伍德里奇计量经济学导论第四版

合集下载

第1讲导论整理ppt

第1讲导论整理ppt
21
理论的创立
Frisch


建立第1个应用模型
Tinbergen

量 经
建立投入产出模型
Leontief


发展应用模型
Klein
发展数据基础
Stone
建立概率论基础
Haavelmo
22
The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
31
参数估计
选择适当的方法和软件估算出模型的参数
国家组别
低收入 中等收入 高收入 世界平均
人均GDP 平均受教育年限 明瑟收益率
(美元)
(年)
(%)
375
7.6
10.9
3025
8.2
10.7
23463
9.4
7.4
9160
8.3
9.7
•1998年数据
32
参数估计
我国城镇地区明瑟收益率
明 瑟 收 益 率 (%)
"for his clarification of the probability theory foundations of econometrics and his analyses of
simultaneous economic structures"
Trygve Haavelmo Norway
时间序列: 自回归条件异方差 —现代金融计量
Heckman McFadden
Granger Engle
27
三、计量经济分析的步骤
1. 建立理论模型和计量模型 2. 收集样本数据 3. 参数估计 4. 假设检验 以教育收益率为例

计量经济学导论第四版部分课后答案中文翻译

计量经济学导论第四版部分课后答案中文翻译

2.10(iii) From (2.57), Var(1ˆβ) = σ2/21()n i i x x =⎛⎫- ⎪⎝⎭∑. 由提示:: 21n i i x=∑ ≥21()n i i x x =-∑, and so Var(1β ) ≤ Var(1ˆβ). A more direct way to see this is to write(一个更直接的方式看到这是编写) 21()n ii x x =-∑ = 221()n i i x n x =-∑, which is less than21n i i x=∑unless x = 0.(iv)给定的c 2i x 但随着x 的增加, 1ˆβ的方差与Var(1β )的相关性也增加.0β小时1β 的偏差也小.因此, 在均方误差的基础上不管我们选择0β还是1β 要取决于0β,x ,和n 的大小 (除了 21n i i x=∑的大小).3.7We can use Table 3.2. By definition, 2β > 0, and by assumption, Corr(x 1,x 2) < 0. Therefore, there is anegative bias in 1β : E(1β ) < 1β. This means that, on average across different random samples, the simple regression estimator underestimates the effect of the training program. It is even possible that E(1β ) is negative even though 1β > 0. 我们可以使用表3.2。

根据定义,> 0,由假设,科尔(X1,X2)<0。

因此,有一个负偏压为:E ()<。

伍德里奇-计量经济学(第4版)答案

伍德里奇-计量经济学(第4版)答案

伍德里奇-计量经济学(第4版)答案计量经济学答案第二章2.4 (1)在实验的准备过程中,我们要随机安排小时数,这样小时数(hours )可以独立于其它影响SAT 成绩的因素。

然后,我们收集实验中每个学生SAT 成绩的相关信息,产生一个数据集{}n i hours sat i i ,...2,1:),(=,n 是实验中学生的数量。

从式(2.7)中,我们应尽量获得较多可行的i hours 变量。

(2)因素:与生俱来的能力(天赋)、家庭收入、考试当天的健康状况①如果我们认为天赋高的学生不需要准备SAT 考试,那天赋(ability )与小时数(hours )之间是负相关。

②家庭收入与小时数之间可能是正相关,因为收入水平高的家庭更容易支付起备考课程的费用。

③排除慢性健康问题,考试当天的健康问题与SAT 备考课程上的小时数(hours )大致不相关。

(3)如果备考课程有效,1β应该是正的:其他因素不变情况下,增加备考课程时间会提高SAT 成绩。

(4)0β在这个例子中有一个很有用的解释:因为E (u )=0,0β是那些在备考课程上花费小时数为0的学生的SAT平均成绩。

2.7(1)是的。

如果住房离垃圾焚化炉很近会压低房屋的价格,如果住房离垃圾焚化炉距离远则房屋的价格会高。

(2)如果城市选择将垃圾焚化炉放置在距离昂贵的街区较远的地方,那么log(dist)与房屋价格就是正相关的。

也就是说方程中u包含的因素(例如焚化炉的地理位置等)和距离(dist)相关,则E(u︱log(dist))≠0。

这就违背SLR4(零条件均值假设),而且最小二乘法估计可能有偏。

(3)房屋面积,浴室的数量,地段大小,屋龄,社区的质量(包括学校的质量)等因素,正如第(2)问所提到的,这些因素都与距离焚化炉的远近(dist,log(dist))相关2.11(1)当cigs(孕妇每天抽烟根数)=0时,预计婴儿出生体重=110.77盎司;当cigs(孕妇每天抽烟根数)=20时,预计婴儿出生体重(bwght)=109.49盎司。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第5~9章【圣才出品】
2.推导 OLS 的不一致性 误差项和 x1,x2,…,xk 中的任何一个相关,通常也会导致所有的 OLS 估计量都失去 其一致性。 总结为:如果误差与任何一个自变量相关,那么 OLS 就是有偏而又不一致的估计。它 就意味着,随着样本容量的增加,偏误将继续存在。
βˆ1 的不一致性为:
plimβˆ1 β Cov x1,u /Var x1
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 5 章 多元回归分析:OLS 的渐近性
5.1 复习笔记
一、一致性
1.定理 5.1:OLS 的一致性
在假定 MLR.1~MLR.4 下,对所有的 j=0,1,2,…,k,OLS 估计量 βˆ j 都是 βj 的一
致估计。
其次,零条件均值假定意味着已经正确地设定了总体回归函数(PRF)。也就是说,在 假定 MLR.4 下,可以得到解释变量对 y 的平均值或期望值的偏效应。如果只使用假定 MLR.4',那么,β0+β1x1+β2x2+…+βkxk 就不一定代表了总体回归函数,也就面临着 xj 的某些非线性函数可能与误差项相关的可能性。
三、OLSHale Waihona Puke 的渐近有效性4 / 162
圣才电子书

1.简单回归模型
标准正态分布在式中出现的方式与 tn-k-1 分布不同。这是因为这个分布只是一个近似。
实际上,由于随着自由度的变大,tn-k-1 趋近于标准正态分布,所以如下写法也是合理的:
βˆj βj
/ se
βˆ j
a
~ tnk 1
2.其他大样本检验:拉格朗日乘数统计量
(1)包含 k 个自变量的多元回归模型
①假定 MLR.4'是一个更自然的假定,因为它直接得到普通最小二乘估计值。

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】

伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】
二、经验经济分析的步骤 经验分析就是利用数据来检验某个理论或估计某种关系。 1.对所关心问题的详细阐述 在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。经 济模型总是由描述各种关系的数理方程构成。 2.经济模型变成计量模型 先了解一下计量模型和经济模型有何关系。与经济分析不同,在进行计量经济分析之前, 必须明确函数的形式。 通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。
Байду номын сангаас
2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
4 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台

(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。 (ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。你能得到他们 四年级班级规模和四年级末的标准化考试分数。你为什么预计班级规模与考试成绩存在负相 关关系? (iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。 答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如 能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。因此可以看到班级 规模(在伦理考量和资源约束条件下的主体)的显著差异。 (ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以 发现班级规模越大,导致考试成绩越差。 通过数据可知,两者之间的负相关关系还有其他的原因。例如,富裕家庭的孩子在学校 可能更多的加入小班,而且他们的成绩优于平均水平。 另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。或者部分父母可能坚 持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。 (iii)鉴于潜在的其他混杂因素(如 ii 所列举),负相关关系并不一定意味着较小的班 级规模会导致更好的成绩。控制混杂因素的方法是必要的,而这正是多重回归分析的主题。

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论计量经济学是一门运用数学、统计学、经济学理论及计算机技术等方法研究经济现象之间数量关系的学科。

在《伍德里奇计量经济学导论》这本书中,作者详细介绍了计量经济学的基本原理与方法,为读者提供了丰富的理论知识与实践案例。

本书共分为八个部分,下面我们将分别进行介绍。

首先是引言部分,作者对计量经济学的定义与作用进行了阐述,指出计量经济学在经济预测、政策评估、经济研究等方面具有重要意义。

此外,作者还对本书的结构安排进行了说明,以便读者更好地把握全书内容。

第二部分为概率论与数理统计基础。

在这一部分,作者详细介绍了随机变量、概率分布、数学期望、方差等基本概念,并讲解了常见概率分布如正态分布、t分布、卡方分布等。

此外,作者还介绍了最大似然估计方法,为后续回归分析奠定了基础。

接下来是一元线性回归模型部分。

作者首先建立了回归方程,并讲解了如何进行参数估计。

在此基础上,作者对拟合优度检验、显著性检验进行了阐述,并介绍了如何进行预测与控制。

第四部分为多元线性回归模型。

作者首先介绍了多元线性回归方程,并讲解了参数估计方法。

在此基础上,作者对多元线性回归的检验进行了详细说明,并为矩阵计算提供了方法。

第五部分为时间序列分析。

作者首先讲解了时间序列的基本概念,并介绍了平稳性检验。

随后,作者分别阐述了自回归模型、移动平均模型及自回归移动平均模型,为时间序列分析奠定了基础。

第六部分为非线性回归模型。

作者首先概述了非线性回归,并介绍了非线性回归的估计方法。

在此基础上,作者对非线性回归的检验进行了说明。

第七部分为计量经济学应用案例。

作者选取了我国经济增长、通货膨胀及环境污染与经济增长的关系等研究课题,展示了计量经济学在实际问题中的应用。

最后是第八部分,作者对伍德里奇计量经济学导论的评价及启示。

作者认为该教材在内容安排、理论阐述、案例分析等方面具有优点,但同时也指出了不足之处。

在此基础上,作者对我国计量经济学发展提出了有益的启示。

《计量经济学导论》考研伍德里奇版考研复习笔记

《计量经济学导论》考研伍德里奇版考研复习笔记

《计量经济学导论》考研伍德里奇版考研复习笔记第1章计量经济学的性质与经济数据1.1 复习笔记一、计量经济学由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学已从数理统计分离出来并演化成一门独立学科。

1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。

非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。

2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些实验数据则困难得多。

二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。

1.对所关心问题的详细阐述在某些情形下,特别是涉及到对经济理论的检验时,就要构造一个规范的经济模型。

经济模型总是由描述各种关系的数理方程构成。

2.经济模型变成计量模型先了解一下计量模型和经济模型有何关系。

与经济分析不同,在进行计量经济分析之前,必须明确函数的形式。

通过设定一个特定的计量经济模型,就解决了经济模型中内在的不确定性。

在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。

一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。

3.搜集相关变量的数据4.用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。

三、经济数据的结构1.横截面数据(1)横截面数据集,就是在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。

有时,所有单位的数据并非完全对应于同一时间段。

在一个纯粹的横截面分析中,应该忽略数据搜集中细小的时间差别。

(2)横截面数据的重要特征①假定它们是从样本背后的总体中通过随机抽样而得到的。

当抽取的样本(特别是地理上的样本)相对总体而言太大时,可能会导致另一种偏离随机抽样的情况。

这种情形中潜在的问题是,总体不够大,所以不能合理地假定观测值是独立抽取的。

第2章 简单回归模型习题

第2章 简单回归模型习题
值,都有 E ˆ0 =0, E ˆ1 1
换言之,ˆ0 对 0 而言是无偏的,ˆ1 对1而言
是无偏的
引理: n 1 (xi x) 0
i 1
n
n
n
n
2 (xi x)( yi y) (xi x)yi ( xi nx) y (xi x)yi
i 1
i 1
i 1
i 1
n
xi yi y ˆ1x ˆ1xi 0
i 1
n
n
xi yi y ˆ1 xi xi x
i 1
i 1
n
n
xi x yi y ˆ1 xi x 2
i 1
i 1
普通最小二乘法的推导
n
xi x yi y
ˆ1 i1 n
xi x 2
i 1 n
在假设前提 xi x 2 0下 i 1
•回归元和OLS残差的样本协方差为零
–代数表示
n
xiuˆi 0
i 1
(xi , yi )
–由OLS的一阶条件得出
n
n1 xi yi ˆ0 ˆ1xi 0
i 1
OLS的操作技巧——OLS统计量的代数性质
•点 x, y 总在OLS回归线上
–代数表示 –可以由
y ˆ0 ˆ1x
n
在简单回归中加入非线性因素——自然对数形式
在简单回归中加入非线性因素——自然对数 形式
“线性”回归的含义
OLS估计量的期望值和方差
–OLS的无偏性 –OLS估计量的方差
OLS的无偏性
–我们首先在一组简单假定的基础上构建OLS 的无偏性。 –假定SLR.1(线性于参数) –在总体模型中,因变量y与自变量x的误差 项u的关系如下:

(完整版)伍德里奇计量经济学(第4版)答案

(完整版)伍德里奇计量经济学(第4版)答案

计量经济学答案第二章2.4 (1)在实验的准备过程中,我们要随机安排小时数,这样小时数(hours )可以独立于其它影响SAT 成绩的因素。

然后,我们收集实验中每个学生SAT 成绩的相关信息,产生一个数据集,n 是实验中学生的数量。

从式(2.7)中,我们应尽{}n i hours sat i i ,...2,1:),(=量获得较多可行的变量。

i hours (2)因素:与生俱来的能力(天赋)、家庭收入、考试当天的健康状况①如果我们认为天赋高的学生不需要准备SAT 考试,那天赋(ability )与小时数(hours )之间是负相关。

②家庭收入与小时数之间可能是正相关,因为收入水平高的家庭更容易支付起备考课程的费用。

③排除慢性健康问题,考试当天的健康问题与SAT 备考课程上的小时数(hours )大致不相关。

(3)如果备考课程有效,应该是正的:其他因素不变情况下,增加备考课程时间会提1β高SAT 成绩。

(4)在这个例子中有一个很有用的解释:因为E (u )=0,是那些在备考课程上花0β0β费小时数为0的学生的SAT 平均成绩。

2.7(1)是的。

如果住房离垃圾焚化炉很近会压低房屋的价格,如果住房离垃圾焚化炉距离远则房屋的价格会高。

(2)如果城市选择将垃圾焚化炉放置在距离昂贵的街区较远的地方,那么log(dist)与房屋价格就是正相关的。

也就是说方程中u 包含的因素(例如焚化炉的地理位置等)和距离(dist)相关,则E (u︱log(dist))≠0。

这就违背SLR4(零条件均值假设),而且最小二乘法估计可能有偏。

(3)房屋面积,浴室的数量,地段大小,屋龄,社区的质量(包括学校的质量)等因素,正如第(2)问所提到的,这些因素都与距离焚化炉的远近(dist,log(dist))相关2.11(1)当cigs (孕妇每天抽烟根数)=0时,预计婴儿出生体重=110.77盎司;当cigs (孕妇每天抽烟根数)=20时,预计婴儿出生体重()=109.49盎司。

计量经济学导论-ch4

计量经济学导论-ch4

Multiple Regression Analysis: Inference
Discussion of the normality assumption (cont.) Examples where normality cannot hold: • Wages (nonnegative; also: minimum wage) • Number of arrests (takes on a small number of integer values) • Unemployment (indicator variable, takes on only 1 or 0) In some cases, normality can be achieved through transformations of the dependent variable (e.g. use log(wage) instead of wage) Under normality, OLS is the best (even nonlinear) unbiased estimator Important: For the purposes of statistical inference, the assumption of normality can be replaced by a large sample size
Null hypothesis (for more general hypotheses, see below)
The population parameter is equal to zero, i.e. after controlling for the other independent variables, there is no effect of xj on y

《计量经济学导论》伍德里奇-第四版-笔记和习题答案(2-8章)

《计量经济学导论》伍德里奇-第四版-笔记和习题答案(2-8章)


inc e inc incE e inc 0 。


inc e inc

inc

2
Var e inc inc e2 。
(Ⅲ)低收入家庭支出的灵活性较低,因为低收入家庭必须首先支付衣食住行等必需品。而高收入家庭具有 较高的灵活性,部分选择更多的消费,而另一部分家庭选择更多的储蓄。这种较高的灵活性暗示高收入家庭中储 蓄的变动幅度更大。
(Ⅲ)在(Ⅱ)的方程中,如果备考课程有效,那么 1 的符号应该是什么? (Ⅳ)在(Ⅱ)的方程中, 0 该如何解释? 答: (Ⅰ)构建实验时,首先随机分配准备课程的小时数,以保证准备课程的时间与其他影响 SAT 的因素是
houri :i 1 , , n , n 表示试验中所包括的学 独立的。然后收集实验中每个学生 SAT 的数据,建立样本 sati ,
因此 GPA 0.5681 0.1022 ACT 。 此处截距没有一个很好的解释, 因为对样本而言,ACT 并不接近 0。 如果 ACT 分数提高 5 分,预期 GPA 会提高 0.1022× 5=0.511。 (Ⅱ)每次观测的拟合值和残差表如表 2-3 所示: 表 2-3
i
GPA
GPA^^源自 7.利用 Kiel and McClain(1995)有关 1988 年马萨诸塞州安德沃市的房屋出售数据,如下方程给出了房屋 价格( price )和距离一个新修垃圾焚化炉的距离( dist )之间的关系:
log price 9.40 0.312log dist n 135 , R 2 0.162
y 0 0 1 x u 0
令新的误差项为 e u 0 ,因此 E e 0 。 新的截距项为 0 0 ,斜率不变为 1 。 2.下表包含了 8 个学生的 ACT 分数和 GPA(平均成绩) 。平均成绩以四分制计算,且保留一位小数。 GPA ACT student 1 2 3 4 5 6 7 8

伍德里奇计量经济学导论第四版

伍德里奇计量经济学导论第四版
i =1 n
ˆ= 5.8125, and ∑ (xi – x )2 = 56.875. From equation (2.9), we obtain the slope as β 1
i =1
n
n = .5681 + .10 can verify that the residuals, as reported in the table, sum to −.0002, which is pretty close to zero given the inherent rounding error. n = .5681 + .1022(20) ≈ 2.61. (iii) When ACT = 20, GPA
2.3 (i) Income, age, and family background (such as number of siblings) are just a few possibilities. It seems that each of these could be correlated with years of education. (Income and education are probably positively correlated; age and education may be negatively correlated because women in more recent cohorts have, on average, more education; and number of siblings and education are probably negatively correlated.)

i 1 2 3 4 5 6 7 8

伍德里奇计量经济学导论第4版视频精讲

伍德里奇计量经济学导论第4版视频精讲

伍德里奇计量经济学导论第4版视频精讲!伍德里奇《计量经济学导论》(第4版)精讲班【教材精讲+考研真题串讲】来源:攻关学习网讲师:张冠甲/闫晶晶目录说明:本课程共包括42个高清视频(共54课时)。

序号名称1绪论2第1章计量经济学的性质与经济数据3第2章简单回归模型(1)4第2章简单回归模型(2)5第3章多元回归分析:估计(1)6第3章多元回归分析:估计(2)7第3章多元回归分析:估计(3)8第4章多元回归分析:推断(1)9第4章多元回归分析:推断(2)10第4章多元回归分析:推断(3)11第5章多元回归分析:OLS的渐进性(1)12第5章多元回归分析:OLS的渐进性(2)13第6章多元回归分析:深入专题(1)14第6章多元回归分析:深入专题(2)15第7章含有定性信息的多元回归分析:二值(或虚拟)变量(1)16第7章含有定性信息的多元回归分析:二值(或虚拟)变量(2)17第8章异方差性(1)18第8章异方差性(2)19第8章异方差性(3)20第8章异方差性(4)21第8章异方差性(5)22第9章模型设定和数据问题的深入探讨(1)23第9章模型设定和数据问题的深入探讨(2)24第9章模型设定和数据问题的深入探讨(3)25第9章模型设定和数据问题的深入探讨(4)26第9章模型设定和数据问题的深入探讨(5)27第10章时间序列数据的基本回归分析(1)28第10章时间序列数据的基本回归分析(2)29第11章OLS用于时间序列数据的其他问题(1)30第11章OLS用于时间序列数据的其他问题(2)31第12章时间序列回归中的序列相关和异方差(1)32第12章时间序列回归中的序列相关和异方差(2)33第13章跨时横截面的混合:简单面板数据方法(1)34第13章跨时横截面的混合:简单面板数据方法(2)35第14章高深的面板数据方法(1)36第14章高深的面板数据方法(2)37第15章工具变量估计与两阶段最小二乘法(1)38第15章工具变量估计与两阶段最小二乘法(2)39第16章联立方程模型40第17章限值因变量模型和样本选择纠正01:31:3241第18章时间序列高级专题42第19章一个经验项目的实施内容简介本课程是伍德里奇《计量经济学导论》(第4版)网授精讲班,为了帮助参加研究生招生考试指定考研参考书目为伍德里奇《计量经济学导论》(第4版)的考生复习专业课,我们根据教材和名校考研真题的命题规律精心讲解教材章节内容。

计量经济学导论第四版第一章

计量经济学导论第四版第一章

第三篇 高深专题探讨
■ 第十三章 跨时横截面的混合:简单面板 数据方法
■ 第十四章 高深的面板数据方法
5 ■ 第十六章 联立方程模型
第一章:计量经济学的性质 与经济数据
什么是计量经济学 经验经济分析的步骤 经济数据的结构
计量经济分析中的因果关系和其他条件 不变的概念
6
什么是计量经济学
计量经济学的用处
■ 检验经济模型 ■ 解释经济人的行为 ■ 政策制定
非实验数据与实验数据
■ 非实验数据(nonexperimental data) ■ 实验数据(experimental data)
7
经验经济分析的步骤
经验分析(empirical analysis)
■ 定义:利用数据来检验某个理论或者估计某 种关系
12336
185808.6 184937.4 22420.0 87598.1 77230.8 10367.3 74919.3
14185
217522.7 216314.4 24040.0 103719.5 91310.9 12408.6 88554.9
16500
267763.7 265810.3 316228.8 314045.4 343464.7 340506.9
2012 邢恩泉
20
计量经济分析中的因果关系和 其他条件不变的概念
因果效应
■ 经济学家的目标就是要推定一个变量对另一 个变量具有因果关系
其他条件不变
■ 在因果关系中,其他条件不变是具有重要作 用的
21
5
12
5
1
0
9
3.6
12
26
1
0
10
18.18

伍德里奇计量经济学导论(第四版)课后习题答案和讲解

伍德里奇计量经济学导论(第四版)课后习题答案和讲解
本手册为《伍德里奇计量经济学导论(第四版)》的学生解决方案手册,提供了书中奇数编号的习题答案和计算机练习讲解。内容覆盖了从引言到高级时间序主题的各个章节,具体包括简单回归模型、多元回归分析、异方差性、时间序列数据的回归分析、面板数据方法等关键领域。此外,附录部分还提供了基础数学工具、概率论、数理统计和矩阵代数的概要,以辅助读者更深入地理解计量经济学的原理和应用。本手册旨在帮助学生巩固理论知识,提高实际应用能力,是学习和研究计量经济学的宝贵资料。

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论摘要:一、伍德里奇《计量经济学导论》概述二、伍德里奇对计量经济学的定义和方法三、伍德里奇《计量经济学导论》的主要内容四、伍德里奇《计量经济学导论》的学术价值和影响五、总结正文:一、伍德里奇《计量经济学导论》概述伍德里奇(John M.Woodridge)是美国著名的计量经济学家,他的《计量经济学导论》(Introduction to Econometrics)是计量经济学领域的经典教材,自1974 年首次出版以来,已经多次修订,深受全球经济学者和学者的欢迎。

二、伍德里奇对计量经济学的定义和方法在《计量经济学导论》中,伍德里奇对计量经济学进行了明确的定义。

他认为,计量经济学是一门以一定的经济理论为基础,采用数学和统计学的工具,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。

在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,通过检验后,可以利用模型进行经济预测和决策分析。

伍德里奇在书中详细介绍了计量经济学的方法,包括横截面数据的回归分析、多元回归分析、时间序列数据的分析等。

他还对线性回归模型、非线性回归模型、随机回归模型等常见的计量经济模型进行了深入的讲解和分析。

三、伍德里奇《计量经济学导论》的主要内容伍德里奇的《计量经济学导论》共分为六章,涵盖了计量经济学的基本概念、方法和应用。

具体内容包括:第一章:计量经济学的性质与经济数据,介绍了计量经济学的定义、特点和基本概念,以及经济数据的收集、整理和分析方法。

第二章:简单回归模型,讲解了线性回归模型的基本原理和估计方法,包括最小二乘法、极大似然估计法等。

第三章:多元回归分析,介绍了多元线性回归模型的估计和检验方法,包括普通最小二乘法、矩阵形式等。

第四章:多元回归分析的推断,讲解了多元回归模型的预测和假设检验方法。

第五章:时间序列数据的分析,介绍了时间序列数据的基本特征和分析方法,包括自相关、平稳性、ARIMA 模型等。

伍德里奇 计量经济学导论

伍德里奇 计量经济学导论

伍德里奇计量经济学导论摘要::1.伍德里奇《计量经济学导论》概述2.多元线性回归模型及其假设3.高斯- 马尔科夫假设4.伍德里奇《计量经济学导论》的课后习题答案5.总结正文:计量经济学是一门以经济理论为基础,运用数学和统计学方法,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。

伍德里奇的《计量经济学导论》是计量经济学领域的经典教材,受到了广泛关注和应用。

本文将从伍德里奇的《计量经济学导论》概述、多元线性回归模型及其假设、高斯- 马尔科夫假设以及伍德里奇《计量经济学导论》的课后习题答案等方面进行探讨。

伍德里奇《计量经济学导论》概述《计量经济学导论》是伍德里奇所著的一本计量经济学教材,目前已经出版到第6 版。

本书旨在为读者提供一个全面、系统的计量经济学知识体系,帮助读者了解和掌握计量经济学的基本概念、理论和方法。

全书共分为四篇,包括横截面数据的回归分析、多元回归分析、时间序列分析和面板数据分析。

每一篇都涵盖了相应的理论知识和应用实例,既有理论深度,又有实践操作,使得读者能够更好地理解和应用计量经济学知识。

多元线性回归模型及其假设多元线性回归模型是计量经济学中一种常用的模型,用于分析多个自变量与因变量之间的关系。

在伍德里奇的《计量经济学导论》中,多元线性回归模型被详细介绍,包括模型的构建、参数估计、模型检验等内容。

同时,伍德里奇还介绍了多元线性回归模型的假设,这些假设被称为高斯- 马尔科夫假设。

高斯- 马尔科夫假设高斯- 马尔科夫假设是多元线性回归模型的五个假设之一,它包括以下四个假设:1.线性性假设:因变量与自变量之间的关系是线性的。

2.独立性假设:自变量之间相互独立,自变量与误差项之间也相互独立。

3.正态性假设:自变量和误差项都服从正态分布。

4.零均值假设:所有自变量的平均值等于零。

这四个假设被称为高斯- 马尔科夫假设,它们保证了多元线性回归模型的估计结果具有无偏性和最小方差性。

伍德里奇《计量经济学导论》的课后习题答案伍德里奇的《计量经济学导论》每一章节都配有详细的课后习题,帮助读者巩固和检验所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



(ii) plim(W1) = plim[(n – 1)/n] ⋅ plim( Y ) = 1 ⋅ µ = µ. plim(W2) = plim( Y )/2 = µ/2. Because plim(W1) = µ and plim(W2) = µ/2, W1 is consistent whereas W2 is inconsistent.
m
(ii) This follows from part (i) and the fact that the sample average is unbiased for the population average: write
W1 = n −1 ∑ (Yi / X i ) = n −1 ∑ Z i ,
i =1 i =1
n
n
where Zi = Yi/Xi. From part (i), E(Zi) = θ for all i. (iii) In general, the average of the ratios, Yi/Xi, is not the ratio of averages, W2 = Y / X . (This non-equivalence is discussed a bit on page 676.) Nevertheless, W2 is also unbiased, as a simple application of the law of iterated expectations shows. First, E(Yi|X1,…,Xn) = E(Yi|Xi) under random sampling because the observations are independent. Therefore, E(Yi|X1,…,Xn) = θ X i and so
(iii) Var(W1) = [(n – 1)/n]2Var( Y ) = [(n – 1)2/n3]σ2 and Var(W2) = Var( Y )/4 = σ2/(4n). (iv) Because Y is unbiased, its mean squared error is simply its variance. On the other hand, MSE(W1) = Var(W1) + [Bias(W1)]2 = [(n – 1)2/n3]σ2 + µ2/n2. When µ = 0, MSE(W1) = Var(W1) = [(n – 1)2/n3]σ2 < σ2/n = Var( Y ) because (n – 1)/n < 1. Therefore, MSE(W1) is smaller than Var( Y ) for µ close to zero. For large n, the difference between the two estimators is trivial. C.4 (i) Using the hint, E(Z|X) = E(Y/X|X) = E(Y|X)/X = θX/X = θ. It follows by Property CE.4, the law of iterated expectations, that E(Z) = E(θ) = θ. 238
kh
= θ n −1 ∑ X i = θ X .
n
da
E(Y | X 1 ,..., X n ) = n −1 ∑ E(Yi | X 1 ,..., X n ) = n −1 ∑θ X i
i =1 i =1
n
w.
n
co
m
value is below .05, we reject H0 against the one-sided alternative at the 5% level. We do not reject at the 1% level because p-value = .0174 > .01. (iv) The estimated reduction, about 33 ounces, does not seem large for an entire year’s consumption. If the alcohol is beer, 33 ounces is less than three 12-ounce cans of beer. Even if this is hard liquor, the reduction seems small. (On the other hand, when aggregated across the entire population, alcohol distributors might not think the effect is so small.) (v) The implicit assumption is that other factors that affect liquor consumption – such as income, or changes in price due to transportation costs, are constant over the two years.
This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. This may not be resold, copied, or distributed without the prior consent of the publisher.
APPENDIX C
SOLUTIONS TO PROBLEMS C.1 (i) This is just a special case of what we covered in the text, with n = 4: E( Y ) = µ and Var( Y ) = σ2/4. (ii) E(W) = E(Y1)/8 + E(Y2)/8 + E(Y3)/4 + E(Y4)/2 = µ[(1/8) + (1/8) + (1/4) + (1/2)] = µ(1 + 1 + 2 + 4)/8 = µ, which shows that W is unbiased. Because the Yi are independent, Var(W) = Var(Y1)/64 + Var(Y2)/64 + Var(Y3)/16 + Var(Y4)/4
w.
2 2 2 2 (ii) Var(Wa) = a12 Var(Y1) + a2 Var(Y2) + … + an Var(Yn) = ( a12 + a2 + … + an )σ2.
kh
C.2 (i) E(Wa) = a1E(Y1) + a2E(Y2) + … + anE(Yn) = (a1 + a2 + … + an)µ. Therefore, we must have a1 + a2 + … + an = 1 for unbiasedness.

Var(Wa).
ww
(iii) From the hint, when a1 + a2 + … + an = 1 – the condition needed for unbiasedness of Wa 2 2 2 2 – we have 1/n ≤ a12 + a2 + … + an . But then Var( Y ) = σ2/n ≤ σ2( a12 + a2 + … + an )=
C.6 (i) H0: µ = 0.
(ii) H1: µ < 0. (iii) The standard error of y is s / n = 466.4/30 ≈ 15.55. Therefore, the t statistic for testing H0: µ = 0 is t = y /se( y ) = –32.8/15.55 ≈ –2.11. We obtain the p-value as P(Z ≤ –2.11), where Z ~ Normal(0,1). These probabilities are in Table G.1: p-value = .0174. Because the p239
da
w.
(iii) Because 11/32 > 8/32 = 1/4, Var(W) > Var( Y ) for any σ2 > 0, so Y is preferred to W because each is unbiased.
co
= σ2[(1/64) + (1/64) + (4/64) + (16/64)] = σ2(22/64) = σ2(11/32).

ww
w.
Therefore, E(W2 | X 1 ,..., X n ) = E(Y / X | X 1 ,..., X n ) = θ X / X = θ , which means that W2 is actually unbiased conditional on ( X 1 ,..., X n ) , and therefore also unconditionally unbiased.
答 案
C.3 (i) E(W1) = [(n – 1)/n]E( Y ) = [(n – 1)/n]µ, and so Bias(W1) = [(n – 1)/n]µ – µ = –µ/n. Similarly, E(W2) = E( Y )/2 = µ/2, and so Bias(W2) = µ/2 – µ = –µ/2. The bias in W1 tends to zero as n → ∞, while the bias in W2 is –µ/2 for all n. This is an important difference.
相关文档
最新文档