人教版九年级上册数学教案:第21章一元二次方程-回顾与反思
人教版九年级数学上册教案21.1一元二次方程
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的基本概念、解法以及它在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在解决实际问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax^2 + bx + c = 0(a ≠ 0)的方程,它是解决许多实际问题的有力工具,尤其在几何和物理学中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设有一个正方形的面积是25平方单位,我们想要知道它的边长。通过建立一元二次方程x^2 = 25,我们可以求解得到边长x=5。
人教版九年级数学上册教案21.1一元二次方程
一、教学内容
本节课选自人教版九年级数学上册第21章“一元二次方程”。教学内容主要包括以下几部分:
1.一元二次方程的定义:使学生理解一元二次方程的概念,掌握其一般形式:ax^2 + bx + c = 0(a ≠ 0)。
2.一元二次方程的解法:介绍直接开平方法、配方法、公式法等解一元二次方程的方法,并通过实例进行讲解。
2.培养学生数学建模素养:使学生学会将现实生活中的问题抽象为一元二次方程,培养数学建模能力,提高解决实际问题的能力。
3.强化学生数据分析素养:培养学生通过一元二次方程的求解,对数据进行整理、分析和处理的能力,为解决更复杂的数学问题奠定基础。
4.增强学生数学运算能力:让学生熟练掌握一元二次方程的多种解法,提高数学运算速度和准确性,培养良好的数学运算习惯。
2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法
21.2 解一元二次方程21.2.2 公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程 (一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274x x -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭, 2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=,112x =+212x =-2. 用配方法解一元二次方程的步骤?(出示课件3) 学生口答:化:把原方程化成 x 2+px +q = 0 的形式. 移项:把常数项移到方程的右边,如x 2+px =-q. 配方:方程两边都加上一次项系数一半的平方. x 2+px +(2p )2=-q +(2p)2 开方:根据平方根的意义,方程两边开平方. (x+2p )2=-q +(2p )2 求解:解一元一次方程. 定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知 探究一 公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5) 学生答:ax 2+bx +c=0(a ≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c. 二次项系数化为1,得x 2+b a x=-ca. 配方,得x 2+b a x+2()2b a =-ca+2()2b a ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?谈谈你的看法. 师生共同完善认知:(出示课件7)20,40,≠>a a当240,-b ac ≥.2b x a +=±x 1=-b+√b 2-4ac 2a , x 2=-b -√b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a ,b ,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac ≥0时,将a ,b ,c 代入式子x=2b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0; (出示课件9) 学生思考后,共同解答如下: 解:∵a=1,b=-4,c=-7, ∴b 2-4ac=(-4)2-4×1×(-7)=44>0.=x∴12=+x 22=-x(2)2x 2x+1=0;(出示课件10) 教师问:这里的a 、b 、c 的值分别是什么?解:2, 1.==-=a b c224(4210.△=-=--⨯⨯=b ac则方程有两个相等的实数根:122==-=-=b x x a(3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --= 1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根46.10±===x12464611,.10105+-====-x x(4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=ac b △方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac >0时,一元二次方程有两个不相等的实数根; ⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根; ⑶当∆=b 2-4ac <0时,一元二次方程没有的实数根. 教师问:用公式法解一元二次方程的步骤是什么? 学生思考后,共同总结如下:(出示课件14) 用公式法解一元二次方程的一般步骤: 1.将方程化成一般形式,并写出a ,b ,c 的值. 2.求出 ∆ 的值.3. (1)当 ∆ >0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答. 解:a=3, b=-6, c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.=x1=x 2=x探究二 一元二次方程的根的情况 出示课件16:用公式法解下列方程:(1)x 2+x -1=0;(2)x 2-+3=0;(3)2x 2-2x +1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗? ⑴x 2+2x -8=0; ⑵x 2=4x -4; ⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解. 师生共同总结如下:(出示课件18) 一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac >0 时,有两个不等的实数根:12,;x x ==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a -== (3)当b 2-4ac<0时,没有实数根.一般的,式子 b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1 不解方程,判断下列方程根的情况: (1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x ²-2mx+4(m-1)=0. 师生共同讨论解答如下: 解:⑴a =﹣1,b=,c =﹣6, ∵△= b 2-4ac=24-4×(﹣1)×(-6)=0. ∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4 ,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3 ,c=1,∵△= b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m ,c=4(m-1),∵△= b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D ⑵D出示课件23:例2 m 为何值时,关于x 的一元二次方程 2x 2-(4m+1)x+2m 2-1=0:(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?学生思考后,教师板演解题过程: 解:a=2,b=-(4m+1),c=2m 2-1,b 2-4ac=〔-(4m+1)〕2-4×2(2m 2-1)=8m+9.(1)若方程有两个不相等的实数根,则b 2-4ac >0,即8m+9>0,∴m >98-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=98-;(3)若方程没有实数根,则b2-4ac <0即8m+9<0, ∴m <98-.∴当m >98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m <98-时,方程没有实数根.出示课件24:m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b 2−4ac=[−(m −1)]2−4[−3(m+3)] =m 2+10m+37 =m 2+10m+52−52+37 =(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0, ∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根. (三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <12.解方程x 2﹣2x ﹣1=0.3.方程x 2-4x +4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等 的实根,则k 的取值范围是( )A.k>-1B.k>-1且k ≠ 0C.k<1D.k<1且k ≠05.已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.参考答案: 1.D2.解:a=1,b=﹣2,c=﹣1, △=b 2﹣4ac=4+4=8>0, 所以方程有两个不相等的实数根,2x 12±===±1211x x ==-3.B4.B5.证明:∵没有实数根,∴ 4-4(1-m)<0, ∴m<0.对于方程 x 2+mx =1-2m ,即. ,∵,∴△>0.∴x 2+mx =1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程配方法(第1课时)教案
21.2解一元二次方程21.2.1配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根...x2.2.求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.;⑵思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm.教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1)x 2=4;(2)x 2=0;(3)x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2,x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程x 2=p,(I)(1)当p>0时,根据平方根的意义,方程(I)有两个不等的实数根1x =-,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1=x 2=0;(3)当p<0时,因为任何实数x,都有x 2≥0,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.例1利用直接开平方法解下列方程:(出示课件8)(1)x 2=6;(2)x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =±12,∴==-x x (2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30,x 2=-30.出示课件9:解下列方程:(1)2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x 系数化为1,得2 4.=x ∴=±x即122,2;==-x x (2)移项,得298.=x 系数化为1,得28.9=x 122222,.33∴==-x x 教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=±33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--,或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2解下列方程:(1)(x+1)2=2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4=0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3)12(3-2x)2-3=0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴x 1=54x 2=74.出示课件14,学生自主思考并解答.例3解下列方程:(出示课件15)(1)2445x x -+=;(2)29614x x ++=.师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=-方程的两根为12=+x 22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 21.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1.一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是()A.x 2=-2,解方程,得B.(x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)=±3,x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5,x 1=1;x 2=-43.填空:(1)方程x 2=0.25的根是______________.(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________.4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y①113+=y②113=-+y③3 1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5⑵x 1=3,x 2=-3⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+225,22 5.∴-=+-=--x x x x 方程的两根为17,=-x 21.=-x (四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程教案 配方法(第2课时)教案
21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】了解配方的概念,能够熟练地利用配方法解一元二次方程及解决有关问题。
【过程与方法】理解通过变形运用开平方法解一元二次方程的方法,进一步体会降次的数学思想方法.【情感态度与价值观】在学生合作交流过程中,进一步增强合作交流意识,培养探究精神,增强数学学习的乐趣.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】用配方法解一元二次方程.【教学难点】用配方法解一元二次方程的方法和技巧.五、课前准备课件六、教学过程(一)导入新课要使一块矩形场地的长比宽多6米,并且面积为16平方米,求场地的长和宽应各是多少?(出示课件2)教师展示以下问题,学生思考。
如果设这个长方形场地的宽为xm,则长为,由题意可列出的方程为,化为一般式,得,怎样解这个方程?能不能用直接开平方法?(二)探索新知让学生阅读第6~7页探究内容,思考并回答如下问题:(出示课件4)1.用直接开平方法解下列方程:(1)9x2=1;(2)(x-2)2=2.2.下列方程能用直接开平方法来解吗?(1)x2+6x+9=5;(2)x2+6x+4=0.教师总结:把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方来解.出示课件5:填一填下列完全平方公式.(1)a2+2ab+b2=( )2;(2)a2-2ab+b2=( )2.出示课件6:填一填2222222222(1)10___(2)12___(3)5____2(4)___3(5)___(__)(__)(__)(__)(__)x x x x x b x x x x x x x x x x ++=-+=++=-+==+++-+-+教师问:你发现了什么规律?学生答:⑴二次项系数都为1.⑵配方时, 等式两边同时加上的是一次项系数一半的平方.出示课件7:怎样解方程: x 2+6x+4=0(1)(1)方程(1)怎样变成(x+n)2=p 的形式呢?学生思考后,共同解答如下:教师强调:二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.(2)为什么在方程x 2+6x=-4的两边加上9?加其他数行吗?(出示课件8) 学生思考后,教师加以提示:不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x 2+2bx+b 2的形式.归纳总结:(出示课件9)像上面那样,通过配成完全平方的形式来解一元二次方程的方法叫做配方法.配方是为了降次 ,把一个一元二次方程转化成两个一元一次方程来解. 例1 解方程:(出示课件10)2810x x -+=.师生共同讨论解答如下:解:移项,得x 2-8x =-1配方,得x 2-8x+4²=-1+4²,整理,得(x-4)2=15,由此可得4x -=1244x x =+=-出示课件11:解方程:x 2+8x-4=0.学生自主思考并解答.解:移项,得 x 2+8x =4配方,得 x 2+8x+4²=4+4²,整理,得 (x+4)2=20,由此可得 x+4=±,x 1=4-+,x 2=4--.例2 解方程(1)2213 +=x x ;(出示课件12) 师生共同讨论解答如下:解:移项,得2x 2-3x=-1,二次项系数化为1,得231,22x x -=-配方,得2223313,2424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭ 231,416x ⎛⎫-= ⎪⎝⎭ 由此可得31,44x -=±2111,.2x x ==(2)2 3640.-+=x x (出示课件13)师生共同讨论解答如下:解:移项,得2364,x x -=- 二次项系数化为1,得242,3x x -=- 配方,得2224211,3x x -+=-+即()211.3x -=- 因为实数的平方不会是负数,所以x 取任何实数时,上式都不成立,所以原方程无实数根.教师问:用配方法解一元二次方程时,移项时要注意些什么?(出示课件14)学生答:移项时需注意改变符号.教师问:用配方法解一元二次方程的一般步骤.学生答:①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.根据解方程的过程及学生的回答,教师总结如下:(出示课件15)一般地,如果一个一元二次方程通过配方转化成(x+n )2=p.⑴当p>0时,则 ,方程的两个根为x 1, x 2(2)当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为x 1=x 2=-n;(3)当p<0时,则方程(x+n)2=p 无实数根.出示课件16-19,选4名学生板演,师生共同完成后,老师仍要向学生强调方程无实数根的情况.例3试用配方法说明:不论k 取何实数,多项式 k 2-4k +5 的值必定大于零.(出示课件20)师生共同讨论解答如下:解:k 2-4k +5=k 2-4k +4+1=(k -2)2+1因为(k -2)2≥0,所以(k -2)2+1≥1.所以k 2-4k +5的值必定大于零.教师强调:证明代数式的值恒为正数,需要利用配方法将代数式化成几个非负数的和,利用非负数的性质说明代数式的值恒为正数.例4若a,b,c 为△ABC 的三边长,且试判断△ABC 的形状. (出示课件21)x n +=2268250,a a b b -+-=师生共同讨论解答如下:解:对原式配方,得根据非负数的性质得由此可得 即根据勾股定理的逆定理可知,△ABC 为直角三角形.出示课件22,进行及时巩固.教师问:配方法的应用有哪些?(出示课件23)配方法的应用()()22340,-+-+=a b ()()2230,40,-=-==a b 345,===a b c ,,222222345,+=+==a b c(三)课堂练习(出示课件24-29)1. 一元二次方程y2﹣y ﹣=0配方后可化为( )A.(y+)2=1B.(y-)2=1C.(y+)2=D.(y-)2=2.解方程:4x 2-8x-4=0.3.利用配方法证明:不论x 取何值,代数式-x 2-x -1的值总是负数,并求出它的最大值.4.若 ,求(xy)z 的值.5.如图,在一块长35m 、宽26m 的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?6.已知a,b,c 为△ABC 的三边长,且试判断△ABC 的形状. 参考答案:3412121234123401326422=+-+++-z y y x x 2220,a b c ab ac bc ++---=1.B2.解:移项,得4x 2-8x=4,二次项系数化为1,得x 2-2x=1,配方,得x 2-2x+1=1+1,整理,得(x-1)2=2,3. 证明:原式=-(x 2+x )-1 =-[x 2+x+(12)2]+14-1=-(x+12)2-344.解:对原式配方,得由非负数的性质可知5.解:设道路的宽为xm, 根据题意得(35-x)(26-x)=850,整理得11=+x 21=-x 2211()0()022-因为,即 x+x+≥≤-x 所以2133(+)--,244≤2121.34-因此当 时,---有最-大值x=x x ()()22230,-+++=x y ()()2220,30,0.-=+==x y 2,32.,==-=由此可得x y z ()()()222.6363⎡⎤=⨯-=-=⎣⎦因此z xyx 2-61x+60=0.解得x 1=60(不合题意,舍去), x 2=1.答:道路的宽为1m.6.解:对原式配方,得由代数式的性质可知所以,△ABC 为等边三角形(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.2)公式法的相关内容。
2024年人教版九年级数学上册教案及教学反思第21章21.1 一元二次方程
21.1一元二次方程一、教学目标【知识与技能】1.通过设置具体问题,建立数学模型,模仿一元一次方程的概念得到一元二次方程的定义;2.一元二次方程的一般形式及其有关概念.【过程与方法】了解一元二次方程根的概念,会判定一个数是否是一元二次方程的根及利用它们解决一些具体问题.【情感态度与价值观】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.【教学难点】一元二次方程及其二次项系数、一次项系数和常数项的识别.五、课前准备多媒体课件六、教学过程(一)导入新课(出示课件2)教师问1:观察图片。
要设计一座2m高的人体雕像(如左下图所示),要求雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?学生回答:设雕像下部高x m,依题意得方程x2=2(2-x),整理,得x2+2x-4=0.教师问2:上述所列的方程与我们以前学习的方程一样吗?这种方程与以前学习的方程有哪些联系?(二)探索新知探究一一元二次方程的概念见教材第2页问题1.(出示课件4)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?【教学说明】针对上述问题可给予5~8分钟时间让学生讨论,教师可相应设置如下问题帮助学生分析:如果设四角折起的正方形的边长为xm,则制成的无盖方盒的底面长为多少?宽为多少?由底面积为3600cm2,可得到的方程又是怎样的?【讨论结果】(出示课件5)设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,由此可得到方程(100-2x)(50-2x)=3600,整理为:4x2-300x+1400=0,化简,得x2-75x+350=0,由此方程可得出所切去的正方形的大小.见教材2~3页问题2.(出示课件6)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?教学过程中,教师可设置如下问题:(1)这次排球赛共安排场;(2)若设应邀请x个队参赛,则每个队与其它个队各赛一场,这样共应有场比赛;(3)由此可列出的方程为,化简得.教师提出问题,引导学生思考方程的建模过程,同时注重激发学生解决问题的欲望和兴趣.【讨论结果】(课件6展示)设应邀请x 个队参赛,通过分析可得到12·x ·(x-1)=28,化简,得x 2-x=56,即x 2-x-56=0.观察思考观察前面所构建的三个方程,它们有什么共同点?可让学生先独立思考,然后相互交流,得出这些方程的特征:(出示课件7)(1)方程各项都是整式; (2)方程中只含有一个未知数; (3)未知数的最高次数是2. 【归纳结论】(出示课件8)一元二次方程:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程.想一想21109000x x --=是一元二次方程吗?(出示课件9)共同总结:不是.等号左边含有分式;化简整理后,未知数的最高次数为3次.例1 下列选项中,关于x 的一元二次方程的是( )(出示课件10) A.2210x x+= B.3x 2-5xy+y 2=0 C.(x-1)(x-2)=0 D.ax 2+bx+c=0 师生共同讨论,总结如下:方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.三个条件:①方程两边都是整式;②只含有一个未知数;③未知数的最高次数是2. 必须同时满足,缺一不可.生1:A 不满足整式方程;生2:B含有两个未知数;生3:C整理结果为x2-3x+2=0,满足三个条件,为正确答案生4:D若a=0,则不满足未知数最高次数为2条件。
人教版九年级数学上册21.1:一元二次方程(教案)
1.教学重点
-理解并掌握一元二次方程的定义及一般形式,这是学习后续解法的基础。
-掌握直接开平方法、配方法、公式法、因式分解法等解一元二次方程的常用方法,能够熟练运用这些方法求解方程。
-认识判别式Δ的作用,能够根据判别式的值判断方程的根的情况。
-了解并应用一元二次方程的根与系数之间的关系,掌握根的公式。
人教版九年级数学上册21.1:一元二次方程(教案)
一、教学内容
人教版九年级数学上册21.1:一元二次方程
1.理解一元二次方程的定义,掌握其一般形式:ax^2 + bx + c = 0(a≠0)。
2.学会使用直接开平方法、配方法、公式法、因式分解法求解一元二次方程。
3.掌握一元二次方程的根的判别式Δ=b^2-4ac,并能根据判别式的值判断方程的根的情况。
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的解法和判别式Δ这两个重点。对于难点部分,比如配方法和公式法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过测量不同长度的绳子围成的正方形的面积,来演示一元二次方程的基本原理。
小组讨论时,我尽量引导学生提出自己的观点,鼓励他们相互交流。从成果分享来看,学生们对一元二次方程在实际生活中的应用有了更深入的理解。但同时,我也发现有些学生在讨论中不够积极,可能是因为他们对问题还不够熟悉,或者是对自己的观点不够自信。我需要在以后的课堂上,多关注这部分学生,提高他们的参与度和自信心。
五、教学反思
今天在教授一元二次方程这一章节时,我发现学生们对配方法和公式法的掌握程度参差不齐。在讲解过程中,我尽量用简单明了的语言和丰富的例子来阐述这两个难点,但感觉还是有一部分学生难以跟上。我意识到,可能需要更多的时间和练习来帮助他们真正理解和运用这些方法。
人教版数学九年级上册第二十一章 一元二次方程教案与反思
投我以桃,报之以李。
《诗经·大雅·抑》翰辰学校李道友组长第二十一章一元二次方程本章的主要内容包括:一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.其中解一元二次方程的基本思路和具体解法是本章的重点内容.方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习做好准备.联系一元二次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会“方程是刻画现实世界的一个有效的数学模型”.本章是中考考查的重点内容,主要考查一元二次方程的解及其解法、一元二次方程根与系数的关系、建立一元二次方程模型解决实际问题.【本章重点】一元二次方程的解法及应用.【本章难点】1.一元二次方程根与系数的关系的应用.2.利用一元二次方程解决实际问题.【本章思想方法】1.体会和掌握转化法,如:在解一元二次方程时,利用转化法将一元二次方程转化为一元一次方程.2.掌握建模思想,如:在利用一元二次方程解决实际问题时,根据题意建立适当的一元二次方程,将实际问题转化为数学模型.21.1 一元二次方程1课时21.2 解一元二次方程4课时21.3 实际问题与一元二次方程1课时21.1 一元二次方程(1课时)一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1 自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm,则盒底的长为(100-2x)_cm,宽为(50-2x)_cm.列方程,得(100-2x)(50-2x)=3600,化简,整理,得x2-75x+350=0.①问题2:要组织一次排球邀赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为4×7=28(场).设应邀请x个队参赛,每个队要与其他(x-1)个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共12x(x-1)场.列方程,得12x(x-1)=28.简、整理,得x2-x-56=0.②归纳总结:方程①②的共同特点是:方程的两边都是整式,只含有一个未知数,并且未数的最高次数是2.2.一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是ax2+bx+c=0(a≠0).其中ax2是二次项,a是二次项系数,bx是一次项,b是次项系数,c是常数项环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x 2-2x -14=x 2-2x +35; (4)2(x +1)2=3(x +1);(5)x 2-2x =x 2+1;(6)ax 2+bx +c =0.【互动探索】(引学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝ ⎛⎭⎪⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数.【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的?【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x 2+4x -7=0.其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x 2+10x +12=0的解?-4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】 巩固练习(学生独学)1.下列方程是一元二次方程的是( D )A .ax 2+bx +c =0B .3x 2-2x =3(x 2-2)C .x 3-2x -4=0D .(x -1)2+1=02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( A )A .2B .0C .0或2D .0或-2【教师点拨】将x =2代入x 2-2mx +4=0得,4-4m +4=0.再解关于m 的一元一次方程即可得出m 的值.3.把一元二次方程(x +1)(1-x )=2x 化成二次项系数大于0的一般式是x 2+2x -1=0,其中二次项系数是1,一次项系数是2,常数项是 -1.【活动3】 拓展延伸(学生对学)【例4】求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x 的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m 2-8m +17=m 2-8m +42+1=(m -4)2+1.∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0,∴不论m 取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标(学生总结,老师点评)1.一元二次方程⎩⎪⎨⎪⎧ 必须满足的三要素⎩⎨⎧ 是整式方程只有一个未知数未知数的最高次数是2 一般形式:ax 2+bx +c =0a ≠02.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
人教版初中数学九年级上册 21.1 一元二次方程 初中九年级数学教案教学设计课后反思 人教版
师生行为
教师提出问题,引导学生 思考。
由学生观察归纳这 3 个方 程的特征,给出名称并类 比一元一次方程的定义, 得出一元二次方程的定 义。
活动中教师应重点关 注: (1) 引导学生观察所列出 的 3 个方程的特点;
来源于现实世界,是刻画现实世界的一个有效数学模型。
二、教学任务分析
1、 理解一元二次方程的概念。
知识技能 2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系
数及常数项。
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题
及解决问题的能力。
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和
由学生以抢答的形式来 完成此题,并让学生找出 错误理由。其中(1) (2)题 较为简单,学生可非常容 易给出答案;而(3)(4)两 题有一定难度,可以进行 分类讨论。
此活动中,教师应注 意对学生给出的答案作出 点评和归纳。
引导学生类比一元一 次方程的一般形式,总结 归纳一元二次方程的一般 形式及项、系数的概念。
下此方程为一元一次方程? 类似条件,找其他同学回答
给出的新问题,让大家进
行判断给出的方程是否正
确。
此环节中,教师应注
意板书学生给出的方程并
且及时引导学生注意类似
的情况。
问题与情境
师生行为
六、小结
设计意图 此题设置的目的在于加 深学生对一般形式的理解
采取游戏的形式以提高 学生对数学学习的兴趣,参 与课堂活动的积极性,还可 鼓励学生课下继续以合作的 形式进行学习。
这组练习目的在于巩固 学生对一元二次方程定义中 3 个特征的理解。
人教版九年级上册21.1一元二次方程 初中九年级数学教案教学设计课后反思 人教版
21.1 一元二次方程教学设计兴业县卖酒镇第二初级中学吴崇清学习目标1.理解一元二次方程的概念;2.掌握一元二次方程的一般式,正确认识二次项系数、一次项系数及常数项.重点难点一元二次方程的概念及其一般式教学过程一、回顾旧知1、什么是一元一次方程?只含有一个未知数(元),未知数次数都是1,等号两边都是整式,这样的方程叫一元一次方程。
2、一元一次方程的一般式ax+b=0(a,b为常数,a≠0)二、探究1、有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm ,宽为 (50-2x)cm根据方盒的底面积为3600cm2,得.即:2、正方形桌面的面积是 4 m2,求它的边长?分析:正方形的面积=边长×边长xm3、要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?分析:全部比赛共 4x7=28场设应邀请 x 个队参赛,每个队要与其他(x-1)个队各赛1场由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛(x-1)x=284、观察下列各方程有什么共同点1等号两边都是整式②只有一个未知数③未知数最高次数是25、一元二次方程的概念(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.(2)一元二次方程的一般形式:(a≠0)(3)一元二次方程的项和各项系数是二次项 a是二次项系数是一次项 b是一次项系数 c是常数项反问:为什么要限制a≠0,b,c可以为零吗?三、初步应用1、判断下列方程中,哪些是一元二次方程?(1) (2) (3)(4) (5)2、说出下列方程的二次项系数、一次项系数及常数项解:由原方程得:二次项系数是 1,一次项系数是 -1,常数项是 -56四、小结1、一元二次方程的概念2、一元二次方程的一般式。
《一元二次方程》 初中九年级数学教案教学设计课后反思 人教版
人教版数学九年级上册《一元二次方程》——教学设计石河子师范学校田霞人教版数学九年级上册第二十一章一元二次方程21.1一元二次方程教学设计一、教学内容解析1.内容一元二次方程概念及一元二次方程一般式及有关概念.2.内容解析本节课是概念课也是一元二次方程的起始课,它承载着学习方法、研究思路的引领作用.从教材的整体进行分析,方程问题始终以实际问题引入概念的,这样的设计:既分散列方程解决实际问题的教学难点,又使学生认识引入一元二次方程概念的现实必要性,同时循序渐进地培养学生从实际问题中抽象方程模型的能力.本节以实际问题为背景,建立数学模型,列出一元二次方程,引导学生观察这些方程的共同特点,并类比一元一次方程,归纳得出一元二次方程的概念,体现了研究代数学问题的一般方法;一元二次方程一般形式也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果.这样编排有利于学生理解并接收新知识,有充分地反映出一元二次方程以及有关概念来源于现实世界,是刻画现实世界的一个有效数学模型.二、学情分析学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程(组)、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式.本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法。
该班学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,注重课堂教学的有效性。
三、教学目标与解析1.教学目标知识技能:1.理解一元二次方程的概念;2. 掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3.理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.2.目标解析(1)通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能了解一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,培养学生分析问题和解决问题的能力及用数学思维的意识.(2)将不同形式的一元二次方程统一为一般形式,让学生从数学符号的角度,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数.(3)会判断一个数是否是一元二次方程的根.四、教学重点、难点重点:能建立一元二次方程模型,把一元二次方程整理成一般形式.难点:把实际问题转化为一元二次方程的模型.五、教法与学法分析教法:在教学中,教师通过“问题情境——建立模型—一问题解决——反思拓展”的教学环节,让学生经历探究及数学建模的全过程,使学生能够抓住问题的本质,正确、熟练地运用一元二次方程解决实际问题,领会数学建模的思想和方法,提高数学的应用意识和应用数学知识解决实际问题的能力.学法:学生通过讨论,总结归纳本课的知识内容.六、教师准备:制作课件,精选习题七、时间分配:回顾—3分钟,一、创设情境导入新课——8分钟,二、实践探究交流新知——14分钟,三、开放训练体现应用——12分钟,四、课堂总结反思——8分钟七、教学过程设计。
人教版数学九年级上册21.2解一元二次方程(教案)
此外,我也会反思自己的教学方法,看看是否有更直观、更生动的方式来讲解这些概念,使它们更容易被学生接受。我可能会引入更多的教学工具,如图形、实物模型等,来帮助学生们直观理解一元二次方程的解法。
-能够灵活运用各种解法求解一元二次方程,并理解解的几何意义。
-解决实际问题中涉及的一元二次方程,体会数学在生活中的应用。
举例:重点讲解配方法中的“完全平方公式”,并让学生通过练习熟练掌握其运用。
2.教学难点
-理解并掌握配方法中“移项”和“配方”的步骤,特别是在“配方”过程中常数项的处理。
-对公式法中求根公式的理解和记忆,以及正确运用求根公式求解一元二次方程。
c.让学生通过反复练习,掌握配方过程中关键步骤,并能独立完成类似题目。
对于公式法的难点,可通过以下方式帮助学生理解:
a.解释求根公式的来源和推导过程,增强学生的理解。
b.通过对比不同类型的一元二次方程,让学生体会求根公式的普适性。
c.通过典型例题,展示求根公式在实际应用中的正确使用方法。
对于分解因式法的难点,可以采取以下策略:
b.通过实例演示,如何将实际问题转化为数学方程。
c.让学生通过小组讨论和实际操作,学会将实际问题数学化,培养建模能力。
c”的指令,继续完成示范课的一元二次方程的四种解法,并能熟练运用。
2.过程与方法:通过实例分析,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度价值观:激发学生学习数学的兴趣,提高他们解决问题的自信心。
(贵州)RJ人教版 九年级数学 上册(教学设计 电子教案)第二十一章 一元二次方程(全单元教案 含反思)
第二十一章一元二次方程21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2.已知床单的长是2m,宽是1.4m,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m,则由图可知剩下部分的长为(2-2x)m,剩下部分的宽为(1.4-2x)m.∵剩下部分面积为1.6m2,∴可列方程(2-2x)(1.4-2x)=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解【类型一】判断一元二次方程的解方程x-2x=0的解为( )A.x1=1,x2=2 B.x1=0,x2=1C.x1=0,x2=2 D.x1=12,x2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C中的x1=0,x2=2都能使方程x2-2x=0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x的一元二次方程(m-1)x+x+1=0的一个根,则m的值是( ) A.1 B.-1C.0 D.无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用(2014·山东济宁中考)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m -4,则ba=________.解析:∵ax2=b,∴x=±ba,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2,∴ba=2,∴ba=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,则a=________.解析:∵一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,∴a+2≠0且a2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x=±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m-8m+17)x+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m -4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.21.2.2公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a>2 B.a<2C.a<2且a≠1 D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x的方程2x+kx-1=0,求证:方程有两个不相等的实数根.证明:Δ=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即Δ>0,∴方程2x2+kx-1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x 2+12x +9=0.∵b 2-4ac =0,∴x 1=x 2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解,则第三边的长为( )A .7B .3C .7或3D .无法确定解析:解一元二次方程x 2-10x +21=0,得x 1=3,x 2=7.根据三角形三边的关系,第三边还应满足4<x <8.所以第三边的长x =7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.21.2.3因式分解法1.认识用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.一、情境导入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求出(x+3)(x-5)=0的解吗?二、合作探究探究点一:用因式分解法解一元二次方程【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2+5x=0;(2)(x-5)(x-6)=x-5.解析:变形后方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x(x+5)=0,∴x=0或x+5=0,∴原方程的解为x1=0,x2=-5;(2)原方程转化为(x-5)(x-6)-(x-5)=0,∴(x-5)[(x-6)-1]=0,∴(x-5)(x -7)=0,∴x-5=0或x-7=0,∴原方程的解为x1=5,x2=7.【类型二】利用公式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2-6x=-9;(2)4(x-3)2-25(x-2)2=0.解:(1)原方程可变形为:x2-6x+9=0,则(x-3)2=0,∴x-3=0,因此原方程的解为:x1=x2=3.(2)[2(x-3)]2-[5(x-2)]2=0,[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=0,(7x-16)(-3x+4)=0,∴7x-16=0或-3x+4=0,∴原方程的解为x1=167,x2=43.方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题若a、b、c为△ABC的三边,且a、b、c满足a2-ac-ab+bc=0,试判断△ABC 的形状.解析:先分解因式,确定a,b,c的关系,再判断三角形的形状.解:∵a2-ac-ab+bc=0,∴(a-b)(a-c)=0,∴a-b=0或a-c=0,∴a=c或a =b,∴△ABC为等腰三角形.三、板书设计利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.*21.2.4一元二次方程的根与系数的关系1.探索一元二次方程的根与系数的关系.2.会不解方程利用一元二次方程的根与系数解决问题.一、情境导入一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q≥0),试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1·x2的值,你能得出什么结果?二、合作探究探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知m、n是方程2x2-x-2=0的两实数根,则1m+1n的值为( ) A.-1 B.12C.-12D.1解析:根据根与系数的关系,可以求出m+n和mn的值,再将原代数式变形后,整体代入计算即可.因为m、n是方程2x2-x-2=0的两实数根,所以m+n=12,mn=-1,1m+1n=n+mmn=12-1=-12.故选C.方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.【类型二】根据方程的根确定一元二次方程已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( ) A.x2-6x+8=0 B.x2+9x-1=0C.x2-x-6=0 D.x2+x-20=0解析:∵方程的两根分别是4和-5,设两根为x1,x2,则x1+x2=-1,x1·x2=-20.如果令方程ax2+bx+c=0中,a=1,则-b=-1,c=-20.∴方程为x2+x-20=0.故选D.方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项.【类型三】根据根与系数的关系确定方程的解(2014·云南曲靖)已知=4是一元二次方程x2-3x+c=0的一个根,则另一个根为________.解析:设另一根为x1,则由根与系数的关系得x1+4=3,∴x1=-1.故答案为x=-1.方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决.【类型四】利用一元二次方程根与系数的关系确定字母系数5,则a的值是( )A.-1或5 B.1C.5 D.-1解析:将两根平方和转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决.设方程两根为x1,x2,由题意,得x21+x22=5.∴(x1+x2)2-2x1x2=5.∵x1+x2=a,x1x2=2a,∴a2-2×2a=5.解得a1=5,a2=-1.又∵Δ=a2-8a,当a=5时,Δ<0,此时方程无实数根,所以舍去a=5.当a=-1时,Δ>0,此时方程有两实数根.所以取a =-1.故选D.方法总结:解答此类题的关键是将与方程两根有关的式子转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决问题.注意不要忽略题目中的隐含条件Δ≥0,导致解答不全面.【类型五】一元二次方程根与系数的关系和根的情况的综合应用已知x1、x2是一元二次方程(a-6)x+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.解:(1)根据题意,得Δ=(2a)2-4×a(a-6)=24a≥0.解得a≥0.又∵a-6≠0,∴a ≠6.由根与系数关系得:x1+x2=-2aa-6,x1x2=aa-6.由-x1+x1x2=4+x2得x1+x2+4=x1x2,∴-2aa-6+4=aa-6,解得a=24.经检验a=24是方程-2aa-6+4=aa-6的解.即存在a=24,使-x1+x1x2=4+x2成立.(2)原式=x1+x2+x1x2+1=-2aa-6+aa-6+1=66-a为负整数,则6-a为-1或-2,-3,-6.解得a=7或8,9,12.三、板书设计教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程的根与系数的关系教案
21.2解一元二次方程21.2.4一元二次方程的根与系数的关系一、教学目标【知识与技能】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊——一般——特殊”的数学思想方法,培养学生勇于探索的精神.二、课型新授课三、课时1课时四、教学重难点【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.五、课前准备课件六、教学过程(一)导入新课1.一元二次方程的求根公式是什么?(出示课件2)学生口答:2(40).2b b ac x b ac a-±=-≥2.如何用判别式b 2-4ac 来判断一元二次方程根的情况?学生口答:对一元二次方程:ax 2+bx+c=0(a≠0).b 2-4ac>0时,方程有两个不相等的实数根.b 2-4ac=0时,方程有两个相等的实数根.b 2-4ac<0时,方程无实数根.想一想:方程的两根x 1和x 2与系数a、b、c 还有其他关系吗?(二)探索新知探究根与系数的关系填表,观察、猜想(出示课件4)方程x 1,x 2x 1+x 2x 1·x 2x 2-2x +1=0x 2+3x -10=0x 2+5x +4=0你发现什么规律?①用语言叙述你发现的规律;②x2+px+q=0的两根x1,x2用式子表示你发现的规律.出示课件5:若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?教师引导:归纳结论:(出示课件6)如果关于x的方程x2+px+q=0的两根为x1,x2,则:x1+x2=-p,x1·x2=q.教师问:如果方程二次项系数不为1呢?(出示课件7)方程x1,x2x1+x2x1·x22x2-3x-2=03x2-4x+1=0上面发现的结论在这里成立吗?请完善规律.①用语言叙述发现的规律;②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.师生共同归纳:(出示课件8)一元二次方程根与系数的关系(韦达定理):若一元二次方程ax2+bx+c=0(a≠0)有两实数根x1,x2,则x1+x2=-ba ,x1·x2=ca.这表明两根之和为一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.请同学用求根公式证明.(一生板演)教师问:在运用根与系数的关系解决具体问题时,是否需要考虑根的判别式Δ=b2-4ac≥0呢?强调:能用根与系数的关系的前提条件为b2-4ac≥0.出示课件9,10:例1利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;(2)2x2-3x-2=0.学生思考后,共同解答如下:解:⑴这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1·x2=6.⑵这里a=2,b=-3,c=-2.Δ=b2-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=32,x1·x2=-1.出示课件11:不解方程,求方程两根的和与两根的积:①x2+3x-1=0;②2x2-4x+1=0.学生自主思考并解答.解:⑴x1+x2=-3,x1·x2=-1.⑵原方程可化为:2122=+-xxx1+x2=2,x1·x2=1 2 .出示课件12:例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.学生思考后,共同解答如下:解:设方程的两个根分别是x1,x2,其中x1=2.所以:x1·x2=2x2=6, 5-即:x2=3, 5-由于x1+x2=2+3 ()5-=,5k-得:k=-7.答:方程的另一个根是3,5-k=-7.出示课件13:已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k 的值.学生自主思考并解答.解:设方程的另一个根为x1.把x=2代入方程,得4-2(k+1)+3k=0.解这方程,得k=-2.由根与系数关系,得x1·2=3k,即2x1=-6.∴x 1=-3.答:方程的另一个根是-3,k 的值是-2.出示课件14:例3不解方程,求方程2x 2+3x-1=0的两根的平方和、倒数和.师生共同分析:将所求代数式分别化为只含有x 1+x 2和x 1·x 2的式子后,用根与系数的关系,可求其值.师生共同解答如下:解:根据根与系数的关系可知:121231,.22+=-⋅=-x x x x ()()22212112212,∵+=++x x x x x x ∴()2221212122+=+-x x x x x x 21331;4222⎛⎫⎛⎫=--⨯-= ⎪ ⎪⎝⎭⎝⎭()1212121132.2312+⎛⎫⎛⎫+==-÷- ⎪ ⎪⎝⎭⎝=⎭x x x x x x 出示课件15:设x 1,x 2为方程x 2-4x+1=0的两个根,则:⑴x 1+x 2=,(2)x 1·x 2=,(3)=-221)(x x ,(4)=+2221x x .学生自主解答后,口答:⑴4;⑵1;⑶12;⑷14.出示课件16:例4设x 1,x 2是方程x 2-2(k-1)x+k 2=0的两个实数根,且x 12+x 22=4,求k 的值.教师分析:将x 1+x 2=2(k -1),x 1x 2=k 2,代入x 12+x 22=4可求出k 值.此时需用Δ=b 2-4ac 来判断k 的取值,这是本例的关键.解:由方程有两个实数根,得Δ=4(k -1)2-4k 2≥0即-8k +4≥0.∴.21≤k 由根与系数的关系得x 1+x 2=2(k -1),x 1x 2=k 2.∴x 12+x 22=(x 1+x 2)2-2x 1x 2=4(k -1)2-2k 2=2k 2-8k +4.由x 12+x 22=4,得2k 2-8k+4=4,解得k 1=0,k 2=4.经检验,k 2=4不合题意,舍去.师生共同总结归纳如下:(出示课件17)12111.x x +=1212;x x x x +2221212122.()2;x x x x x x +=+-12213.x x x x +221212x x x x +=2121212()2;x x x x x x +-=124.(1)(1)x x ++=1212()1;x x x x +++125.x x -==教师强调:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.出示课件18:当k 为何值时,方程2x 2-(k+1)x+k+3=0的两根差为1.学生自主思考并解答.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1.∵(x2-x1)2=(x1+x2)2-4x1x2,由根与系数的关系得x1+x2=12k+,x1x2=32k+.∴(12k+)2-4×32k+=1.解得k1=9,k2=-3.当k=9或-3时,由于Δ>0,∴k的值为9或-3.(三)课堂练习(出示课件19-25)1.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2B.1C.2D.02.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m=____.3.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.4.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.5.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.6.设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2).2112xxxx+7.当k为何值时,方程2x2-kx+1=0的两根差为1.8.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=1求m的值.参考答案:1.D2.32;-33.1;-24.解:将x =1代入方程中:3-19+m=0.解得m=16,设另一个根为x 1,则:1×x 1=16.3c a =∴x 1=16.35.解:(1)根据根与系数的关系12,x x k +=-121.2k x x -=得(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1=1()14,2k k -+-+=解得:k=-7;(2)因为k=-7,所以127,x x +=12 4.x x =-则:222121212()()474(4)65.x x x x x x -=+-=-⨯-=6.解:根据根与系数的关系得:12124, 1.3b c x x x x a a +=-=-⋅==-(1)(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=44(-1)1;33-++=-(2)222211212121212123492x x x x x x x x x x x x x x +++===-()-.7.解:设方程两根分别为x 1,x 2(x 1>x 2),则x 1-x 2=1,由根与系数的关系,得,221k x x =+,2121=∙x x ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1,21422=⨯-⎪⎪⎭⎫ ⎝⎛k ∴3,22=⎪⎪⎭⎫ ⎝⎛k ∵△>0,∴=±k 8.解:(1)方程有实数根,24b acD =-=(-2m )2-4m (m -2)22448m m m=-+=8m ≠0∴m 的取值范围为m>0.(2)∵方程有实数根x 1,x 2,∴.22,2121mm x x x x -=⋅=+∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1.2422=-⨯-m m 解得m=8.经检验m=8是原方程的解.(四)课堂小结通过这节课的学习你有哪些收获和体会?有哪些地方需要特别注意的?谈谈你的看法.(五)课前预习预习下节课(21.3)第1课时的相关内容。
人教版九年级数学上册教案-21.1 一元二次方程2带教学反思
1.课本练习
2 补充:
1).在下列方程中,一元二次方程的个数是( ).
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 A.1 个 B.2 个 C.3 个 D.4 个
④3x2- 5 =0 x
第2页共3页
2).关于 x 的方程(a-1)x2+3x=0 是一元二次方程,则 a 范围________. 3).已知方程 5x2+mx-6=0 的一个根是 x=3,则 m 的值为________ 4).关于 x 的方程(2m2+m)xm+1+3x=6 可能是一元二次方程吗? 四、小结归纳 1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一 般形式,并正确指出其各项系数. 2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程 的根. 五、作业设计 必做:P4:1.2.4.6.7 选做:.P29:3.5.7 教学反 思
探究课本问题 2
师生分析概念和一般形式. 二次方程的概念
分析:
学生根据相关概念作答,复 达到共识,从而为
1.参赛的每两个队之间都要比赛一场是什么意思?
习巩固.
掌握概念作准备.
2.全部比赛场数是多少?若设应邀请 x 个队参赛,如何用含 x 的代数
学生类比一元一次方程的解 全面理解和掌握
式表示全部比赛场数?
~
第3页共3页
(1)x2-64=0(2)x2+1=0 (3)x2-3x=0 (4) x2 2x 1 0
4.思考:一元一次方程一定有一个根,一元二次方程呢? 5.排球邀请赛问题中,所列方程 x2 x 56 的根是 8 和-7,但是答案 只能有一个,应该是哪个? 归纳: ○1 一元二次方程的根的情况 ○2 一元二次方程的解要满足实际问题 三、课堂训练
人教版九年级数学上册(教案):21.1一元二次方程
三、教学难点与重点
1.教学重点
-理解一元二次方程的定义及其一般形式,这是后续学习的基础。
-掌握配方法、公式法、因式分解法解一元二次方程,这些是解决一元二次方程的核心技能。
-识别判别式Δ的意义及其与方程解的关系,这是判断一元二次方程解的性质的关键。
-应用一元二次方程解决实际问题,这是将理论知识应用于实际情境的能力。
-掌握根与系数的关系,即韦达定理,这是理解一元二次方程解的结构的重要部分。
举例解释:
-通过实际例题,让学生明白一元二次方程是如何从现实问题中抽象出来的,例如,从计算物体自由落体运动中的落地时间引出一元二次方程。
-在讲解解法时,详细解释每种方法的步骤和原理,如配方法中如何将方程配成完全平方的形式,公式法中如何使用求根公式,因式分解法中如何寻找两个因式使方程左右两边相等。
-通过具体方程的判别式Δ的计算,让学生理解Δ>0、Δ=0、Δ<0分别对应方程有两个不等实数解、有两个相等实数解、无实数解的情况。
-设计实际问题的练习题,如计算矩形的面积、求解抛物线与坐标轴的交点等,让学生将方程解法应用于实际问题的解决。
-通过具体的方程例子,让学生观察并总结出韦达定理,理解两个解的和与积与方程系数之间的关系。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“一元二次方程在解决哪些问题时特别有效?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
人教版九年级上册数学教案:第21章一元二次方程-回顾与反思
第21章一元二次方程回顾与反思
教学目标
(一)知识目标
通过回顾与反思本章的知识,使学生掌握知识之间的内在联系。
(二)能力目标
(1)体会转化与降次的思想方法在本章的应用.
(2)进一步体会方程模型的应用价值,培养学生的数学建模能力.
(三)情感与价值观目标
通过活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.激发他们学习数学的兴趣,克服困难的决心
教学重点:
根据一元二次方程的特征,灵活选用解法,以及应用一元二次方程知识解决实际问题。
教学难点:灵活选用恰当方法解一元二次方程以及列方程
节前预习:请同学们把本章的知识点从头看一下,自己梳理一遍,上课时老师可要提问你哟!
教学过程:
一、小组交流,自主讨论
同学们,本章的内容已经结束了,你掌握的怎么样呢?下面以小组为单位,同学们思考并交流,完成本章的知识结构图。
数学人教版九年级上册21.1一元二次方程反思
教学反思对于一元二次方程,学生在前面已经学习过一元一次方程、二元一次方程和分式方程的知识,也是以后学习二次函数的基础。
是初中教材中一个重要的内容,通过这节课的教学我有如下几点体会:第一、以问题为主线,解放学生的身心,激发学生的灵感;体现“自主-----合作-----探究”的学习方式。
比如从观察七个式子得出方程③④⑤⑥⑦是方程。
再问哪些方程是我们学过的方程?继续问:那么以一元一次方程为例,什么叫做一元一次方程?方程的“元”和“次”都是什么意思?接着启发:如果给这两个我们没学过的方程命名,将怎么命名?这样很自然就引入课题。
再比如,为巩固一元二次方程的概念设置4个方程,从中选出一元二次方程。
第二、本节课知识的呈现作了调整,不是以讲解为主方式,也不是以单一的知识为线条,而是在突出数学知识的同时,将数学知识和结论溶于数学活动之中,这样学生学习数学知识的过程就成了进行数学实验的过程,成了“做学问”的过程。
在这样的探究学习过程中,学生得到的数学知识是通过自己实验、观察、讨论、归纳得到的。
比如讲一元二次方程的一般形式中a为什么不能为0时,不是我们硬塞给学生的,而是从小试牛刀环节的4个化为一元二次方程的一般式做为衔接入口,让学生观察发现a不能为0,而b、c可以为0,这样的连接比较自然。
在这个整理活动之中学生亲自体验、观察、归纳出一元二次方程的一般形式ax2+bx+c=0(a≠0)。
再比如应用拓展部分,让学生先分析题目中的已知条件和未知量,再让学生在小组内进行讨论,最后以小组为单位,运用投影展示他们的讨论结果。
这样既激发了学生的学习热情,又培养了学生合作交流的能力。
无论是教学环节设计,还是作业的布置上,我注意分层次教学,让每一个学生都得到不同的发展。
本节课还有许多不足之处和困惑:一、引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。
二、引出一元二次方程的一般形式时较为生硬。
九年级数学上人教版《一元二次方程》教学反思
《一元二次方程》教学反思一、教学目标通过本节课的教学,学生能够理解和掌握一元二次方程的概念、解法和应用,同时培养学生的数学思维和解决问题的能力。
二、教学重点与难点本节课的教学重点是掌握一元二次方程的概念和解法,教学难点是运用一元二次方程解决实际问题。
三、教学方法本节课采用了多种教学方法,包括讲解法、演示法、讨论法和练习法等。
通过讲解法,学生能够了解一元二次方程的基本概念和解法;通过演示法,学生能够直观地了解一元二次方程的解法;通过讨论法,学生能够分析和解决实际问题;通过练习法,学生能够巩固所学知识并提高解题能力。
四、教学过程本节课的教学过程包括以下环节:1.导入新课:通过实际问题引入一元二次方程的概念,激发学生的学习兴趣。
2.讲解新课:讲解一元二次方程的概念和解法,重点强调解法的步骤和注意事项。
3.巩固练习:通过课堂练习和小组讨论,使学生能够熟练掌握一元二次方程的解法,并解决一些实际问题。
4.归纳小结:通过总结一元二次方程的概念、解法和应用,使学生能够全面理解和掌握一元二次方程的基本知识。
5.布置作业:布置相关练习题和思考题,使学生能够巩固所学知识和提高解题能力。
五、教学评价与反馈本节课采用了多种评价方式,包括课堂表现评价、练习与作业评价、测试与考试评价等。
通过观察学生在课堂上的表现,了解学生的学习态度和参与度;通过检查学生的课堂练习和课后作业,评价学生对一元二次方程的掌握情况;通过进行单元测试或期中、期末考试,评价学生对一元二次方程的理解和运用能力。
同时,根据学生的评价结果及时调整教学策略和方法,提高教学效果。
六、教学延伸与拓展本节课的教学延伸与拓展包括提供相关的学习资料和资源供学生自主学习和巩固知识;开展数学竞赛或活动,提高学生对一元二次方程的兴趣和运用能力;鼓励学生参与数学研究项目或课题,培养学生的创新精神和实践能力等。
七、教学反思与总结本节课的教学过程比较完整,教学目标明确,重点难点突出,教学方法得当,评价方式合理有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章一元二次方程回顾与反思
教学目标
(一)知识目标
通过回顾与反思本章的知识,使学生掌握知识之间的内在联系。
(二)能力目标
(1)体会转化与降次的思想方法在本章的应用.
(2)进一步体会方程模型的应用价值,培养学生的数学建模能力.
(三)情感与价值观目标
通过活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.激发他们学习数学的兴趣,克服困难的决心
教学重点:
根据一元二次方程的特征,灵活选用解法,以及应用一元二次方程知识解决实际问题。
教学难点:灵活选用恰当方法解一元二次方程以及列方程
节前预习:请同学们把本章的知识点从头看一下,自己梳理一遍,上课时老师可要提问你哟!
教学过程:
一、小组交流,自主讨论
同学们,本章的内容已经结束了,你掌握的怎么样呢?下面以小组为单位,同学们思考并交流,完成本章的知识结构图。