(完整版)圆柱与圆锥题型归纳

合集下载

(完整版)圆柱与圆锥题型归纳

(完整版)圆柱与圆锥题型归纳

圆柱圆锥常考题型归纳一、圆柱1. 圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

)2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。

3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22S R π=增。

b.竖切(过直径):切面是长方形(如果h=2R ,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4Rh4. 圆柱的侧面展开图:a. 沿着高展开,展开图形是长方形,如果2h R π=,展开图形为正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

c.无论如何展开都得不到梯形5、圆柱的相关计算公式:a .底面积:2=S R π底b .底面周长:2C d r ππ==c .侧面积:2S Rh π=侧d .表面积 :S=2S 底+S 侧 =222R Rh ππ+e .体积 : 2V R h π=考试常见题型:a. 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b. 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c. 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d. 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,e. 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的切割:a.横切:切面是圆b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S 增=2Rh4、圆锥的相关计算公式a. 底面积:2=S Rπ底b. 底面周长:2C d r ππ==c. 体积: 2/3V R h π=考试常见题型:a. 已知圆锥的底面积和高,求体积,底面周长b. 已知圆锥的底面周长和高,求圆锥的体积,底面积c. 已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

圆锥圆柱体常考题型归纳

圆锥圆柱体常考题型归纳

圆锥圆柱体常考题型归纳
本文旨在归纳圆锥和圆柱体的常见考题类型,为学生提供备考参考。

1. 圆锥体的体积计算问题
求解圆锥体的体积是常考题类型之一。

一般来说,我们可以用以下公式计算圆锥体的体积:
V = (1/3) * π * r^2 * h
其中,V表示圆锥体的体积,r表示底面半径,h表示高。

2. 圆锥体的表面积计算问题
求解圆锥体的表面积也是常考题类型之一。

一般来说,我们可以用以下公式计算圆锥体的表面积:
S = π * r * (r + l)
其中,S表示圆锥体的表面积,r表示底面半径,l表示斜高。

3. 圆柱体的体积计算问题
求解圆柱体的体积也是常考题类型之一。

一般来说,我们可以用以下公式计算圆柱体的体积:
V = π * r^2 * h
其中,V表示圆柱体的体积,r表示底面半径,h表示高。

4. 圆柱体的表面积计算问题
求解圆柱体的表面积也是常考题类型之一。

一般来说,我们可以用以下公式计算圆柱体的表面积:
S = 2 * π * r^2 + 2 * π * r * h
其中,S表示圆柱体的表面积,r表示底面半径,h表示高。

5. 圆锥与圆柱体的比较问题
比较圆锥和圆柱体的体积或表面积的大小也是常考题类型之一。

学生需要利用已知条件,比较两者的大小关系,并给出合理的解释。

以上是圆锥和圆柱体的常见考题类型的归纳,希望对学生备考
有所帮助。

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析

小升初必备:圆柱与圆锥典型及易错题型分析圆柱与圆锥典型及易错题型(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。

练:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

A12B36C4D8(二)、关于圆柱、圆锥的典型实际问题:1.实质求圆柱的侧面积:通风管(如圆柱形烟囱)压路机1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积=圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.求无盖的圆柱形表面积。

1、求圆柱形水桶能装水多少升,是求它的();做一节圆柱形通风管要多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积2、一个圆柱形儿童游泳池底面半径是4米,深0.5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶,高50厘米,底面直径30厘米,做这个水桶约莫需用几何铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm,高5dm。

(1)做这个鱼缸至少要几何平方分米?(得数保留整十平方分米)(2)这个鱼缸能装几何千克水?(1升水重1千克)5、圆柱的体积求底面积或高时,要用体积除以底面积或高,圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。

(六年级下册)圆柱与圆锥详细题型分类与答案 最终版

(六年级下册)圆柱与圆锥详细题型分类与答案  最终版

一、圆柱的表面积1.例题12.巩固3.拓展4.巩固圆柱与圆锥(一)本节课学习圆柱体表面积的一些运用.解决这些问题,有时需要结合实际,明确所求圆柱体的表面积有几个面;有时需要灵活地利用条件,间接得出所需要的数据进行计算;有时还需要观察图形,在观察与比较中搜索需要的信息.某化工厂有一个烟面,形状为圆柱形,底面半径是厘米,高是米,现在 要将烟囱增高到米.每增加平方米材料需要费用元,一共需要多少费用?808251120一个圆柱体的有盖油桶高分米,它的侧面展开后得到一个长分米的长方形.这个油桶共享了多少平方分米的铁皮?1025.12如图所示,有一块长方形铁皮,把其中的阴影部分剪下制成一个圆柱形油桶,求圆柱形油桶的表面积.如图所示,有一张长方体铁皮,剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为厘米,那么原来长方形铁皮的面积是多少平方厘米(取).10π 3.142.巩固3.拓展4.巩固把一个正方体削成一个体积最大的圆柱,如果圆柱的侧面积是平方厘米.求正方体的表面积.314把一个横截面是正方形的长方体术料削剪成一个最大的圆柱体,圆柱体的表面积为平方厘米.底面直径与高的比是,原来长方体的表面积是多少?32.971:3已知一个圆柱的底面半径等于一个正方体棱长的一半,高等于这个正方体的棱长,这个正方体的底面积是平方分米.求这个圆柱的表面积.25五、“整体代换”法在求圆柱体表面积或体积时的应用在分数的计算和圆的面积计算中,我们曾经学过“整体代换”的方法,例如:计算一个圆的面积,将圆周率乘半径的平方即可,但是,有的时候我们不知道这个圆的半径是多少,只告诉你,这时就可以直接用乘求得圆的面积.今天,我们学习“整体代换”法在求圆柱体表面积或体积时的应用.=8r 2 3.148圆柱与圆锥(一)(课后作业)圆柱与圆锥(课后作业)1.六年级上学期其它圆柱与圆锥一个圆柱体高厘米,侧面积平方分米,它的底面积是多少平方厘米?8025.122.六年级上学期其它圆柱与圆锥一个圆柱体的侧面展开是一个正方形,圆柱的底面直径是厘米,这个 圆柱体的表面积是多少平方厘米?203.六年级上学期其它圆柱与圆锥一个圆柱体木块,底面直径是分米,高是米,现在将它截成两个圆柱体小木块,那么,表面积增加多少平方分米?107.54.六年级上学期其它圆柱与圆锥一个圆柱体木块,底面周长是厘米,高是厘米,现在将它截成四个圆柱体小木块.那么,这四个圆柱体小木块的表面积为多少平方厘米?25.1265.六年级上学期其它圆柱与圆锥一个圆柱体的表面积和一个长方形的面积相等,长方形的长等于圆柱体的底面周长,已知长方形的面积为平方厘米,圆柱体的高是厘米,圆柱体的底面半径是多少?131.884如图所示,有一个立体图形.下部是一个棱长为厘米的正方体,上部是一个半圆柱体.求这个立体图形的表面积.409.六年级上学期其它圆柱与圆锥将一个正方体木块切削成一个最大的圆柱体,这个圆柱体的体积是立方厘米,问:原来正方体的体积有多大?125610.六年级上学期其它圆柱与圆锥如图所示,一个圆柱体的侧面展开图为正方形,已知它的一个底面面积是平方厘米.求这个圆柱体的表面积.108.六年级上学期其它圆柱与圆锥14.六年级上学期其它圆柱与圆锥如图所示.这是一个底面半径为厘米,高为厘米的圆柱,在它的中间依次向下挖去半径分别为厘米、厘米、厘米,高分别为厘米、厘米、厘米的圆柱.最后得到的立体图形表面积是多少?44321210.515.六年级上学期其它圆柱与圆锥如图所示,在长为厘米的圆筒形管子的横截面上,量出的最长线段为厘米,管子的体积是多少?201013.六年级上学期其它圆柱与圆锥有大、小两种不带盖的圆柱形水桶,它们的表面积的和是平方分米,小桶和大桶的用料面积的比是,小桶的底面周长是分米,大桶的底面周长是分米.求大、小两个桶的侧面积各是多少?54331:262.894.2圆柱与圆锥(奥赛训练)11.六年级上学期其它圆柱与圆锥工人师傅将一张铁皮按图裁剪后,做成一个圆柱形铁皮罐,求这个铁皮罐的表面积(单位:分米).12.六年级上学期其它圆柱与圆锥圆柱形的售报亭的高和底面直径相等,如图所示,开一个边长等于底面半径的正方形售报窗口.窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?所示.表面积增加了多少平方厘米?厘米.那么,它的体积是多少平方二、圆柱的表面积和体积(二)1.例题22.巩固3.巩固4.拓展5.巩固根据圆柱体底面、侧面和表面积的特征,以及它们之间的关系可以解决一些求体积的趣题.下面,我们就开始学习这方面的知识.一个圆柱体的高是厘米,它的侧面展开是一个正方形,求这个圆柱体的体积是多少立方厘米?12.56一个圆柱体的高是厘米,它的侧面展开是一个正方形.求这个圆柱体的体积.31.4一个侧柱体,它的侧面展开是一个长方形(宽为圆柱体的高).已知展开后的长方形的长是宽的倍,且宽是厘米.求这个圆柱体的体积.215.7如图所示,一个圆柱形木块高厘米,若被锯掉厘米后,则表面积减少了平方厘米.求原来圆柱的体积.1208251.2一个圆柱体的高是厘米,若高减少厘米,则表面积比原来减少平方厘米.求原来圆柱体的体积.10394.2平方厘米;如果按如图所示切成24平方厘米;如果按如图所示切成43五、水中浸物1.例题52.巩固3.拓展4.巩固我们知道,酒瓶或饮料瓶的瓶颈处一般都不是规则的圆柱体,如果要求体积等问题,这时该怎么办呢?把一根圆柱体钢材等物体放入一个长方体或圆柱体的容器内,要求水面的高度,必须先判断物体是否全部浸没.通过今天的学习,大家就会明白了.如图所示,有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是毫升.现在瓶中装有一些饮料,正放时饮料高度为厘米,倒放时空余部分的高度为厘米.瓶内现有饮料多少毫升?1500205如图所示,某种酒瓶的瓶身呈圆柱形(不包括瓶颈),瓶身内直径为厘米.现在瓶中装有一些酒,正放时酒的高度是厘米,倒放时空余部分的高度是厘米.求这个酒瓶的容积.48123在一个底面积是平方厘米的玻璃杯中装入高厘米的水.现把一个底面半径是厘米、高厘米的圆柱形铁块垂直放入玻璃杯水中,问水面升高了多少厘米?(取)15315π3如图所示,有一个高厘米,容积是毫升的圆柱形容器,里面装满了水.现在把长厘米的圆柱垂直放入,使的底面与的底面接触,这时一部分水从容器中溢出.当把从中拿出来后,中的水高度为厘米.求圆柱的体积.5850A 16B B A B A A 6B 5.巩固一个盛有水的圆柱形容器,底面内半径为厘米,深厘米,水深厘米.现在将一个底面半径为厘米、高为厘米的铁圆柱垂直放入容器中,求这时容器的水深是多少厘米?520152176.小学高年级六年级下学期其它把一个高为分米的圆柱形木块沿底面直径竖直切成相同的两块,表面积增加了平方分米.求这个圆柱体的体积.7.5757.小学高年级六年级下学期其它一个底面半径为厘米的圆柱体容器,放入一个石块后,浸没在水中,水面上升了厘米.求这个石块的体积.528.小学高年级六年级下学期其它在一只底面半径为厘米的圆柱形水桶里有一个直径为厘米的圆柱形钢材浸没在水中,当钢材取出后,桶里的水面下降了厘米,这段钢材长多少厘米?151029.小学高年级六年级下学期其它某种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是升.现在瓶中有一些饮料,正放时饮料高度为厘米,倒放时空余部分的高度为厘米,如图所示,瓶内现在有饮料多少升?21052五、专题演练1.例题52.巩固3.巩固4.拓展已知一个圆锥的底面半径和高都等于一个正方体的棱长.这个正方体的体积是立方分米.求这个圆锥的体积.216一个圆柱体,底面积是平方分米,把它削成一个最大的圆锥,削去部分的体积是立方分米.求这个圆柱体的高.56两个正方体的体积之差是立方厘米,如果以每个正方体的一面为底,加工成最大的圆锥,加工成的两个圆锥的体积之差是多少立方厘米?1200一个边长是厘米的正方体玻璃缸中装着水,水中浸没了一个底面直径为厘米、高为厘米的铁质圆锥体和一个底面直径为厘米、高为厘米的铁质圆柱体.当圆锥体、圆柱体都从桶中取出后,桶内水将下降多少厘米?20125855.拓展圆柱与圆锥(三)(课后作业)1.小学高年级六年级下学期其它张大爷去年用长米、宽米的长方体苇席围成容积最大的圆柱形粮囤.今年改用长米、宽米的长方形苇席围成容积最大2132的圆柱形的粮囤.问今年粮囤的容积是去年粮囤容积的多少倍?2.小学高年级六年级下学期其它一个圆柱形的铁块厚厘米,如果把它锻造成底面直径相同的圆锥体,这个圆锥体的高是多少厘米?103.小学高年级六年级下学期其它优秀生培养教程12级第2讲圆柱与圆锥本讲巩固第4题这里有一个圆柱和一个圆锥(如图下图所示),它们的高和底面直径都标在图上,单位是厘米.请问:圆锥体积与圆柱体积的比是多少?4.小学高年级六年级下学期其它把一个长、宽、高分别是厘米、厘米、厘米的铁块和一个棱长为厘米的正方体铁块,熔铸成一个底面直径为厘米的973510圆锥形铁块.求这个圆锥的高是多少厘米?5.小学高年级六年级下学期其它一个立体图形由一个圆柱和一个圆锥组成,如图所示,它们的底面直径都是厘米,高都是厘米.这个立体图形的体积是612圆柱与圆锥(一)答案一、圆柱的表面积1、10248.96元2、351.68平方分米3、131.88平方分米4、828平方厘米二、圆柱的表面积(二)1、401.92平方厘米2、452.16平方厘米3、12.56平方厘米4、12.56平方厘米三、圆柱的表面积(三)1、18cm2、3.5cm3、166.42平方厘米4、124.03平方厘米四、圆柱的表面积(四)1、1331.36平方厘米2、7536平方厘米3、2081.4平方厘米4、385.4平方厘米五、四圆柱的表面积(四)1、8立方厘米2、600平方厘米3、18平方厘米4、117.75平方分米圆柱与圆锥(一)(课后作业)圆柱与圆锥(课后作业)1.【答案】平方厘米78.52.【答案】平方厘米4571.843.【答案】平方分米1574.【答案】平方厘米552.645.【答案】厘米36.【答案】平方厘米251.27.【答案】平方分米94.28.【答案】平方厘米117689.【答案】立方厘米160010.【答案】平方厘米145.614.【答案】平方厘米254.3415.【答案】平方厘米1570圆柱与圆锥(二)答案一、圆柱的表面积和体积(一)1、16平方厘米2、30平方厘米3、75.36平方分米4、62.8立方厘米5、21.98平方分米二、圆柱的表面积和体积(二)1、157.7536cm 32、246.49cm 33、1232.45cm 34、1570cm 35、7.85cm 3三、圆柱的表面积和体积(三)1、314cm 32、351.68cm 33、339.12cm 34、25.12cm 35、54cm 四、圆柱的表面积和体积(四)1、113.04cm 32、56.52cm 33、1413cm 34、32cm5、21.98cm 3五、水中浸物1、400ml2、753.6ml3、0.75cm4、25cm 35、17.72cm 圆柱与圆锥(二)(课后作业)1.【答案】52.【答案】立方厘米197.823.【答案】立方厘米19719.2 4.【答案】升37.68圆柱与圆锥(三)答案一、圆柱的表面积和体积(五)1、1.57m2、 2.5dm3、0.998m 34、339.12cm 3二、圆锥的表面积和体积(一)1、16cm 32、6cm3、64、35、(π≈3)108cm 3135cm 3三、圆锥的表面积和体积(二)1、2.52、72四、圆锥的表面积和体积(三)1、227cm2、4273、225cm4、2升5、32五、专题演练1、216π2、59dm 3、314cm 34、1.256cm 5、112cm 2圆柱与圆锥(三)(课后作业)1.【答案】922.【答案】303.【答案】1/244.【答案】125.【答案】452.166.【答案】平方厘米727.【答案】98.【答案】圆柱:,圆锥:40329.【答案】2410.【答案】3611.【答案】厘米7.2。

圆柱圆锥题型整理

圆柱圆锥题型整理

圆柱和圆锥题型总结一、瓶子正倒放不论是正放还是倒放,瓶子的容积不变,正放酒的高度加上倒放时空余部分的高度,就是瓶子的高度一个容积为2500ml的饮料瓶,当瓶子正放时瓶内的饮料高为16cm,把瓶盖拧紧倒立,无饮料的部分高为4cm,瓶中有饮料多少L?有一种酒瓶,容积为286立方厘米,当瓶口向上时,瓶内酒的高度是18厘米,当瓶口向下时,余下部分的高度是4厘米,瓶内酒有多少毫升?一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示,它的容积为26.4cm3,瓶子正放时,瓶内药水液面高6cm,瓶子倒放时,空余部分高2cm,则瓶内药水的体积是多少立方厘米?一满瓶饮料,爸爸喝了一些后液面高度是10cm,若把瓶盖拧紧后倒置放平,空余部分高8cm,已知饮料瓶的内直径是6cm,这瓶饮料原有多少毫升?二、切割问题1.圆柱切割一个圆柱形木块按图甲中的方式切成形状、大小四块,表面积增加了96cm2,按图乙的方式切成形状、大小相同的三块,表面积增加了50.24cm2,若把它削成一个最大的圆锥,体积减少多少立方厘米?把一个高为5cm的圆柱从直径处沿高剖成两个半圆柱,这两个半圆柱的表面积比原来增加80cm2,原来圆柱的体积是多少立方厘米?2.削成最大的圆柱(圆锥)三、浸水问题1、完全浸没物体体积=水上升体积一个高40厘米的圆柱形水桶,底面半径是20厘米,这个桶盛有半桶水,小红将一块石头完全浸入水桶中,水面比原来上升了3厘米,这块石头的体积是多少?在一个底面直径是40厘米的圆柱形水桶里,浸没了一根半径是10厘米的圆柱形铁块.当铁块从水桶里取出后,水面下降了8厘米,这根圆柱形铁块的长是多少厘米?一个圆柱形容器内,放有一个长方体铁块,现在打开一个水龙头往容器中注水3分钟,水恰好没过铁块的顶面;又过了18分钟后,水灌满了容器.已知容器的高度是50cm,铁块的高度是20cm,那么铁块的底面积与容器底面积的比是多少?在一个底面直径10厘米圆柱体形杯中装有水,水里浸没一个底面半径是2厘米的圆锥形铅锤,当铅锤取出时,水面下降2厘米,铅锤的高是多少厘米?一个底面半径是6厘米的圆柱形容器(厚度不计)里面装有一些水,水中浸没着一个高9厘米的圆锥形铅锥.当铅锤从水中取出后,水面下降了0.5厘米.这个铅锤的底面积是多少?一个圆柱形铁盒,底面半径是10厘米,高是18.84厘米,现在圆柱形铁盒正立在桌上,铁盒中盛有部分水,水面高度是12.56厘米.如果往这个铁盒中放入若干个长3.14厘米,宽1.57厘米,高1厘米的长方体铁块,至少加入多少个铁块后,使水刚好不外溢?一个底面直径为20厘米的圆柱形容器中装有水,水中放着一个底面直径为12厘米,高为5厘米的圆锥体铅锤,当铅锤从水中取出后,容器中水面高度下降了几厘米?有一个底面积是300平方厘米,高10厘米的圆柱体容器,里面盛有5厘米深的水。

小学数学圆柱圆锥考点总结

小学数学圆柱圆锥考点总结

圆柱圆锥常考题型归纳一、公式转换1、圆的知识圆的周长=直径×π=2×半径×πC=πd= 2πr逆推公式有:直径=圆的周长÷πd = C÷π半径=圆的周长÷π÷2r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。

圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2S 表=S 侧+2S 底(3)圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V 柱÷S圆柱的底面积=圆柱的体积÷高h=V 柱÷S3( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。

( 2 )半个圆柱的表面积= 侧面积÷2 +一个底面积+直径×高(3)14圆柱的表面积=侧面积÷4+半个底面积+直径×高4、圆锥的体积=底面积×高×1 3V 锥= 13 Sh逆推公式有:圆锥的高=圆锥的体积×3÷底面积h=V 锥×3÷S圆锥的底面积=圆锥的体积×3÷高S= V 锥×3 ÷h1.基本题型1,一个圆柱的侧面积是 25.12 平方厘米,底面半径是 2 厘米,求该圆柱的表面积是多少?2.一个圆柱型粮囤,底面半径是 4 米,高 2 米,若每立方米粮食重 500 千克,求该粮囤能装多少千克粮食?2.把体积是 282.6 平方厘米的铁块熔铸成底面半径为 6 平方厘米的圆锥型零件,求该零件高是多少?二、切割问题,表面积增加或减少1.基本公式:增加的面数+每个面的面积=增加的表面积切割面(增加的面)=底面1、切割、拼接表面积增加、减少问题。

(完整版)圆柱与圆锥典型例题

(完整版)圆柱与圆锥典型例题

典型例题圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。

形成圆柱的面还有一个曲面,叫做圆柱的侧面。

圆柱两个底面之间的距离叫做圆柱的高。

2、圆锥的底面是个圆,圆锥的侧面是一个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

4、圆柱的侧面积= 底面周长×高5、圆柱的表面积= 侧面积+ 底面积×2例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?例2、求下面立体图形的底面周长和底面积。

半径3厘米直径10米例3、判断:圆柱和圆锥都有无数条高。

( )点评:圆柱两个底面之间的距离叫做圆柱的高。

两个底面之间有无数个对应的点,圆柱有无数条高。

从圆锥的顶点到底面圆心的距离是圆锥的高。

顶点和底面圆心都是唯一的点,所以圆锥只有一条高。

例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。

求它的侧面积。

分析与解:高底面周长点评:圆柱的侧面是个曲面,不能直接求出它的面积。

推导出侧面积的计算公式也用到了转化的思想。

把这个曲面沿高剪开,然后平展开来,就能得到一个长方形,这个长方形的面积就是这个圆柱的侧面积。

例5、(圆柱的表面积)做一个圆柱形油桶,底面直径是0.6米,高是1米,至少需要多少平方米铁皮?(得数保留整数)点评:这里不能用四舍五入法取近似值。

因为在实际生活中使用的材料要比计算得到的结果多一些。

因此这儿保留整数,十分位上虽然是4,但也要向个位进1。

例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。

做这样一个水桶,至少需用铁皮6123平方厘米。

( )例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。

这个圆柱的表面积是多少平方厘米?例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。

在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?分析与解:要求水泥的质量,先要求水泥的面积。

圆柱与圆锥的整理复习

圆柱与圆锥的整理复习
立方米?如果每立方米稻谷重500千克,这个粮 囤能装稻谷多少吨?
圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10²×2+3.14×10²×1.2÷3=628+125.6=753.6(m³)
圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)
答:————————————。
=314(cm²) 铁块的高为:6280 x3÷314= 60(cm)
答:————————。
7、一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用 一辆载重6吨的汽车来运,几次可以运完?
底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积:
V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次)
答:——————————。
• 1 圆柱与圆锥各有哪些特征? • 2 怎样求圆柱的侧面积.表面积.体积? 计算公式各是什么?
• 3怎样求圆锥的体积?计算公式是什么? • 4圆柱与圆锥的体积之间有什么系?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
V=sh÷3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的 三分之一 等底等高圆柱体积是圆锥体积的3倍
请回答下面的问题,并列出算式。
一个圆柱形水桶,底面半径10分米,
高是20分米。 ①给这个水桶加个桶的外面涂上油漆,是求哪个
部分? ④这个水桶能装多少水,是求哪个部分?
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。

(完整版)六年级数学圆柱圆锥练习试题和答案解析.docx

(完整版)六年级数学圆柱圆锥练习试题和答案解析.docx

范文 .范例 .参考(四)例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?圆柱圆锥底两个底面完全相同,都是圆一个底面,是圆形。

面形。

曲面,沿高剪开,展开后是曲面,沿顶点到底面圆周上的一条线侧面长方形。

段剪开,展开后是扇形。

两个底面之间的距离,有无高顶点到底面圆心的距离,只有一条。

数条。

例 2、求下面立体图形的底面周长和底面积。

半径 3 厘米直径10米例 3、判断:圆柱和圆锥都有无数条高。

例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是12 厘米。

求它的侧面积。

例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30 厘米,高是50 厘米。

做这样一个水桶,至少需用铁皮6123 平方厘米。

例 7、(考点透视)一个圆柱的侧面积展开是一个边长15.7 厘米的正方形。

这个圆柱的表面积是多少平方厘米?例 8、(考点透视)一个圆柱形的游泳池,底面直径是10 米,高是 4 米。

在它的四周和底部涂水泥,每千克水泥可涂 5 平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是 2 分米,长是 9 分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体的侧面积(1)底面半径是 3 厘米,高是 4 厘米。

(3)底面周长是 12.56 厘米,高是 4 厘米。

5、求下列圆柱体的表面积(1)底面半径是 4 厘米,高是 6 厘米。

(3)底面周长是 25.12 厘米,高是 8 厘米。

6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。

8、一个圆柱形蓄水池,底面周长是25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。

如果每平方米要用水泥20 千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。

圆柱圆锥8大必考题型整理

圆柱圆锥8大必考题型整理

圆柱(锥)常考题型一:“转”出来的问题1.转动长方形ABCD,生产圆柱①和②(1)圆柱①是以()或()为轴转动形成的。

高是()cm,底面半径是()cm。

(2)圆柱②是以()或()为轴转动形成的,高是()cm,底面半径是()cm。

2.拿一张三条边分别长5cm、12cm 和13cm 的直角三角形硬纸粘在木棒上,像图上这样转动,转出的圆锥的体积是()立方厘米。

抖音3451209463.下面的立体图形是下面的那个平面图形旋转得到的()。

4.如图,四边形ABCD 是直角梯形,以AB 边所在的直线为轴,将梯形绕这个轴旋转一周,得到一个立体图形,这个立体图形的体积是?抖音3451209461.用一张边长是62.8cm的正方形铁皮卷成一个圆柱形水桶侧面,要给这个水桶侧面配一个底面,至少需要多少平方厘米的铁皮?2.如图,一张长为12.56cm,宽6.28cm的长方形纸分别沿长和宽围成不同的圆柱形纸筒,那么①和②的体积分别是?抖音3451209461.下面各图是圆柱侧面展开图的是()2.一个圆柱的侧面展开后是一个长25.12cm,宽12.56cm 的长方形。

这个圆柱的底面半径是多少cm?3.如下图,圆锥侧面剪开后是一个()。

A、长方形B、三角形C、扇形25.12cm 12.56cm 抖音3451209464.有一块长方形塑料板,剪下两个圆以及一个长方形正好可以做成一个圆柱。

这个圆的底面半径是2cm,那么长方形塑料板的面积是多少平方厘米?5.如图,阴影部分的两个圆和一个长方形铁皮,正好可以做成一个油桶,求油桶的容积。

抖音345120946圆柱(锥)常考题型四:“切”出来的问题1.一个圆柱,如果高减少2cm,表面积减少18.84平方厘米,这个圆柱的底面积是多少平方厘米?2.把一个底面半径为1cm,高6cm 的圆柱形木料,将它截成3个小圆柱(如图所示),这些小圆柱形木料的表面积比原来增加了多少平方厘米?抖音3451209463.如图,将一个高8厘米的圆柱形木料沿底面直径垂直切成两部分,这时表面积比原来增加了96平方厘米。

六年级圆柱、圆锥的十大知识点+练习+答案

六年级圆柱、圆锥的十大知识点+练习+答案

六年级圆柱、圆锥的十大知识点+练习+答案知识点1、点线面的关系;以及常见的立体图形的认识点的运动形成线;线的运动形成面;面的旋转形成立体图形;常见的立体图形有长方体正方体圆柱圆锥棱柱球等1.用纸片和小棒做成下面的小旗;快速旋转小棒;想象纸片旋转所形成的图形;再连一连。

1.【解析】半圆旋转形成球;长方体(正方体)旋转形成圆柱;直角三角形旋转形成圆锥;三角形和长方形组合图形旋转形成的是圆柱与圆锥的组合立体图形。

知识点2、圆柱圆锥的行程;展开图以及各部分的名称圆柱是由长方形(或正方形)旋转而成(可以由长正方形绕一条边或者一条高旋转而成)圆锥是由直角三角形绕它的一条直角边旋转而成(还可以由等腰三角形绕它底边上的高旋转而成;)圆柱的展开图:侧面可能是长方形或正方形(沿着一条高线展开);也有可能是平行四边形(不是沿着高线展开)底面是两个完全一样的圆(要求会求圆柱的侧面积和表面积)圆锥的展开图:侧面是一个扇形;底面是一个圆(不要求会求圆锥的侧面积和表面积)2.下面()图形是圆柱的展开图。

(单位:cm)2.A【解析】圆柱的展开图;侧面是长方形(或正方形)底面是两个圆;并且底面圆的周长等于长方形的长;高是长方形的宽。

三个选项中底面圆的直径是3;底面周长是3.14×3=9.42;三个选项的高都是2;所以选择A。

3.一个圆柱体的侧面是一个正方形;直径是5dm;正方形面积是_________。

3.246.49平方分米【解析】圆柱体的侧面是一个正方形;说明圆柱的底面圆的周长与圆柱的高相等。

底面圆的周长等于3.14×5=15.7(分米);即正方形的边长是15.7分米;所以面积是15.7×15.7=146.49(平方分米)。

4.用一张长4.5分米;宽2分米的长方形纸;围成一个圆柱形纸筒;它的侧面积是。

4.9平方分米【解析】圆柱形纸筒的侧面积就是长方形的面积:4.5×2=9(平方分米)。

圆柱与圆锥经典题型

圆柱与圆锥经典题型

圆柱与圆锥经典题型圆柱与圆锥经典题型随着数学学科的发展,圆柱与圆锥作为常见的几何概念,在学生的数学学习过程中经常出现。

下面将从三个角度来讲解圆柱与圆锥的经典题型。

一、圆柱体积计算圆柱的体积是指其所围成空间的大小。

计算圆柱体积主要需要了解其高度和底面积。

下面给出计算圆柱体积的公式:圆柱体积 = 底面积 ×高度其中,底面积的计算公式为:底面积= πr²r指圆柱底面圆的半径,π是一个固定的数值,约等于 3.14。

例如,如果一个圆柱的高度为5cm,底面半径为2cm,那么它的体积为:圆柱体积= πr² × h = 3.14 × 2² × 5 = 62.8因此,这个圆柱的体积为62.8立方厘米。

二、圆锥体积计算与圆柱相似,圆锥的体积也是指其所围成空间的大小。

计算圆锥体积时需要了解其高度和底面积,不同之处在于圆锥的底面为一个圆锥形状。

下面给出计算圆锥体积的公式:圆锥体积 = 1/3 ×底面积 ×高度其中,底面积的计算公式为:底面积= πr²r指圆锥底面圆的半径,π是一个固定的数值,约等于 3.14。

例如,如果一个圆锥的高度为8cm,底面半径为3cm,那么它的体积为:圆锥体积= 1/3 × πr² × h = 1/3 × 3.14 × 3² × 8 = 75.4因此,这个圆锥的体积为75.4立方厘米。

三、圆锥的表面积计算圆锥体积的计算需要了解其底面积和高度,而圆锥的表面积计算需要了解其侧面积、底面积和母线的长度。

圆锥的侧面积公式为:侧面积 = 1/2 ×母线长度 ×侧面直角三角形的斜边长度其中,母线在圆锥上表示底面圆的一条直径,侧面直角三角形的斜边长度为:侧面直角三角形的斜边长度= √底面半径² + 高度²例如,如果一个圆锥的高度为10cm,底面半径为4cm,那么它的侧面积为:斜边长度= √4²+10² = 10.8母线长度等于底面半径的两倍,即8cm,因此:侧面积 = 1/2 × 8 × 10.8 = 43.2底面积如前所述,直接用圆锥底面积公式计算即可。

北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题

北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题

北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题(赶紧收藏)其他单元陆续更新……第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。

2.面的旋转:圆柱(1)圆柱是由是由长方形绕长或宽旋转360度得到的立体图形,这个长方形的长和宽就是圆柱体的底面半径和高,沿高线切割后的切面是长方形;如果由正方形旋转则得到的圆柱体底面半径和高相等,沿高线切割后的切面是正方形。

(2)基本特征:a、圆柱有三个面,2个底面+1个侧面;圆柱的两个底面是半径相等的(或完全相等的)两个圆,侧面是一个曲面。

b、圆柱上下两个底面间的距离叫做圆柱的高。

c、圆柱有无数条高,且高的长度都相等。

圆锥(1)圆锥是由直角三角形绕一条直角边旋转360度得到的立体图形,围绕旋转的直角边是圆锥的高,另一条直角边是圆锥的底面半径;沿高线切割后的切面是等腰三角形。

(2)基本特征:a、圆锥有两个面,1个底面+1个侧面;圆锥的底面是一个圆,和底面相对的位置是顶点,侧面是一个曲面,展开是一个扇形。

b、圆锥顶点到底面圆心的距离是圆锥的高。

c、圆锥只有一条高。

二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。

长方形的长相当于圆柱的底面周长,宽相当于圆柱的高;如果展开是一个正方形则说明圆柱的底面周长和高相等。

(如果不是沿高剪开,有可能还会是平行四边形或其他不规则图形,但都可以剪拼成长方形或正方形)2、.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。

3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh4、圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或 S表=2πrh+2πr25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。

【六年级下册数学】 圆柱与圆锥 常考题型解题思路

【六年级下册数学】 圆柱与圆锥 常考题型解题思路

【六年级下册数学】圆柱与圆锥•常考题型解题思路(1)直接利用公式计算体积V圆锥=13Sh=13πr2hV圆柱=Sh=πr2h(2)组合图形体积计算:圆柱上接圆锥V=13πr2h圆锥+πr2h圆柱(3)空心圆柱体积计算解:V=S大圆底面积h-S小圆底面积h=(S大圆底面积-S小圆底面积)h=π(R²-r²)h(4)等底等高的圆柱和圆锥的体积关系以及拓展问题结论一:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍。

结论二:圆柱和圆锥的体积与高分别相等,圆锥底面积是圆柱底面积的3倍。

结论三:圆柱和圆锥的体积与底面积分别相等,圆锥的高是圆柱的高的3倍(5)判断是否刚好组成一个圆柱(圆柱的长等于底面圆的周长)举例:用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上半径多少厘米的圆形铁片正好可以做成圆柱形容器?解:25.12÷3.14÷2=4(厘米)或18.84÷3.14÷2=3(厘米)(6)求包装圆柱时用的彩带长度,有打结处要加上举例:求右图中彩带的长度解:长度=8个高+6个直径+打结处(7)直接运用公式求圆柱表面积举例:求右图表面积解:S表面积=Ch+2πr2 =πdh+2πr2=2πrh+2πr2=2πr(h+r)=C (h+r)(8)无盖圆柱(一个地面+一个侧面):圆柱游泳池、无盖缸举例:圆柱形的一个水池,在池壁和底面贴上瓷砖,池底直径20米,池深1.2米,贴瓷砖的面积是多少平方米。

解:S表面积=πdh+πr2=20×1.2π+π×102=124π=389.36(㎡)(9)圆柱通风管(一个侧面):烟囱、压路机举例1:大厅有20根底面半径为0.3米,高6米的圆柱形柱子,每平方米用油漆1千克,刷这些柱子要用油漆多少千克?解:S侧=2πrh×根数×1=2×3.14×0.3×6×20×1=226.08(千克) (10)组合图形表面积:多个大小不一的圆柱叠放、沿着高切的半圆柱解:2πR2+S小侧面+S中侧面+S大侧面πr2+S小侧面的一半+ dh(11)侧面积的倍数变化问题举例:圆柱的底面直径扩大到原来的6倍,高缩小到原来的1,则3圆柱的侧面积如何变化?解:S侧=πdh,侧面积扩大成原来的2倍。

【精品】最新人教版六年级下册第三单元《圆柱与圆锥》题型整理+常考题集训(提升)(答案版)

【精品】最新人教版六年级下册第三单元《圆柱与圆锥》题型整理+常考题集训(提升)(答案版)

第三章《圆柱和圆锥》常考题集训题型:侧面展开图1.(2019春•江城区期中)把一个高是9.42厘米的圆柱的侧面展开,得到一个正方形,则这个圆柱的底面半径是 厘米.【解析】9.42 3.142÷÷32=÷ 1.5=(厘米),答:这个圆柱的底面半径是1.5厘米.故答案为:1.5.2.(2018春•盐城期中)一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面直径的比=_______. 【解析】设圆柱的底面直径为d ,则::1d d ππ=.答:这个圆柱的高与底面直径的比等于:1π.3.(2019春•兴化市月考)如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积. 【解析】设圆柱的底面直径为x 分米,3.1416.56x x +=4.1416.56x = 4x =.23.14(42)(42)⨯÷⨯⨯ 3.1448=⨯⨯12.568=⨯100.48=(立方分米), 答:体积是100.48立方分米.题型:倍数变化1.(2019•长沙模拟)一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的12,圆柱的侧面积( C ) A .扩大到原来的2倍 B .缩小到原来的12C .不变D .扩大到原来的3倍2.(2019•海珠区模拟)一个圆柱的底面半径扩大到原来的3倍,高不变,则它的体积将扩大到原来的______倍;如果圆柱的底面半径不变,高扩大到原来的3倍,则它的体积将扩大到原来的______倍. 【解析】9 33. 一个圆锥的底面周长扩大到原来的2倍,高不变,它的体积就扩大到原来的______倍; 44.圆锥体与圆柱体底面积的比是3:5,高的比是2:1,它们的体积比=_________。

2:5题型:高变化1.(2019春•莲湖区期中)有一个圆柱,底面直径是10厘米,若高增加4厘米,则侧面积增加( )平方厘米. A .31.4B .62.8C .125.6【解析】3.14104⨯⨯ 3.1440=⨯125.6=(平方厘米).答:侧面积增加125.6平方厘米.故选:C .2.(2019•防城港模拟)一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的表面积就增加125.6平方厘米,原来这个圆柱的体积是多少平方厘米?【解析】圆柱的底面周长:125.6262.8÷=(厘米);底面积23.14(62.8 3.142)⨯÷÷23.1410=⨯ 3.14100=⨯314=(平方厘米);体积:314×10=3140(立方厘米)题型:圆柱与圆锥的关系1.(2019春•卢龙县期末)长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是( D ) A .长方体、正方体和圆柱的体积相等 B .正方体体积是圆锥体积的3倍 C .圆锥体积是圆柱体积的13D .长方体、正方体和圆柱的表面积相等2.(2019•株洲模拟)活动课上.淘气和笑笑用同样大小的一块橡皮泥捏图形.淘气捏成一个圆柱体;笑笑捏成同样高的一个圆锥.下面说法正确的有( )个. D ②①橡皮泥的表面积没变;②橡皮泥的体积没变;③圆柱是圆锥底面积的3倍;④圆柱和圆锥底面半径的比是1:3 A .4B .3C .2D .13.(2019春•皇姑区期末)用24个铁圆锥,可以熔铸成( )个等底等高的铁圆柱. A .12B .8C .6D .4【解析】2438÷=(个),答:可以熔铸成8个等底等高的圆柱.故选:B .4.(2019春•宁津县期中)一个圆柱高6cm ,一个圆锥与它底面积相等,体积也相等,圆锥的高是( C ) A .2cmB .6cmC .18cm5.(2019•永州模拟)一个圆锥和一个圆柱的高相等,若要使体积一样,圆锥底面积应是圆柱底面积的( ) A .3倍 B .13C .π倍D .1π故选:A .6.(2019•益阳模拟)一个圆柱与一个圆锥等底等高,它们的体积之和是380dm ,圆锥的体积是( ) A .315dm B .320dm C .330dm D .345dm故选:B .7.(2019•保定模拟)一个圆柱和一个圆锥等底等高,体积相差3100dm ,圆锥的体积是( 3)dm A .50B .100C .150D .1003【解析】3100250()dm ÷=答:圆锥的体积是350dm .故选:A . 8.(2018秋•肃州区期末)把一个圆柱形木料削成一个最大的圆锥,削掉的体积是圆柱体积的 . 【答案】239.(2019•保定模拟)把一个圆柱削成一个最大的圆锥体,已知削去的部分是18方分米,这个圆柱体的体积是 . 2710.(2019•保定模拟)小明做了一个圆柱体容器和几个圆锥体容器,尺寸如图所示(单位:)cm ,将圆柱体内的水倒入( B )圆锥体内,正好倒满.A .B .C .故选:B .11.(2019•保定模拟)把一个高15厘米的圆锥形容器装满水,倒入与它等底等高的圆柱形玻璃容器中,水的高度是( )厘米. A .20B .15C .10D .5【解析】11553⨯=(厘米)答:水的高是5厘米.故选:D .12.(2019•鄞州区)李明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器.当水全部倒完后,发现从圆锥形容器内溢出36.2毫升水.这时,圆锥形容器内还有水( )毫升. A .36.2B .54.3C .18.1D .108.6【解析】36.2(31)÷-36.22=÷18.1=(毫升),答:圆锥形容器内还有水18.1毫升.故选:C .题型:等积变换1.(2019春•越秀区期末)一块底面半径6cm ,高12cm 的圆锥形钢材,把它熔铸成一根横截面半径是1cm 的圆柱形钢条,这根钢条长多少厘米?【解答】解;221 3.14612(3.141)3⨯⨯⨯÷⨯13.143612 3.143=⨯⨯⨯÷452.16 3.14=÷144=(厘米) 答:这根钢条长144厘米.2.六年的小学生活即将结束,洋洋计划星期天请5名同学到家中商量去养老院参加义务劳动的事。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱圆锥常考题型归纳
一、圆柱
1. 圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。

圆柱也可以由长方形卷曲而得到。

(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。


2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。

3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22S R π=增。

b.竖切(过直径):切面是长方形(如果h=2R ,切面为正方形),该长
方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的
面积,即S 增=4Rh
4. 圆柱的侧面展开图:a. 沿着高展开,展开图形是长方形,如果2h R π=,展开图形为
正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

c.无论如何展开都得不到梯形
5、圆柱的相关计算公式:
a .底面积:2=S R π底
b .底面周长:2C d r ππ==
c .侧面积:2S Rh π=侧
d .表面积 :S=2S 底+S 侧 =222R Rh ππ+
e .体积 : 2
V R h π=
考试常见题型:a. 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
b. 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
c. 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
d. 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,
e. 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的切割:a.横切:切面是圆
b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高
是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,
即S 增=2Rh
4、圆锥的相关计算公式a. 底面积:2=S R
π底
b. 底面周长:2C d r ππ==
c. 体积: 2/3V R h π=
考试常见题型:a. 已知圆锥的底面积和高,求体积,底面周长
b. 已知圆锥的底面周长和高,求圆锥的体积,底面积
c. 已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

三、圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差23
sh 。

5、圆柱与圆锥等高,半径之比为:a b ,则体积之比为223:a b ,
6、圆柱与圆锥等底,高之比为:a b ,则体积之比为3:a b 。

题型总结
1、直接利用公式:分析清楚求的的是表面积,侧面积还是底面积以及体积
半径变化导致底面周长,侧面积,底面积,体积的变化。

两个圆柱(或两个圆锥)半径,底面积,底面周长,侧面积,表面积,体
积之比。

2、圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
3、横截面的问题
4、浸水体积问题(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体。

5、等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3.
具体题型
一,公式转换
1.基本公式:
圆柱:体积: 圆锥:体积:
侧面积: 底面积:
底面积: 底面周长:
表面积:
底面周长:
2.基本题型
1、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样
做成的铁桶的容积最大是多少?
2、在一个正方体纸盒中恰好能放入一个体积为282.6立方厘米的圆柱体卷纸,求这个正方体的容积。

3、求下面图形的侧面积和体积。

(单位:cm)
4、甲、乙两个体积相等的圆柱,两个圆柱的底面半径比为3:2,乙比甲高25厘米,两个圆柱各高多少厘米?
5、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
二,切割问题,表面积增加或减少
1.基本公式:增加的面数+每个面的面积= 增加的表面积
切割面(增加的面)=底面
2.基本题型
1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?
2,把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?
3、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。

三.放入或拿出物体,水面上升或下降。

1. 基本公式:水面上升(下降)的高度×容器的底面积=物体的体积
溢出的水的体积=物体的体积
2.基本题型:
1、一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?
2、在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?
四.高增加或减少,侧面积增加或减少问题
1.关键点:A.画出展开图
B.圆柱底面周长=长方形的长圆柱高=长方形的宽
C.当圆柱底面周长=圆柱高时,圆柱展开是一个正方形
2.基本题型:
1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?
2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?
五,抓住体积不变类题型
1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等
2.基本题型:
1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?
六,圆锥圆柱的转换关系
1.基本关系:等底等高:圆柱体积=3圆锥体积
等体积:圆锥:底面积(倍)×高(倍)=3倍
1、圆柱圆锥等底等高,体积相差3厘米,求圆柱圆锥体积各是多少?。

相关文档
最新文档