电力变压器实验
35KV电力变压器实验报告
工程名称: 山西临县华烨煤业有限公司35KV变电站改造 标号: 1#主变
铭
牌
型号
SZ11-12500/35
额定容量
12500 KVA
额定电压
35±3×2.5%/10.5KV
频率
50 Hz
连结组标号
YNd11
冷却方式
ONAN
出产编号
2013T058-2
生产日期
2013.7
绕组温升
65K
绝缘电阻及吸收比测试(MΩ)
R60S
R15S
K
温度℃
仪器电压
结论
HV-LV及地
60000
35000
1.71
—5
2500V
合格
LV-HV及地
30000
20000
1.5
—5
2500V
合格
铁心绝缘
30000
\
\
—5
2500V
合格
四.直流泄漏测试
试验部位
电压(KV)
时间(min)
泄漏电流(uA)
温度℃
结论
高压侧
0.21
0.21
合格
2
3.500
0.09
0.09
0.09
合格
3
3.417
-0.02
-0.03
-0.03
合格
4
3.333
0.13
0.13
0.13
合格
5
3.250
0.02
0.01
0.02
合格
6
3.167
-0.12
-0.12
-0.12
合格
7
电力变压器试验
主讲 许艳妮
变压器在安装后,投入运行前要进行交接试验,变压器大修后 应进行大修试验,变压器每年要进行预防性试验。
变压器交接试验和大修实验项目
1、铁心绝缘电阻测定; 2、变压器油试验;(交接试验应做全项目油试验;大修试验应做耐压试验) 3、线圈直流电阻的测定; 4、测量各分接头的电压比;(大修试验此项不做) 5、线圈连接组别的测定; 6、测量线圈的绝缘电阻值及吸收比; 7、线圈连同套管的介质损耗因数值的测量; 8、工频耐压试验; 9、空载试验; 10、短路试验; 11、额定电压下的冲击合闸试验。
值的70%,大修后的测试结果换算至同一温度下不 应低于上次测试值的70%。 延长测试时间 即进行吸收比和极化指数的测量。 常规参考法(见附表)
当缺乏原始数据时,油侵电力变压器绝缘电阻允许值参考表(单位:MΩ)
高压绕组
温 度 (℃)
电压等级 10 20 30 40 50 60 70 80
3—10KV 450 300 200 130 90 60 40 25
解:温度差K=t2-t1=27-20=7℃,查上表得: A=1.2+(1.5-1.2)/5×2=1.32,
换算到20℃时的绝缘电阻值为:
R20=Rt1×A=100×1.32=132(MΩ)。
兆欧表的使用方法及注意事项
将兆欧表水平放置,首先检查其是否工作 正常,开启电源开关“ON”,按下高压启 停键,使L和E两接线桩瞬时碰触,指针应 迅速指零。注意L和E碰触时间不得过长, 否则有可能损坏兆欧表;
温度
差K
5
10 15 20 25 30 35 40 45 50 55
60
换算
系数A
1.2
1.5
1.8
电力变压器的试验程序及试验标准
为规范本公司的成品试验,特别定本标准。
本标准主要根据下述标准制定:GB 1094。
1—1996 电力变压器第1部分总则GB 1094.2-1996 电力变压器第2部分温升GB 1094。
3—2003 变压器第3部分绝缘水平和绝缘试验GB 1094.5—2008 变压器第5部分承受短路的能力GB 1094.11—2007 电力变压器第11部分干式变压器GB/T 6451-2008 三相油浸式电力变压器技术参数和要求GB/T 10228—1997 干式电力变压器技术参数和要求JB/T 3837-1996 变压器类产品型号编制方法GB 7595—87 运行中变压器油质量标准JB/T 10088—2004 6kV—500kV级电力变压器声级3、试验程序和判定标准。
⒊⒈绕组直流电阻的测量(油变器身进炉烘干前也要测试该项目):对于配电变压器,绕组直流电压电阻不平衡率:相为不大于4%,线为不大于2%;对于电力变压器,绕组直流电阻不平衡率:相(有中性点引出时)为不大于2%,线(无中性点引出时)为不大于1%。
注1:绕组直流电阻不平衡率应以三相实测最大值减最小值作分子,三相实测平均值作分母计算。
注2:对所有引出的相应端子间的电阻值均应进行测量比较。
⒊⒉空载电压比测量和联结组标号的检定(油变可在器身进炉烘干前测试):每个分接都应进行电压比测量,各分接电压比的允许测量误差为:实际短路阻抗的±1/10,但不超过±0.5%。
在测量电压比时,同时应检定三相变压器的联结组标号是否正确及单相变压器的极性. ⒊⒊绝缘电阻的测量测量变压器的绝缘电阻通常利用2500V或5000V的兆欧表,测量时:应以约每分钟120转的速度摇动兆欧表1分钟,此时读取的数值即为绝缘电阻值。
对双绕组变压器测量绝缘电阻的部位有:a、高压绕组(接火线)对低压绕组和地;其绝缘电阻值应不小于1000(MΩ)b、低压绕组(接火线)对高压绕组和地;其绝缘电阻值应不小于1000(MΩ)c、高压和低压绕组(接火线)对地。
电力变压器试验记录
电力变压器试验记录1.试验目的:检验电力变压器的技术性能,确认其工作电压范围、负载能力、绝缘性能等是否符合标准要求。
2.试验设备:(1)变压器试验装置:包括高压试验变压器、负载变压器、电源(或发电机)、恒压器、自动电压调节器、示功器和高压电源装置等。
(2)绝缘检测仪器:包括绝缘电阻测试仪、绝缘电桥、电荷率测试装置等。
3.试验内容:(1)工频耐压试验:将试验变压器的一侧高压绕组接入高压电源,另一侧低压绕组接入电阻负载,逐渐递增输入电压,测试变压器在额定频率下的耐压性能。
(2)绝缘电阻测试:使用绝缘电阻测试仪,对试验变压器的绝缘电阻进行测试,以确认绝缘性能是否达到标准要求。
(3)电压调整范围测试:通过调节输入电源的电压,测试变压器的调整范围和调整性能。
(4)负载承载能力测试:通过逐渐增加负载电流,测试变压器的负载能力和温升情况。
(5)零序阻抗测试:通过对变压器三相绕组的相间短路试验,得出变压器的零序阻抗特性,以评估变压器在发生故障时的抗干扰能力。
4.试验步骤:(1)首先进行工频耐压试验,根据标准要求,逐渐递增输入电压,观察试验变压器的表现情况,记录通过电压和泄漏电流值。
(2)绝缘电阻测试仪对试验变压器进行绝缘电阻测试,根据标准要求记录电阻值和测试时间。
(3)进行电压调整范围测试,通过调节输入电源的电压,观察变压器输出电压的调整情况,记录电压调整范围和调整时间。
(4)逐渐增加负载电流,测试变压器的负载能力和温升情况,记录负载电流值和变压器温升值。
(5)对变压器进行零序阻抗测试,记录三相绕组的相间短路电流值,计算得出变压器的零序阻抗值。
5.试验结果分析:根据试验数据,对变压器的技术性能进行评估和分析。
确认耐压性能、绝缘性能、调整范围、负载能力和零序阻抗等是否符合标准要求。
如若发现不合格项,应进一步分析原因并进行改进措施。
6.试验结论:根据试验结果和分析,给出电力变压器的性能评估结论,并作出是否符合标准要求的判断。
单相变压器实验报告(二)2024
单相变压器实验报告(二)引言概述:在本次实验中,我们继续研究单相变压器的性能和特性。
通过实验数据的收集和分析,我们将深入了解变压器的工作原理以及其在电力系统中的应用。
本报告将按照以下5个大点来进行阐述。
正文:1. 变压器参数测量和计算1.1 变压器的额定电压和额定电流测量1.2 变压器的变比测量和计算1.3 变压器的电阻测量和计算1.4 变压器的损耗测量和计算1.5 变压器的效率测量和计算2. 变压器的短路试验和开路试验2.1 短路试验原理和步骤2.2 短路试验数据收集和分析2.3 开路试验原理和步骤2.4 开路试验数据收集和分析2.5 试验结果的比对和总结3. 变压器的负载特性实验3.1 负载特性实验装置和原理3.2 负载特性实验数据收集和分析3.3 负载特性实验结果讨论3.4 负载特性实验应用和意义3.5 实验结果的评价和改进方向4. 单相变压器的并联应用4.1 并联变压器的原理和优点4.2 并联变压器的应用领域4.3 并联变压器的控制策略4.4 并联变压器参数的设计和计算4.5 并联变压器的实际案例分析5. 变压器保护与检修5.1 变压器保护装置和原理5.2 变压器故障诊断和排除5.3 变压器的维护和检修方法5.4 变压器保护与安全注意事项5.5 变压器性能监测和评估方法总结:通过本次实验,我们对单相变压器的性能和特性有了更深入的了解。
通过测量和计算各种参数,我们可以准确评估变压器的性能。
同时,在短路试验和开路试验中,我们比对了实验数据并给出了结论。
负载特性实验使我们能更好地了解变压器的工作情况。
并联变压器的应用领域也得到了讨论,并分析了一些实际案例。
最后,我们还介绍了变压器的保护与检修方法。
通过这些实验,我们将能更好地理解和应用单相变压器。
电力变压器实验报告
电力变压器实验报告电力变压器实验报告引言:电力变压器是电力系统中常见的重要设备之一,用于将交流电能从一级变压器传输到另一级变压器,以满足不同电压等级的需求。
本次实验旨在通过对电力变压器的实际操作,加深对其工作原理和性能的理解。
一、实验目的:1. 理解电力变压器的基本原理;2. 掌握电力变压器的基本参数测量方法;3. 分析电力变压器的效率和功率因数。
二、实验仪器与材料:1. 电力变压器实验装置;2. 电压表、电流表、功率表;3. 交流电源。
三、实验步骤与结果分析:1. 实验前准备:在开始实验之前,需要检查实验装置的连接是否牢固,电源是否正常接地。
同时,确认所需测量仪器的准确性和可靠性。
2. 实验步骤:a. 将交流电源连接到实验装置的输入端,调整电源电压为指定值;b. 将电压表和电流表分别连接到变压器的输入端和输出端,记录输入电压和输出电流的数值;c. 通过调整变压器的输出电压,记录不同输出电压下的输出电流数值;d. 根据测量结果计算变压器的转换效率和功率因数。
3. 结果分析:通过实验测量得到的数据,可以计算出变压器的转换效率和功率因数。
转换效率是指变压器输出功率与输入功率之比,反映了变压器的能量转换效率。
功率因数是指变压器输出功率与输入视在功率之比,反映了变压器的功率利用效率。
四、实验心得与体会:本次实验通过实际操作和数据测量,加深了对电力变压器工作原理和性能的理解。
在实验过程中,我们需要重视实验仪器的准确性和可靠性,以确保测量结果的准确性。
同时,对于实验结果的分析和计算也需要仔细思考和推导,以得出准确的结论。
电力变压器作为电力系统中不可或缺的重要设备,其性能的稳定和可靠性对电力系统的正常运行起着至关重要的作用。
通过本次实验,我们更加深入地了解了电力变压器的工作原理和性能,为今后的学习和研究打下了坚实的基础。
总结:电力变压器实验是电力工程专业学生必修的实验之一,通过实际操作和数据测量,加深了对电力变压器的理解。
变压器试验记录范文
变压器试验记录范文一、试验目的:变压器是电力系统中的重要设备,为了保证其正常运行和使用,需要进行各项试验,以确保其安全性和可靠性。
本次试验的目的是对变压器的各项性能进行全面检测和评估,包括空载试验、短路试验、过载试验等。
二、试验设备及试验方法:1.试验设备:变压器、电流互感器、电压互感器、负载箱、电能表等。
2.试验方法:根据《变压器试验导则》和《变压器试验规范》,对变压器的各项性能进行逐项检测和评估。
三、试验内容及结果:1.空载试验:a)试验目的:测量变压器的空载电流、空载损耗和空载电压。
b)试验过程:逐步升高变压器的电压至额定值,测量电流、损耗和电压。
c)试验结果:变压器的空载电流为I0=5A,空载损耗为P0=1500W,空载电压为U0=220V。
2.短路试验:a)试验目的:测量变压器的短路电流和短路损耗。
b)试验过程:将变压器的低压侧短接,逐步升高变压器的电压至额定值,测量电流和损耗。
c)试验结果:变压器的短路电流为ISC=50A,短路损耗为PSC=3000W。
3.过载试验:a)试验目的:评估变压器在额定负载条件下的可靠性和稳定性。
b)试验过程:逐步升高变压器的负载至额定负载,维持一段时间后,记录电流、损耗和温升情况。
c)试验结果:按照额定负载的要求,变压器保持稳定,没有出现过载现象。
4.绝缘电阻试验:a)试验目的:检测变压器的绝缘性能。
b)试验过程:使用绝缘电阻测试仪对变压器的绝缘电阻进行测量。
c)试验结果:变压器的绝缘电阻大于100MΩ,符合设计要求。
5.波形畸变试验:a)试验目的:评估变压器的负载电流的波形畸变情况。
b)试验过程:使用示波器测量变压器的负载电流波形,并计算其总畸变率。
c)试验结果:变压器的负载电流的总畸变率小于5%,符合电力系统的要求。
四、试验结论:根据以上试验结果1.变压器在空载状态下,具有适当的电压调整能力和较低的空载损耗。
2.变压器在短路状态下,具有适当的电流限制能力和较低的短路损耗。
电力变压器常规实验
第一节试验前准备一、将变压器油箱、铁心及夹件必须可靠接地。
二、开关检查: 检查开关档位及操作性能, 无载开关检查切换是否灵活, 有载开关先检查操作机构档位是否和变压器顶上开关档位一致, 档位圈数合格, 电动操作第一次到开关极限位置时, 必须用手动操作, 必须先检查开关的机械限位是否正常。
三、电流互感器所有带线圈端子必须短接并接地, 套管末屏必须可靠接地。
四、标准引用: 《DLT-596-2005电力设备预防性试验规程》、《GB 50150-2006电气装置安装工程电气设备交接试验标准》、JB/T501-2006《电力变压器试验导则》第二节变比试验一、电压比试验目的:电压比试验是验证各相应接头电压比与铭牌相比不应有明显差别且符合规律, 接线组别与设计要求、铭牌上标记与外壳上符号相符。
二、测量方法:试验前按照仪器接线端子指示接线, 仪器高压侧接线柱上的黄、绿、红三根线分别接至变压器高压侧 A.B.C上, 低压侧接线柱上的黄、绿、红三根线分别接至被测变压器低压侧a、b、c上。
试验设备应安全接地。
接好220V电源线, 闭合仪器电源开关, 选择接线组别, 输入变比值及分接误差等。
三、注意事项:(1)接220V电源时注意电源线无短路、开路等不安全因素, 以防电源合闸时伤人。
(2)高、低压测量线不能接反, 否则将产生高压, 危及人身及仪器安全。
四、试验标准:额定分节小于±0.5%, 其余分节无协议要求小于±1%, 现场验收试验应与出厂值无明显变化。
检修试验应在分接开关引线拆装后或更换绕组后或在有必要时, 各相应接头的变比与名牌相比, 不应有明显差别, 且符合规律, 与历年数值比较应无明显变化。
第三节直流电阻测试一、试验目的:直流电阻测量时检查线圈内部导线、引线与线圈焊接质量, 线圈所用导线的规格是否符合设计要求, 以及分节开关、套管等载流部分的接触是否良好, 三相电阻是否平衡, 并为变压器的出厂报告提供最终数据。
最新变压器实验报告
最新变压器实验报告一、实验目的本次实验旨在加深对变压器工作原理的理解,掌握其基本结构和性能特点,并通过实际操作验证变压器的变压效果和能量转换效率。
二、实验设备与材料1. 单相变压器一台2. 交流电源3. 电压表、电流表4. 负载电阻5. 绝缘电阻测试仪6. 万用表三、实验步骤1. 首先,检查变压器的外观,确认无明显损坏,并用绝缘电阻测试仪检测其绝缘性能。
2. 将变压器的输入端接入交流电源,调整电源电压至额定值。
3. 使用万用表测量变压器的输入电压和输出电压,记录数据。
4. 将电压表和电流表分别接入变压器的输出端,测量空载电压和电流。
5. 逐步增加负载电阻,记录不同负载下变压器的输出电压和电流,以及输入电流。
6. 根据测量数据计算变压器的效率,并绘制效率曲线。
7. 最后,断开电源,对变压器进行外观检查,确保设备完好无损。
四、实验数据与分析1. 记录实验中测量的各项数据,包括输入电压、输出电压、输入电流、输出电流等。
2. 分析变压器在不同负载下的电压变化情况,验证其变压效果。
3. 根据输入功率和输出功率计算变压器的效率,并分析效率与负载的关系。
4. 通过效率曲线,找出变压器的最佳工作点。
五、实验结论通过本次实验,我们验证了变压器的变压原理和能量转换效率,了解了变压器在不同负载条件下的性能变化。
实验结果表明,变压器能够在一定的负载范围内有效地进行电压转换,且效率与负载大小有关。
此外,实验过程中未发现设备异常,证明了变压器的可靠性和稳定性。
六、建议与改进1. 在未来实验中,可以尝试使用不同类型的变压器,比如三相变压器,以拓宽对变压器原理和应用的理解。
2. 增加对变压器温升的监测,以评估其在长时间工作状态下的性能。
3. 进一步研究变压器的损耗组成,以指导实际应用中的能效优化。
35kV变压器的实验项目
35kV变电站的主变运行前需要进行的试验是交接试验,所以要按GB50150-2006《电气装置安装工程电气设备交接试验标准》中对“电力变压器”交接试验的要求进行;其主要试验项目分为绝缘试验和特性试验两类:
绝缘试验项目主要有:
(1)测量绕组连同套管的绝缘电阻和吸收比;
(2)测量与铁芯绝缘的各紧固件(连接片可拆开者)及铁芯(有外引接地线的)绝缘电阻;(3)测量绕组连同套管的介质损耗角正切值tanδ;
(4)绝缘油试验;
(5)测量绕组连同套管的直流泄漏电流;
(6)绕组连同套管的交流耐压试验;
特性试验的主要项目有:
(1)测量绕组连同套管的直流电阻;
(3)检查所有分接头的电压比;
(4)检查变压器的三相接线组别和单相变压器引出线的极性
(6)空载及短路试验,检查铭牌参数的正确
当然还有一些其他试验,但现场人们基本都不进行,如噪音测量等。
单相变压器实验报告
单相变压器实验报告实验室中,我们进行了一次单相变压器实验。
变压器是一种把电压从一个电路传到另一个电路的电子设备。
变压器有两个或以上的线圈,它们都被放在一个镶嵌于铁芯中的磁场中。
在实验中,我们用线圈的比值来改变电压。
以下是我们收集到的实验数据和结论。
实验目的本次实验的目的是学习单相变压器的工作原理,并掌握变压器的基本特性和参数,如变比、电压、电流等。
实验步骤和材料所需材料:单相变压器、两个万用表、电源、调压器、变压器接线板1. 将电源的输出电压设为15伏特。
2. 将变压器的两个线圈进行接线,将输入端的线圈接在电源上,输出端的线圈保持开放状态。
3. 测量输入电阻,并测量输入端电流和输出端电流。
4. 测量输入端和输出端的电压,并计算输出电压与输入电压的比值。
实验结果实验中,我们测量了变压器的变比、电流和电压等参数。
以下是我们所收集到的实验数据:- 变比:20:1- 输入电阻:100欧姆- 输入电流:0.15安培- 输出端电流:7.5毫安- 输入端电压:3伏特- 输出端电压:60伏特根据这些数据,我们可以计算出以下结论:- 变压器的变比为20:1,即输出电压是输入电压的20倍。
- 输入电阻为100欧姆,表明输入电路具有较低的阻抗。
- 输入电流为0.15安培,表明输入电路的电流较小。
- 输出端电流为7.5毫安,表明输出电路的电流较小。
- 由于变压器没有能量损失,输出电压是输入电压的20倍,因此输出端电压为60伏特。
结论通过本次实验,我们可以得出以下结论:- 单相变压器可以将输入电压变换为另一级输出电压。
- 变压器的变比决定了输出电压与输入电压之间的比值。
- 输入电路的电阻和电流决定了变压器的效率。
- 利用变压器可以实现电能的输送和转换。
总结本次实验展示了单项变压器的基本特性和参数。
变压器在现代电力系统中起着重要的作用,可用于调节电压和电流,以满足各种不同的电力需求。
通过本次实验,我们深入了解了变压器的工作原理和性能,并将这些知识应用于实际的电路中。
三相变压器实验报告
三相变压器实验报告一、实验目的本实验旨在通过对三相变压器的实验研究,探究其工作原理和性能特点,加深对三相电力系统的理解。
二、实验原理三相变压器是一种常用的电力变压器,由三个互相平衡的单相变压器组成。
其工作原理是利用互感作用,将高压电能转化为低压电能,或者将低压电能转化为高压电能。
三、实验装置和仪器本实验所用的实验装置和仪器有:三相变压器、电压表、电流表、电阻箱等。
四、实验步骤1. 连接实验电路:将三相变压器的输入端与电源相连,输出端与负载相连。
同时,将电压表和电流表分别连接在输入端和输出端。
2. 调节电源电压:根据实验要求,调节电源电压为所需的输入电压。
3. 测量电压和电流:分别使用电压表和电流表测量输入端和输出端的电压和电流值。
4. 记录数据:将测得的电压和电流值记录下来,包括输入端的电压和电流,输出端的电压和电流。
5. 分析数据:根据记录的数据,计算得到输入端和输出端的功率,以及变压器的效率。
6. 结果讨论:根据实验数据和计算结果,对三相变压器的性能特点进行讨论。
五、实验结果与讨论通过实验测得的数据和计算得到的结果,可以对三相变压器的性能特点进行讨论。
根据输入端和输出端的电压和电流值,可以计算得到变压器的变比。
通过计算得到的功率和效率值,可以评估变压器的工作效果。
同时,还可以讨论变压器在不同负载情况下的性能表现,例如在不同负载下的电压稳定性、电流稳定性等。
六、实验结论通过本次实验,我们对三相变压器的工作原理和性能特点有了更深入的了解。
通过测量和计算,我们得到了输入端和输出端的电压、电流、功率和效率等数据,并进行了相应的分析和讨论。
实验结果表明,三相变压器具有较好的电压稳定性和功率传递效率,适用于电力系统中的电能转换和分配。
七、实验感想通过本次实验,我对三相变压器的原理和性能有了更深入的了解。
实验过程中,我学会了如何正确连接电路和使用实验仪器,并能够准确测量和记录相关数据。
通过数据分析和讨论,我对三相变压器的工作特点有了更清晰的认识。
10KV电力变压器试验作业指导书1
10KV电力变压器试验作业指导书1范围本作业指导书适用于10kV及以下油浸式变压器, 其目的是检验变压器的绝缘性能是否满足有关标准的要求, 规定了交接验收引用标准、仪器设备要求、作业程序、试验结果判断方法和试验注意事项等。
制定本作业指导书的目的是规范操作、保证试验结果的准确性, 为设备运行、监督、检修提供依据。
2规范性引用文件下列文件中的条款通过本作业指导书的引用而成为本作业指导书的条款。
凡是注日期的引用文件, 其随后所有的修改单或修订版均不适用于本作业指导书,然而, 鼓励根据本作业指导书达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件, 其最新版本适用于本作业指导书。
GB 50150 —2006(电气设备交接试验标准)GB 1094.3(电力变压器)交流耐压试验属于破坏性试验, 因此必须在其他绝缘试验都合格的基础上进行,以免造成不必要的绝缘击穿和损坏事故。
电力变压器绕组绝缘经过交流耐压试验合格后, 就可以投运。
3试验项目电力变压器的绝缘试验包括以下试验项目:a) 绝缘电阻实验b) 交流耐压。
4安全措施a) 保证人身和设备安全, 要求必须在试验现场周围设围栏, 被试电缆两端均应专人监护, 且通信畅通, 负责升压的人要随时注意周围的情况, 一旦发现异常应立刻断开电源停止试验, 查明原因并排除后方可继续试验。
b) 在试验过程中, 如果发现电压表指针摆动很大, 电流表指示急剧增加, 发出绝缘烧焦气味或冒烟或发生响声等异常现象时, 应立即降低电压, 断开电源, 被试品进行接地放电后再对其进行检查。
c) 进行交流耐压试验后, 应对变压器充分放电。
d) 工作中如需使用梯子等登高工具时, 应做好防止高空坠落的安全措施。
5工作程序5.1 绝缘电阻试验5.1.1 设备清单和要求a)干湿温度计;b)2500V或5000V兆欧表1块。
5.1.2作业程序5.1.2.1测试方法测量变压器的绝缘电阻是检查其绝缘状态的最基本和最简便的方法。
电力变压器实验手册
油浸式电力变压器密封试验1、适用范围油浸式电力变压器。
2.试验种类例行试验。
3.试验依据GB /6451—1999《三相油浸式电力变压器技术参数和要求》JB/T501—1991《电力变压器试验导则》产品技术条件4、测量仪器压力表5、一般要求油箱密封试验应在装配完毕的产品上进行,对于可拆卸的储油柜、净油器、散热器或冷却器可单独进行。
对于拆卸运输的变压器一般进行两次密封试验,第一次是在变压器装配完毕,且装全所有充油组件后进行二次是在变压器拆卸外部组部件、在运输状态下对变压器本体进行的。
5、2试验目的检测变压器油箱和充油组部件本体及装配部位的密封性能,防止运行时渗漏油的发生,以及防止变压器主体在运输时的漏气、漏油或因进水而引起的变压器受潮。
5、3试验方法5、3、1试验准备试验前连接好试验管路、紧固试漏系统的所有坚固件,在油箱或储油柜顶部安装好压力表,并擦净油箱及充油组部件的外表面,以便在试漏过程中观察渗漏油情况。
打开注油系统通向变压器及变压器组部件之间的所有阀门,并打开吸湿器连管的盖板(中小型变压器打开储油柜上部放气塞),向变压器内注入变压器油至规定油面高度。
装全所有充油组部件的密封试验吊罐油柱法:利用吊罐油柱的静压力来达到要求的试漏压力的方法。
从油箱底部连接好吊罐,关闭储油柜与油箱间的阀门,打开吊罐与油箱间的所有阀门利用垂直的吊罐油面压力给变压器油箱组部件施加一个静压力;吊罐油柱的高度由试漏压力计得出。
充气加压法:利用储油柜胶囊内或储油柜油面上充入一定压力的干燥气体来达到要求的试漏压力的方法。
将储油柜内油面调整到规定高度,通过吸湿器联管上安装的充气装置或在储油柜放气塞外装的气门,向储油柜的胶囊内或储油柜油面上充入干燥空气或氮气,通过压力传递向油箱有;主组部件施加油压;注意充气速度不要过快,当压力表指示达到规定值时关闭阀门。
运输前变压器本体的密封试验充油运输变压器:可采用吊罐油柱法试漏;也可采用向油箱油面上部充氮的方法试漏。
三相变压器实验报告
三相变压器实验报告一、引言三相变压器是电力系统中常见的电力变压器之一,广泛应用于电力输配电网中。
本实验通过搭建三相变压器实验装置,研究其工作原理和性能参数,以深入了解三相变压器的特点和应用。
二、实验装置和原理1. 实验装置本次实验所用的实验装置包括三相变压器、交流电源、电能表、电流表、电压表等。
其中,三相变压器是实验的主要研究对象,通过调节输入电压和输出负载,观察和测量变压器的输入电流、输出电压、输出电流等参数。
2. 实验原理三相变压器是由三个独立的单相变压器组成,通过连接方式和相位差实现了将三相电压变换为另一组三相电压的功能。
在实验中,我们可以通过调节输入电压和输出负载,来观察和测量变压器的输入和输出参数,从而分析其特性和性能。
三、实验过程和结果1. 实验过程将实验装置搭建好,并接通交流电源。
然后,调节输入电压,分别测量和记录三相变压器的输入电流、输出电压和输出电流。
随后,逐步调节输出负载,再次测量和记录相应的参数。
最后,根据测得的数据进行分析和总结。
2. 实验结果通过实验,我们测得了不同输入电压和输出负载下的三相变压器的输入电流、输出电压和输出电流等参数。
根据测得的数据,我们可以绘制出输入电流与输入电压的关系曲线、输出电压与输出电流的关系曲线等图表,从而直观地观察和分析三相变压器的特性和性能。
四、实验分析和讨论根据实验结果,我们可以得出以下结论和分析:1. 输入电流与输入电压呈线性关系,通过实验数据可以计算得到变压器的阻抗。
2. 输出电压与输出电流呈线性关系,通过实验数据可以计算得到变压器的负载电阻。
3. 三相变压器的效率可以通过计算输入功率和输出功率的比值得到,实验数据可以用于计算和分析。
五、实验总结本次实验通过搭建三相变压器实验装置,通过调节输入电压和输出负载,观察和测量变压器的输入电流、输出电压和输出电流等参数,从而深入了解了三相变压器的工作原理和性能特点。
实验结果表明,三相变压器具有较好的线性特性和电能转换效率,适用于电力输配电网中的电能变换和传输。
变压器试验记录范文
变压器试验记录范文实验目的:通过对变压器进行一系列的试验,对其运行性能进行评估和检测。
实验设备:1.变压器2.电力仪器:测量电压、电流、功率的仪器3.温度计4.辅助设备:电力稳定器、电源、电阻箱等5.记录设备:纸笔、计算机等试验一:空载试验1.实验目的:测量变压器的空载电流、空载损耗,并判断变压器的空载参数是否符合设计要求。
2.实验步骤:a.保证变压器的输入侧负荷为零,采用电阻负载,调节电源电压,使输出侧电压达到额定值。
b.测量输入侧电压和电流,以及输出侧的电压。
c.记录电压、电流和功率的数值,并计算得出空载损耗。
试验二:短路试验1.实验目的:测量变压器的短路电流、短路损耗,并判断变压器的短路参数是否符合设计要求。
2.实验步骤:a.将变压器的输入侧和输出侧分别短路,使得变压器的输入短路电压与输出短路电压相等。
b.测量输入侧和输出侧的电流。
c.记录电流和功率的数值,并计算得出短路损耗。
d.根据短路电流和短路损耗的结果,判断变压器的短路参数是否符合设计要求。
试验三:负载试验1.实验目的:通过对变压器进行负载试验,测量变压器的负载电流、负载损耗,并判断变压器的负载参数是否符合设计要求。
2.实验步骤:a.保证变压器的输入侧电压为额定电压,连接额定负荷。
b.测量输入侧电流、输出侧负载电流和功率。
c.记录电流、功率的数值,并计算得出负载损耗。
试验四:温升试验1.实验目的:通过对变压器进行温升试验,测量变压器在额定负荷下的温升情况,并判断变压器的散热性能是否符合设计要求。
2.实验步骤:a.保证变压器的输入侧电压为额定电压,并连接额定负荷。
b.在变压器的不同部位测量温度,并记录下来。
c.在一定时间间隔后,重新测量温度,并计算温升值。
d.根据温度升高的程度,判断变压器的散热性能是否符合设计要求。
以上仅为变压器试验的基本步骤和记录要点,具体实验过程和结果需根据实际情况进行修改和完善。
实验记录应详细而准确,包括实验日期、实验环境、实验设备和实验操作等信息,并罗列出所有的数值结果和计算公式。
变压器试验报告范文
变压器试验报告范文一、实验目的本次实验的目的是为了测试变压器的性能和质量,确保其安全可靠地运行。
具体包括以下几个方面的试验:1.空载试验:测试变压器的空载电流和空载损耗,以确定变压器的电流和功耗。
2.短路试验:测试变压器的短路阻抗和短路损耗,以了解变压器在短路情况下的工作状态。
3.负载试验:测试变压器的负载电流和负载损耗,以确定变压器的承载能力。
4.绕组温度上升试验:测试变压器在额定负载下,绕组的温度上升情况,以确认变压器的散热性能。
5.绝缘电阻试验:测试变压器的绝缘电阻,以评估其绝缘性能。
二、试验装置和仪器1.变压器:额定容量为100KVA的三相变压器。
2.激励电源:用于给变压器提供激励电压。
3.电流互感器:用于测量变压器的电流。
4.电压互感器:用于测量变压器的电压。
5.电力负载:用于对变压器进行负载试验。
6.温度计:用于测量变压器绕组的温度。
三、空载试验在空载试验中,将变压器的一侧绕组断开,然后给另一侧绕组加上额定电压。
记录变压器的输入电压和电流,并计算出空载损耗和功率因数。
根据实验数据和计算结果,得出空载电流为10A,空载损耗为100W,功率因数为0.8四、短路试验在短路试验中,用电流互感器测量变压器的短路电流,并用电压互感器测量变压器的短路电压。
通过计算得到短路阻抗和短路损耗。
根据实验数据和计算结果,得出短路电流为500A,短路损耗为2KW,短路阻抗为2.5Ω。
五、负载试验在负载试验中,将变压器的负载逐步增加,记录负载电流和负载损耗,并计算负载功率因数。
根据实验数据和计算结果,得出负载电流为50A,负载损耗为500W,负载功率因数为0.9六、绕组温度上升试验在绕组温度上升试验中,给变压器加上额定负载,然后记录绕组温度,在规定的时间内测量绕组温度的上升情况。
根据实验数据和测量结果,变压器的绕组温度上升不超过50℃,符合设计要求。
七、绝缘电阻试验在绝缘电阻试验中,用万用表测量变压器的绝缘电阻,并根据测量结果评估变压器的绝缘性能。
电力变压器试验规范
电力变压器试验规范引言:电力变压器作为电力系统中的重要设备之一,承担着能量传输和电压转换的重要任务。
为确保变压器的质量和稳定性,对其进行全面而细致的试验是必不可少的。
本文将介绍电力变压器试验的规范与要求,包括介绍变压器试验前的准备工作、试验过程中的关键步骤和注意事项,以及试验后的数据评估与分析等内容。
一、试验前的准备工作1. 检查设备准备工作:确保试验设备安全、完好无损,检查试验仪器的准确性和可靠性。
2. 清洁和除湿处理:清洁工作是防止变压器试验过程中出现干扰和故障的重要步骤。
同时对变压器进行除湿处理,以确保试验精度和准确性。
3. 安全措施的落实:在试验前必须做好安全措施的准备工作,对试验人员进行相关安全操作指导,确保试验过程中的人身安全。
二、试验过程中的关键步骤和注意事项1. 负载试验:负载试验是衡量变压器负载能力的重要方法。
在进行负载试验前,首先要按照规定检查负载试验电源的线路和连接方式,确保试验过程中的安全性。
在试验过程中,需要实时监测变压器的温度和负载情况,以及变压器的电流、电压、功率因数等参数,并及时记录和评估数据。
2. 短路试验:短路试验是测试变压器短路容量和漏阻抗的重要手段。
在进行短路试验前,需要确保试验线路的连接正确、可靠,并对试验线路进行保护和安全装置的设置。
在试验过程中,需要监测和记录变压器的电流、电压、温度等参数,并根据试验结果进行数据分析和评估。
3. 绝缘试验:绝缘试验是测试变压器绝缘性能的重要方法。
在进行绝缘试验前,需要确保试验设备和试验物体的绝缘性能良好。
在试验过程中,需要对试验物体的绝缘电阻、泄漏电流等进行监测和记录,并根据试验结果进行评估和分析。
4. 耐压试验:耐压试验是测试变压器耐受正常工作电压的能力的重要方法。
在进行耐压试验前,需要确保试验线路的安全可靠,并对试验电源进行合理的设置和保护。
在试验过程中,需要监测和记录变压器的电压、电流等参数,并根据试验结果进行数据分析和评估。
配电变压器实验报告
衡率(%)
AB
BC
CA
0a
0b
0c
10kV
I
3249
3241
3243
2.400
2.390
2.435
II
3074
3065
3071
Ⅲ
2898
2895
2895
Ⅳ
Ⅴ
绝缘试验:油温度T=16℃
试验位置
绝缘绕组R60(MΩ)
外施耐压t=16℃
感应耐压(s)
40s
电压(kV)
施加电压L.V.(kV)
0.8
测量偏差%
联结组标号
高压绕组
低压绕组
AB/ab
BC/bc
CA/ca
I
10.5
0.4
26.பைடு நூலகம்5
0.02
0.02
0.02
Yyn0
II
10
25.00
0.03
0.03
0.03
Ⅲ
9.5
23.75
0.06
0.06
0.06
Ⅳ
Ⅴ
绕组电阻测定:油温度T=16℃
开关位置
高压绕组(mΩ)
最大不平衡率(%)
低压绕组(mΩ)
*****电力全密封式油浸配电变压器试验报告
产品型号:S11-M-315/10出产编号************
产品参数
额定容量315kVA额定电压:10/0.4kV 额定电流18.9A/454.7A
冷却方式:ONAN 频 率50Hz 相 数:3相
电压比测量和连接标号检定:
开关位置
电压(KV)
计算变比K
试验结论:本产品试验结果符合 GB 1094.1.2-1996GB 1094.3-2003GB 1094.5-2008《电力变压器》,GB/T 6451-2008《油浸式电力变压器技术参数和要求》JB/T501-2006《电力变压器实验导则》标准规定,准予出厂。
变压器实验报告
变压器实验报告一、实验目的本次实验的主要目的是了解变压器的基本原理、结构和特性,同时通过实验操作,掌握一定的实验技能和分析数据能力。
二、实验原理变压器是一种基于电磁感应原理的电器,主要由铁芯、一组或多组绕组、绝缘层等组成。
其中,铁芯是变压器的重要组成部分,其主要作用是提供磁路,既能使磁场充分传递,又能减小能量损失。
当变压器的一侧交流电压发生变化时,通过铁芯使磁场能够穿过绕组,从而在另一侧产生一定大小的电势差,即电压。
这样,当充电电压变化时,变压器的另一侧也会产生相应大小的电压。
根据电势差之比等于线圈匝数之比的公式,可以推导出变压器中电压、电流、匝数等参数的关系。
三、实验步骤1.首先,将实验仪器连接好,包括实验用电源、变压器绕组、电流表及电压表等。
2.接下来,根据实验要求,调节变压器的输出电压和电流,并记录下读数。
同时,可通过调节变压器的输入电压,进一步控制变压器输出电压和电流的大小。
3.在取得准确数据的基础上,进一步分析数据,推导出变压器所涉及参数的关系,并进行数据处理。
四、实验结果通过本次实验,我们成功操作了变压器实验,获得了一些有效数据。
如输入电压、输出电压、电流、变压器的变比等。
通过对数据的统计和分析,我们成功推导出了变压器的一些特性参数,如变比、励磁电流、满载电流和满载损耗等。
同时,我们还通过开关、负载等,模拟了现实中电力系统的各种情况,为我们更进一步的学习奠定了基础。
五、实验结论根据我们所做的变压器实验,我们可以得出以下结论:1.变压器的输入电压和输出电压之比等于绕组匝数之比。
2.变压器在满载状态时主要消耗的是电能,即满载损耗。
3.在输入电压一定情况下,可以通过调节变压器的输入电流,进一步控制输出电压和电流的大小。
最后,通过本次实验,我们成功掌握了变压器的基本概念、原理,以及实验操作技能。
这将为我们以后深入学习电力系统和电路原理打下了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位工程名称:电气安装工程
位号
SS1210-M-TR2A
名称
10KV油浸式变压器
铭
牌
型号
S13-M-1600/10
额定容量
1600 kVA
制造厂
河南森源电气股份有限公司
阻抗电压
4.92%
额定电压
10.5/0.4 kV来自出厂日期2019.10
接线组别
Dyn11
额定电流
87.98/2309.4A
4
5
接线
电阻值,
L1—L2
438.4
427.8
409.2
405.3
392.6
l1—l2
0.584
L2—L3
438.1
427.2
409.1
405.5
392.7
l2—l3
0.574
L3—L1
439.1
427.8
409.7
404.9
392.5
l3—l1
0.573
误差,%
0.160
0.140
0.1466
0.148
额定容量
1600 kVA
制造厂
河南森源电气股份有限公司
阻抗电压
4.89%
额定电压
10.5/0.4 kV
出厂日期
2019.10
接线组别
Dyn11
额定电流
87.98/2309.4A
出厂编号
19070948
温升
11℃
冷却方式
DNAN
重量
4440KG
直
流
电
阻
一次侧直流电阻,m
二次侧直流电阻
分接开关
位置
1
2
3
-0.046
绝
缘
试
验
测试部位
绝缘电阻,M
吸收比
交流耐压,kV/s
一次对二次、地
2500
1.3
28/60
二次对一次、地
500
1.3
2/60
温度,℃
11
绝缘介质
绝缘油
击穿电压:25kV
绝缘油牌号:I-10℃
备注:
结论:
试验人:
日期:年月日
审核人:
日期:年月日
SH/T 3543—G504
电力变压器试验记录
位置
铭牌变比
实测变比
变比误差
%
接线组别
检查
L1L2/l1l2
L2L3/l2l3
L3L1/l3l1
L1L2/l1l2
L2L3/l2l3
L3L1/l3l1
1
27.61
27.53
27.554
27.566
-0.043
-0.025
-0.018
正确
2
26.89
26.87
26.765
26.786
-0.042
-0.026
1.3
2/60
温度,℃
11
绝缘介质
绝缘油
击穿电压:25kV
绝缘油牌号:I-10℃
备注:
结论:
试验人:
日期:年月日
审核人:
日期:年月日
SH/T 3543—G504
电力变压器试验记录
工程名称:10KV压力罐区变电所
单位工程名称:电气安装工程
位号
SS1210-M-TR1B
名称
10KV油浸式变压器
铭
牌
型号
S13-M-1600/10
392.2
l1—l2
0.5808
L2—L3
440.3
423.3
409.6
405.4
391.9
l2—l3
0.5817
L3—L1
439.5
423.5
408. 2
404.5
392.3
l3—l1
0.5693
误差,%
0.182
0.284
0.366
0.247
0.102
误差,%
2.148
温度,℃
11
变
压
比
分接
开关
435.1
426.9
411.3
404.9
393.1
l3—l1
0.579
误差,%
0.553
0.677
0.097
0.123
0.127
误差,%
0.885
温度,℃
11
变
压
比
分接
开关
位置
铭牌变比
实测变比
变比误差
%
接线组别
检查
L1L2/l1l2
L2L3/l2l3
L3L1/l3l1
L1L2/l1l2
L2L3/l2l3
26.762
26.883
26.756
-0.042
-0.026
-0.017
3
26.24
26.218
26.219
26.23
-0.121
-0.117
-0.106
4
25.61
25.586
25.614
26.24
-0.023
-0.016
-0.016
5
25.142
24.923
24.962
24.97
-0.089
-0.061
SH/T 3543—G504
电力变压器试验记录
工程名称:10KV压力罐区变电所
单位工程名称:电气安装工程
位号
SS1210-M-TR1A
名称
10KV油浸式变压器
铭
牌
型号
S13-M-1600/10
额定容量
1600kVA
制造厂
河南森源电气股份有限公司
阻抗电压
4.83%
额定电压
10.5/0.4kV
出厂日期
2019.10
接线组别
Dyn11
额定电流
87.98/2309.4A
出厂编号
19070947
温升
11℃
冷却方式
DNAN
重量
4440KG
直
流
电
阻
一次侧直流电阻,m
二次侧直流电阻
分接开关
位置
1
2
3
4
5
接线
电阻值,
L1—L2
440.7
428.9
408.7
405.9
393.3
l1—l2
0.573
L2—L3
440.1
428.3
L3L1/l3l1
L1L2/l1l2
L2L3/l2l3
L3L1/l3l1
1
27.62
27.56
27.565
27.567
-0.042
-0.023
-0.016
正确
2
26.9
26.888
26.892
36.896
-0.041
-0.027
-0.012
3
26.25
26.219
26.220
26.225
-0.117
出厂编号
19070950
温升
11℃
冷却方式
DNAN
重量
4440KG
直
流
电
阻
一次侧直流电阻,m
二次侧直流电阻
分接开关
位置
1
2
3
4
5
接线
电阻值,
L1—L2
432.7
429.8
411.4
405.4
392.6
l1—l2
0.5739
L2—L3
433.2
428.5
411
405.1
393.1
l2—l3
0.575
L3—L1
-0.114
-0.094
4
25.6
25.593
25.595
25.599
-0.025
-0.017
-0.002
5
24.937
24.913
24.922
24.92
-0.092
-0.057
-0.045
绝
缘
试
验
测试部位
绝缘电阻,M
吸收比
交流耐压,kV/s
一次对二次、地
2500
1.3
28/60
二次对一次、地
500
-0.032
3
26.25
26.224
26.225
26.226
-0.114
-0.114
-0.09
4
25.61
25.602
25.604
25.612
-0.027
-0.021
-0.021
5
24.943
24.921
24.924
24.95
-0.093
-0.058
-0.043
绝
缘
试
验
测试部位
绝缘电阻,M
吸收比
交流耐压,kV/s
0.051
误差,%
1.906
温度,℃
11
变
压
比
分接
开关
位置
铭牌变比
实测变比
变比误差
%
接线组别
检查
L1L2/l1l2
L2L3/l2l3
L3L1/l3l1
L1L2/l1l2
L2L3/l2l3
L3L1/l3l1
1
26.92
27.46