生成视觉效果图和动画,以 便进行展示、评审和沟通。
纵断面设计的难点
地形复杂
部分线路处于复杂的地形条 件下,如山区、高原等,设 计需要考虑地形的特点和限 制。
地质条件差
地质条件不同,对铁路建设 和设计有不同的要求,设计 需兼顾地质的可行性和安全 性。
保证设计效果
设计需要保证铁路的平稳性、 通畅性和安全性,在满足要 求的前提下解决各种技术问 题。
2 经济性原则
设计应在满足要求的前提下,尽可能节约成 本,提高效益。
3 实用性原则
设计方案应实用可行,适应线路的运营和维 护需求。
4 美观性原则
纵断面应具备一定的美观性,融入自然环境, 减少对景观的破坏。
设计流程
1
确定设计范围
明确纵断面的起点和终点,确定设计所
绘制地形图和地质图
2
涉及的区域和范围。
纵断面可以帮助确定铁路线路的路基形式和路基高度,确保线路的稳固和安全。
确定行驶速度
通过纵断面设计,可以确定交通工具的行驶速度,保证铁路运输的效率和流畅。
保证正常使用
合理的纵断面设计可以确保铁路线路的正常使用,并减少维护和修复成本。
纵断面设计的基本原则
1 安全性原则
纵断面设计应考虑列车行驶安全,避免出现 过高或过低的高程变化。
获取地形和地质数据,并绘制相应的地
图,为后续设计提供依据。
3
初步设计
根据设计要求和纵断面要素,进行初步
优化设计
4
设计,并进行必要的调整和优化。
在初步设计的基础上,对纵断面进行进
一步的优化,提高设计的合理性和可行
5
建立三维模型
性。
利用计算机软件建立铁路线路的三维模
第讲 纵断面设计ppt
下半支曲线在竖曲线终点的切线上的竖距h’为:
2 ( L x ) h' 2R
为简单起见,将两式合并写成下式,
x2 y 2R
式中:x——竖曲线上任意点与竖曲线始点或终点的水平距离, y —— 竖曲线上任意点到切线的纵距,即竖曲线上任意点 与坡线的高差。
竖Hale Waihona Puke 线外距E: 上半支曲线x = T1时: 下半支曲线x = T2时:
x2 x2 h PQ y P yQ i1 x i1 x 2R 2R
下半支曲线在竖曲线终点的切线上的竖距h’为:
2 ( L x ) h' 2R
L-x i2 h’ h
(3)竖曲线上任一点竖距h:
x2 x2 h PQ y P yQ i1 x i1 x 2R 2R
2.竖曲线的作用:
(1)其缓冲作用:以平缓曲线取代折线可消除汽车在 变坡点的突变。 (2)保证公路纵向的行车视距: 凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。 3. 竖曲线的线形 《规范》规定采用二次抛物线作为竖曲线的线形。 抛物线的纵轴保持直立,且与两相邻纵坡线相切。
抛物线顶点曲率半径:k
L L i2 i1
竖曲线半径R系指竖曲线顶(底)部的曲率半径。
若竖曲线包含抛物线顶点,则
R=k。
若竖曲线不包含抛物线顶点,则竖曲线半径指竖曲 线的顶(凸竖曲线)或底(凹竖曲线)部的曲率半 径。可按下面的方法计算:
抛物线上任一点的曲率半径为r,
dy 2 r 1 ( ) dx
v2 V2 V2 a , R R 13R 13a
根据试验,认为离心加速度应限制在0.5~0.7m/s2比较 合适。我国《标准》规定的竖曲线最小半径值,相当于 a=0.278 m/s2。
路线平面图路线纵断面图路基横断面图精品PPT课件
比例、设计人等。
12
三、路基横断面图
路基横断面图是在路线中心桩处作一垂直于路线中心线的断面图。
路基横断面图的作用是表达各中心桩处横向地面起伏及设计路基 横断面地情况。
1.路基横断面图的形式有三种:①填方路基; ②挖方路基; ③半填半挖路基。
62.24
K0+600
Ht=4.99(m)
At=46.4(m2)
61.50
K0+800
Ht=3.80m)
At=36.8(m2)
61.99
K0+700
Ht=0.17(m)
At=18.2(m2)
13
AW=8.88(m2)
2.路基横断面图的绘制方法与步骤 ①要求在每一中心桩处,顺次画出每一个路基横断面图; ②路基横断面图应顺序沿着桩号从下到上,从左到右画出; ③横断面图的地面线一律画细实线,设计线一律画粗实线; ④每张图上的右上角应写明图纸序号和总张数,最后一张 纸图的右下角要画出图标。
共页 第页
K0+600
K0+900
K0+500
K0+800
由下到上
K0+400 由左到右
K0+700
图标
14
§4-2 城市道路路线工程图
城市道路组成: 绿化带 分隔带
机动车道
人行道 非机动车道
城市道路路线工程图组成:横断面图、平面图、纵断面图。
15
一、横断面图
城市道路横断面图与公路横断面图形式是一样的,但内容不一样。 1.城市道路横断面图布置的基本形式
4.99
0.17
3.80
2.00
6.00 10.23 5.60 4.80
12
三、路基横断面图
路基横断面图是在路线中心桩处作一垂直于路线中心线的断面图。
路基横断面图的作用是表达各中心桩处横向地面起伏及设计路基 横断面地情况。
1.路基横断面图的形式有三种:①填方路基; ②挖方路基; ③半填半挖路基。
62.24
K0+600
Ht=4.99(m)
At=46.4(m2)
61.50
K0+800
Ht=3.80m)
At=36.8(m2)
61.99
K0+700
Ht=0.17(m)
At=18.2(m2)
13
AW=8.88(m2)
2.路基横断面图的绘制方法与步骤 ①要求在每一中心桩处,顺次画出每一个路基横断面图; ②路基横断面图应顺序沿着桩号从下到上,从左到右画出; ③横断面图的地面线一律画细实线,设计线一律画粗实线; ④每张图上的右上角应写明图纸序号和总张数,最后一张 纸图的右下角要画出图标。
共页 第页
K0+600
K0+900
K0+500
K0+800
由下到上
K0+400 由左到右
K0+700
图标
14
§4-2 城市道路路线工程图
城市道路组成: 绿化带 分隔带
机动车道
人行道 非机动车道
城市道路路线工程图组成:横断面图、平面图、纵断面图。
15
一、横断面图
城市道路横断面图与公路横断面图形式是一样的,但内容不一样。 1.城市道路横断面图布置的基本形式
4.99
0.17
3.80
2.00
6.00 10.23 5.60 4.80
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 限制坡度的意义
1) 限制坡度是单机牵引区段内计算牵引质量的依据。
G FJ P(0' gix)
'' 0
gix
2) ix的选择对运输能力有很大的影响。
3) 机车、乘务员、车辆、机务、能源一系列与行车有 关的支出将大大增加。
4) 纵断面设计在选择具体的坡度时余地大,更有利地
适应地形的起伏情况,从而减少了工程量。
加力牵引坡度的坡度值iJL,可根据限制坡度上的牵 引吨数、机车台数和加力牵引方式,按下式计算。
iJL F Jg (( P P G 0)G0 ") (‰ )
2020年9月28日
10
3 采用加力牵引应注意的事项
1) 加力牵引地段的两端应有机车的整备作业和 补机摘机作业;
2) 机车台数增多一般有浪费; 3) (各机车操纵不一致)
第六讲 线路纵断面设计
一、区间线路的纵断面设计概述
二、限制坡度
三、加力牵引坡度
四、坡段长度
五、坡段的连接
六、最大坡度折减
七、坡段设计对行车费运的影响
八、其它地段平纵断面设计
九、线路平面和纵断面图
2020年9月28日
1
一、区间线路的纵断面设计概述
1 纵断面设计
纵断面设计是在平面设计的基础上拉坡定线的过程。 其内容包括:
3) 应集中使用加力坡段;
4) 根据车钩温度和作业便利的考虑,可用双机 重联或补机推送。
2020年9月28日
11
四、坡段长度
相邻两坡段的坡度变化点称为变坡点。相 邻两变坡点间的水平距离称为坡段长度。
2020年9月28日
12
坡段长度的设置原则:
1) 在符合地形的条件下工程量不大,越长越好。 2) 一般情况下,最小不应当短于半个远期货物列车长度。 3) 应保证坡段两端所设的竖曲线不在坡段中间重叠。 4) 保证不致产生断钩事故。 5)凸形纵断面坡顶为缓和坡度差而设置的分坡平段,其长
度宜为200m。凹形纵断面坡顶为缓和坡度差而设置的分 坡平段,其长度取值与远期到发线有效长度有关。
2020年9月28日
13
6) 在下列特殊情况下若有必要,坡度的长度可 缩短至200 m:
① 因最大坡度折减而形成的坡段。
② 两个同向坡段之间或者平坡与上下坡之 间为缓和而设置的缓和地段。
③ 路堑内代替分坡平段的人字坡段,以利 侧沟排水。
2020年9月28日
14
五、坡段的连接
1 坡度的代数差
1) △i=|i1-i2|; 2) 对线路的影响; 3) 确定△i允许值; 4) 如果纵断面设计超限,则应予以调整。
2020年9月28日
15
2 竖曲线
① 为什么设竖曲线: A、车辆振动、局部加速度增大,旅客不适。 B、 蒸汽机车导致导轨悬空。 C、 车钩上下错动,可能会引起脱钩。 D、 不能保证司机通视良好,可能撞人。
1)定义:是指在机车牵引货物列车在持续上坡道上最终 能以计算速度运行的坡度。
2020年9月28日
4
线路的最大坡度的两种情况: 1) 在单机牵引地段即为限制坡度ix ; 2) 在多机牵引区段即为加力牵引坡度iJL;
注:
它们既是该区段内的最大坡度,又是确定
牵引质量的条件。
2020年9月28日
5
二、限制坡度
2020年9月28日
6
2 影响坡度选择的因素
1) 线路等级 2) 运输要求和牵引动力 3) 地形条件 4) 邻线的牵引定数 5) 符合《规范》规定。
2020年9月28日
7
3 分方向选择限制坡度
分方向选择限制坡度应具备的条件:
1)轻重车方向货流选择不平衡而且预计将来也不 会有很大的改变;
2) 轻车方向平均上坡自然坡度较陡,重车方向平均 上坡自然坡度较缓 ;
y x2 (m) 2RSH
式中 x为切线上计算点至竖曲线起点的距离。
2020年9月28日
20
D 竖曲线外矢距
E sh
T
2 sh
2 Rsh
2020年9月28日
21
④ 设计标高
纵断面设计时, 设计标高=未设竖曲线的计算标高±竖曲线纵距y
2020年9月28日
22
⑤ 竖曲线的设置条件
A、满足线路等级条件和坡度差,才设竖曲线。
TSH R2S H 000i (m)
Ⅰ、Ⅱ级铁路:R S H 1 0 0 0 0 m ; T sh 5 i
Ⅲ级铁路: R S H 5 0 0 0 m ; T sh 2 .5 i
2020年9月28日
18
KSH
B、竖曲线长度
KSH2TSH (m)
2020年9月28日
19
C、 竖曲线纵距
C、 竖曲线不应设在明桥面上。
在明桥(无碴桥)面上设置竖曲线时,其曲率要用木枕高度调整,每根木枕厚度都不同,若要按固定位置顺序铺设,给施工、养 护带来困难。为了保证竖曲线不设在明桥面上,变坡点距明桥面端点的距离,不应小于竖曲线的切线长。
D、 竖曲线不应与道岔重叠。
a 在初步设计阶段确定最大坡度 b 坡段长度 c 坡段连接 d 坡度折减
2020年9月28日
2
2 纵断两端变坡点之间的水平距离L B、坡度:坡段两端变坡点之间高差H与L之比
2) 纵断面坡度的连接
A、坡度代数差
B、竖曲线
2020年9月28日
3
3 线路的最大坡度
B、 竖曲线不与缓和曲线重叠。
竖曲线范围内,轨面高程以一定的曲率变化;缓和曲线范围内,外轨高程以一定的超高顺坡变化。如两者重叠,一方面在轨道
铺设和养护时,外轨高程不易控制;另一方面外轨的直线形超高顺坡和圆形竖曲线,都要改变形状,影响行车的平稳。为了保证竖 曲线不与缓和曲线重叠,纵断面设计时,变坡点离开缓和曲线起终点的距离,不应小于竖曲线的切线长。
2020年9月28日
16
② 设置竖曲线需要考虑的条件
R A、 舒适度
sh
V2
max
3.62 sh
(m)
B、 运行安全条件
列车通过凸形竖曲线时,产生向上的竖直离心力,
使车辆有上浮车辆倾向,上浮车辆在横向力作用下容易 产生脱轨事故。
C、 《线规》规定。
2020年9月28日
17
③ 竖曲线的几何要素 A、 竖曲线切线长
3) 通过技术经济进行比较认为合理。
2020年9月28日
8
三、加力牵引坡度
1 加力牵引坡度原因
一般在地形非常陡峻的越岭地区或自然陡坡地段, 若以单机牵引设计可能会引起大量的桥隧工程且线路严 重展长,则可考虑用双机或多机牵引,适当增大最大坡 度以减少工程。
2020年9月28日
9
2 加力牵引坡度的计算