正弦函数y=sinx的图象和性质

合集下载

6.1_正弦函数和余弦函数的图像与性质

6.1_正弦函数和余弦函数的图像与性质

6.1 正弦函数和余弦函数的图像与性质1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx , x ∈[0,2π]的图像中,五个关键点是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)3.定义域:正弦函数、余弦函数的定义域都是实数集R[或(-∞,+∞)],分别记作: y =sin x ,x ∈R y =cos x ,x ∈R4.值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1. ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1. 而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.5.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0))3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称7.单调性 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(21x -6π),x ∈R .一般地,函数y =A sin(ωx +ϕ),x ∈R 及函数y =A cos(ωx +ϕ),x ∈R (其中A 、ω、ϕ为常数,且A ≠0,ω>0)的周期T =ωπ2.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期,如对于上述例子:(1)T =2π,(2)T =22π=π,(3)T =2π÷21=4π 例2不通过求值,指出下列各式大于0还是小于0.(1)sin(-18π)-sin(-10π); (2)cos(-523π)-cos(-417π).例3 求函数y =2cos 1cos 3++x x 的值域.例4.f (x )=sin x 图象的对称轴是 .例5.(1)函数y =sin(x +4π)在什么区间上是增函数?(2)函数y =3sin(3π-2x )在什么区间是减函数?【当堂训练】1.函数y =cos 2(x -12π)+sin 2(x +12π)-1是( )A.奇函数而不是偶函数B.偶函数而不是奇函数C.奇函数且是偶函数D.非奇非偶函数2.函数y =sin (2x +25π)图象的一条对称轴方程是( )A.x =-2πB.x =-4πC.x =8πD.x =45π3.设条件甲为“y =A sin(ωx +φ)是偶函数”,条件乙为“φ=23π”,则甲是乙的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件4.函数y =sin 4x +cos 4x 的最小正周期为 .5.函数y =sin2x tan x 的值域为 .6.函数y =x -sin x ,x ∈[0,π]的最大值为( ) A.0 B. 2π-1 C.π D. 2243-π7.求函数y =2sin 22x +4sin2x cos2x +3cos 22x 的最小正周期.8.求函数f (x )=sin 6x +cos 6x 的最小正周期,并求f (x )的最大值和最小值.9.已知f (x )=xx x x cos sin 1cos sin 1+-,问x 在[0,π]上取什么值时,f (x )取到最大值和最小值.10.给出下列命题:①y =sin x 在第一象限是增函数; ②α是锐角,则y =sin(α+4π)的值域是[-1,1]; ③y =sin |x |的周期是2π; ④y =sin2x -cos2x 的最小值是-1;其中正确的命题的序号是 .11.求下列函数的单调递增区间:①y =cos(2x +6π); ②y =3sin(3π-2π)12.求函数y =-|sin(x +4π)|的单调区间.13.函数y =sin(2x +25π)的图象的一条对称轴方程是( ) A.x =-2π B.x =-4π C.x =8π D.x =45π【家庭作业】1.在下列区间中函数y =sin(x +4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 2.若函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,试求a 的值. .]4,3[sin 2)( .3的取值范围上递增,求在是正数,函数已知例ωππωω-=x x f4.求下列函数的定义域、值域:(1); (2) ; (3) .5.求下列函数的最大值,并求出最大值时 的集合:(1) , ; (2) , ; (3)(4) .6.要使下列各式有意义应满足什么条件?(1); (2) .37.函数,的简图是()8.函数的最大值和最小值分别为()A.2,-2 B.4,0 C.2,0 D.4,-4 9.函数的最小值是()A.B.-2 C. D.10.如果与同时有意义,则的取值范围应为()A. B. C.D.或11.与都是增函数的区间是()A., B.,C., D.,12.函数的定义域________,值域________,时的集合为_________.13.求证:(1)的周期为;(2)的周期为;(3)的周期为.参考答案:例1解:(1)∵y =cos x 的周期是2π∴只有x 增到x +2π时,函数值才重复出现.∴y =3cos x ,x ∈R 的周期是2π.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且函数y =sin Z ,Z ∈R 的周期是2π.即Z +2π=2x +2π=2(x +π).只有当x 至少增加到x +π,函数值才能重复出现.∴y =sin2x 的周期是π.(3)令Z =21x -6π,那么x ∈R 必须并且只需Z ∈R ,且函数y =2sin Z ,Z ∈R 的周期是2π,由于Z +2π=(21x -6π)+2π=21 (x +4π)-6π,所以只有自变量x 至少要增加到x +4π,函数值才能重复取得,即T =4π是能使等式2sin [21 (x +T)-6π]=2sin(21x -6π)成立的最小正数.从而y =2sin(21x -6π),x ∈R 的周期是4π. 从上述可看出,这些函数的周期仅与自变量x 的系数有关.例2解:(1)∵-2π<-10π<-18π<2π. 且函数y =sin x ,x ∈[-2π,2π]是增函数. ∴sin(-10π)<sin(-18π) 即sin(-18π)-sin(-10π)>0 (2)cos(-523π)=cos 523π=cos 53π cos(-417π)=cos 417π=cos 4π ∵0<4π<53π<π 且函数y =cos x ,x ∈[0,π]是减函数∴cos53π<cos 4π 即cos 53π-cos 4π<0 ∴cos(-523π)-cos(-417π)<0 例3解:由已知:cos x =⇒--y y 312|y y --312|=|cos x |≤1⇒(yy --312)2≤1⇒3y 2+2y -8≤0 ∴-2≤y ≤34∴y max =34,y min =-2 例4解:由图象可知:对称轴方程是:x =k π+2π(k ∈Z ) 例5解:(1)函数y =sin x 在下列区间上是增函数:2k π-2π<x <2k π+2π (k ∈Z ) ∴函数y =sin(x +4π)为增函数,当且仅当2k π-2π<x +4π<2k π+2π 即2k π-3π<x <2k π+4π(k ∈Z )为所求. (2)∵y =3sin(3π-2x )=-3sin(2x -3π) 由2k π-2π≤2x -3π≤2k π+2π 得k π-12π≤x ≤k π+125π (k ∈Z )为所求. 或:令u =3π-2x ,则u 是x 的减函数 又∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上为增函数, ∴原函数y =3sin(3π-2x )在区间[2k π-2π,2k π+2π]上递减. 设2k π-2π≤3π-2x ≤2k π+2π 解得k π-12π≤x ≤k π+125π(k ∈Z ) ∴原函数y =3sin(3π-2x )在[k π-12π,k π+125π](k ∈Z )上单调递减. 【当堂训练】 1.A 2.A 3.B 4.2π 5.[0,2) 6.C 7. 2π 8.T=2π 函数最大值为1 函数最小值为41. 9.x =4π时,f (x )取到最小值31; x =43π时,f (x )取到最大值3. 10.分析:①y =sin x 是周期函数,自变量x 的取值可周期性出现,如反例:令x 1=4π,x 2=6π+2π,此时x 1<x 2 而sin 3π>sin(6π+2π)∴①错误;②当α为锐角时,4π<α+4π<2π+4π 由图象可知22<sin(α+4π)≤1 ∴②错误;③∵y =sin |x |(x ∈R )是偶函数.其图象是关于y 轴对称,可看出它不是周期函数.∴③错误;④y =sin 2x -cos 2x =-cos2x ,最小值为-1∴④正确.答案:④11. 解:①设u=2x +6π,则y =cos u当2k π-π≤u≤2k π时y =cos u 随u 的增大而增大 又∵u=2x +6π随x ∈R 增大而增大 ∴y =cos(2x +6π)当2k π-π≤2x +6π≤2k π(k ∈Ζ) 即k π-127π≤x ≤k π-12π时,y 随x 增大而增大 ∴y =cos(2x +6π)的单调递增区间为: [k π-127π,k π-12π](k ∈Z ) ②设u=3π-2π,则y =3sin u 当2k π+2π≤u≤2k π+23π时,y =3sin u随x 增大在减小, 又∵u=3π-2x 随x ∈R 增大在减小 ∴y =3sin(3π-2x )当2k π+2π≤3π-2x ≤2k π+23π 即-4k π-37π≤x ≤-4k π-3π时,y 随x 增大而增大 ∴y =3sin(3π-2x )的单调递增区间为 [4k π-37π,4k π-3π](k ∈Z )12. 解:利用“五点法”可得该函数的图象为:显然,该函数的周期为π在[k π-4π,k π+4π](k ∈Z )上为单调递减函数;在[k π+4π,k π+43π](k ∈Z )上为单调递增函数. 13. 方法一:运用性质1′,y =sin(2x +25π)的所有对称轴方程为x k =2πk -π(k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应. 故选A.方法二:运用性质2′,y =sin(2x +25π)=cos2x ,它的对称轴方程为x k =2πk (k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应,故选A. 【家庭作业】 1.分析:函数y =sin(x +4π)是一个复合函数即y =sin [ϕ(x )],ϕ (x )=x +4π,欲求y =sin(x +4π)的单调增区间,因ϕ (x )=x +4π在实数集上恒递增,故应求使y 随ϕ (x )递增而递增的区间.方法一:∵ϕ (x )=x +4π在实数集上恒递增,又y =sin x 在[2k π-2π,2k π+2π](k ∈Z )上是递增的,故令2k π-2π≤x +4π≤2k π+2π ∴2k π-43π≤x ≤2k π+4π ∴y =sin(x +4π)的递增区间是[2k π-43π,2k π+4π] 取k =-1、0、1,分别得[-411π,47π]、[-43π,4π]、[45π,49π], 对照选择支,可知应选B像这类题型,上述解法属常规解法,而运用y =A sin(ωx +ϕ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,如本题倘若运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.方法二:函数y =sin(x +4π)的对称轴方程是: x k =k π+2π-4π=k π+4π (k ∈Z ),对照选择支,分别取k =-1、0、1,得一个递增或递减区间分别是[-43π,4π]或[4π,45π],对照选择支思考即知应选B. 注:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得.2. 解:显然a ≠0,如若不然,x =-8π就是函数y =sin2x 的一条对称轴,这是不可能的. 当a ≠0时,y =sin2x +a cos2x =)2cos(1)2sin 112cos 1(12222θ-+=++++x a x a x a aa其中cos θ=2211sin ,1aaa +=+θ即tan θ=a1cos sin =θθ 函数y =21a +cos(2x -θ)的图象的对称轴方程的通式为2x k =k π+θ(k ∈Z )∴x k =22πθk +,令x k =-⇒8π22πθk +=-8π∴θ=-k π-4π∴tan θ=tan(-k π-4π)=-1.即a1=-1,∴a =-1为所求. 3. 解:由题设得)(2222Z k k x k ∈+≤≤-ππωππ.230.42,32.2222,0⎪⎩⎪⎨⎧≤<≥-≤-∴+≤≤-∴>ωπωππωπωπωπωπωπω解得k x k故ω的取值范围为].23,0(4. 解:(1) ,(2)由 ()又∵ ,∴∴定义域为 (),值域为. (3)由 (),又由∴∴定义域为(),值域为 .指出:求值域应注意用到 或 有界性的条件.5.解:(1)当,即()时,取得最大值∴函数的最大值为2,取最大值时的集合为.(2)当时,即()时,取得最大值.∴函数的最大值为1,取最大值时的集合为.(3)若,,此时函数为常数函数.若时,∴时,即()时,函数取最大值,∴时函数的最大值为,取最大值时的集合为.(4)若,则当时,函数取得最大值.若,则,此时函数为常数函数.若,当时,函数取得最大值.∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.思考:此例若改为求最小值,结果如何?6.解:(1)由,∴当时,式子有意义.(2)由,即∴当时,式子有意义.7.B 8.B 9.A 10.C 11.D12.;;13.分析:依据周期函数定义证明.证明:(1)∴的周期为.(2)∴的周期为.(3)∴的周期为.。

正弦函数y=sin的图象与性质

正弦函数y=sin的图象与性质
ysinx()的图象
6
ysin1(x)的图象
36
纵坐标不变
(3)纵坐标伸长到原来2的倍
y2sin1y(x2s)i的n1(x图)的象图象
横坐标不变3 6 3 6
2
(1)向右平移
6
y
3
2
y=sin(x- ysin1(x) )① 36
1
o
7
13
2
26
-1
-2
y=sinx
-3
(画法)利 二"用 五点"画 法函y数 2sin1x()在
4
-
1
7
2
3
5
2
2
3
2
2
0
2
y1
3
2
2
y=sin x, x∈R
5
2
3
7
2
4
x
思考与交流:图中,起着关键作用的
点是哪些?找到它们有什么作用呢?
找 0到, 0 这 五 个2 ,关1 键点 ,就, 0 可 以 3画2 出, 1正 弦 2曲 ,线0 了!
如下表
x
0
2
3
2
2
y=sin x
0
1
0
-1
y 1
作图:
1 2
y=sin1 x
2
O
2
3
1
y=sinx
4 x
y 1
y=sin
1 2
x
2
3
4
O
x
1
y=sin2x
y=sinx
振幅相同
二、函数y=sinx(>0)的图象
y
y=sin1 x

正弦函数图像和性质

正弦函数图像和性质

2.求函数的值域,并求取得最值时X的取值集合。
(1)y= - 2sinx
(2)y= 2sin(2x+ 4 )
x [ , ]
4
(3)y= sin2x + 2sinx - 2
-4 -3
-2
y
1
-
o
-1
2
周期的概念
3
4
5 6x
一般地,对于函数 f (x),如果存在一个非零常数 T ,
使得当 x 取定义域内的每一个值时,都有
练习:函数y=asinx+b的最大值为2,最小值为-1,
则a=________,b=________.
[解] 当 a>0 时,由题意得
[答案] 32或-32
1 2
a+b=2 -a+b=-1
,解得ab= =3212
.
当 a<0 时,由题意,得- a+a+ b=b= -21 ,
解得ab= =- 12 32
.
正弦函数的奇偶性
由公式 sin(-x)=-sin x
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
2
2
2
-1
x
π 2
3π 2
2 5π
2
3 7π 4 2
正弦函数的单调性
观察正弦函数图象
x
π 2

sinx -1
0… 0
π…
2
1

3π 2
0
-1
在闭区间 π22π2k,π,π2π2 2kπ, k Z 上, 是增函数;
f ( x+T )= f (x)
,那么函数 f (x) 就叫做周期函数,非零常数 T 叫做这个

1.5正弦函数y=sinx的图像与性质

1.5正弦函数y=sinx的图像与性质
北师大课标必修4 北师大课标必修4·§1.5
1.5.2 正弦函数的 图像
知识回顾
1. 三角函数是以角 实数)为自变量的函数 三角函数是以角(实数 为自变量的函数 实数 为自变量的函数.
y = sin x, x ∈ R
2. 常用画图的方法 描点法 常用画图的方法: π π π π y =sinx 过点 ( ,sin ),( ,sin ) 6 6 3 3 3 π 而 sin = ≈ 0.866, 不便于描 点 3 2
最大值? 取何值是到达最小值? 最大值?在x取何值是到达最小值? 取何值是到达最小值 关键点: 关键点:把 2x +
π
π
看作一个整体。 看作一个整体。
6
π π
处到达最大值1。 解: f ( x) = sin( 2 x + ) 在 2 x + = + 2kπ 处到达最大值 。即, 6 6 2 达到最大值1。 当 x = π + kπ (k ∈ z ) 时, f ( x) = sin(2 x + π ) 达到最大值 。 6 6 π π π f ( x) = sin( 2 x + ) 在 2 x + = − + 2kπ 处达到最小值 。即, 处达到最小值-1。 6 6 2 π x = − + kπ (k ∈ z ) 时, f ( x) = sin(2 x + π ) 达到最小值 。 达到最小值-1。 当 3 6
想一想
如何作出正弦函数的图象( 如何作出正弦函数的图象(在精确度要求不太高 正弦函数的图象 时)?
y 1
π
2
(0,0) o (0,0) ( ,1) 2π ( 2 ,1) π ( 2 ,1)
π

三角函数的图像及性质

三角函数的图像及性质

正弦函数的图象和性质正弦函数的图象和性质要点一:正弦函数性质类型一:正弦函数定义域与值域 例1.求函数lg(2sin 1)y x =-的定义域 【解析】依题意得2sin x -1>0,即1sin 2x >,∴52266k x k ππππ+<<+(k ∈Z ),∴函数的定义域为522,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭.例2.求下列函数的值域: (1)y=3―2sin x(2)2sin 23y x π⎛⎫=+ ⎪⎝⎭,,66x ππ⎡⎤∈-⎢⎥⎣⎦;【解析】 (1)∵-1≤sin x ≤1,∴-2≤2sin x ≤2,∴-2≤-2sin x ≤2,∴1≤3-2sin x ≤5,∴函数的值域为[1,5].(2)∵66x ππ-≤≤,∴20233x ππ≤+≤. ∴0sin 213x π⎛⎫≤+≤ ⎪⎝⎭.∴02sin 223x π⎛⎫≤+≤ ⎪⎝⎭,∴0≤y ≤2.∴函数的值域为[0,2]. 举一反三:【变式】 求y=cos 2x+4sin x ―2的值域. 【解析】y=cos 2x+4sin x ―2=―sin 2x+4sin x ―1 =―(sin x ―2)2+3. ∵-1≤sin x ≤1,∴当sin x=―1时,y min =―6;当sin x=1时,y max =2. ∴函数的值域为[-6,2]. 类型二:正弦函数单调性例3.求2sin 4y x π⎛⎫=- ⎪⎝⎭的单调区间.【解析】∵2sin 2sin 44y x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,∴函数2sin 4y x π⎛⎫=- ⎪⎝⎭的递增区间就是函数2sin 4y x π⎛⎫=- ⎪⎝⎭的递减区间.∴322242k x k πππππ+≤-≤+(k ∈Z ),得372244k x k ππππ+≤≤+(k ∈Z ).∴函数2sin 4y x π⎛⎫=- ⎪⎝⎭的递增区间为372,244k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z ).举一反三:【变式】求函数sin 23y x π⎛⎫=- ⎪⎝⎭的递减区间.【解析】已知函数sin 2sin 233y x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭.欲求该函数的单调递减区间,只需求sin 23y x π⎛⎫=- ⎪⎝⎭的单调递增区间.由222232k x k πππππ-≤-≤+(k ∈Z ),解得51212k x k ππππ-≤≤+(k ∈Z ). 所以原函数的单调递减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ).类型三:正弦函数的奇偶性 例4.判断下列函数的奇偶性:5())2f x x π=+;【解析】函数定义域为R ,且5()2s i n 2c o s 222f x x x x ππ⎛⎫⎛⎫=+=+=⎪⎪⎝⎭⎝⎭,显然有()()f x f x -=恒成立.∴函数5()22f x x π⎛⎫=+ ⎪⎝⎭为偶函数.举一反三:【变式1】()f x =; 【解析】由2sin x -1>0,即1s i n 2x >,得函数定义域为52,266k k ππππ⎛⎫++ ⎪⎝⎭(k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.∴该函数不具有奇偶性,为非奇非偶函数. 类型四:三角函数图象的综合应用例5.(1)方程lg sin x x =的解的个数为( ) A .0 B .1 C .2 D .3 (2)若02x π<<,则2x 与3sin x 的大小关系为( )A .23sin x x >B .23sin x x <C .23sin x x =D .与x 的取值有关【解析】(1) 作出lg y x =与sin y x =的图象,当52x π=时,5lg 12y π=<,5sin 12y π==,当92x π=时,9lg 12y π=>,lg y x =与sin y x =再无交点。

正弦函数、余弦函数的图像和性质

正弦函数、余弦函数的图像和性质
-
图象的最高点 图象的最高点 与x轴的交点 轴的交点
x
1-
( 0 ,1 ) (2π ,1)
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6
π ( π ,0 ) (32 ,0) 2π 2 图象的最低点 (π ,−1) 图象的最低点
-
应用“ 例1.应用“五点法”作图。 应用 五点法”作图。
π
π
例2.分别利用函数的图像和三角函数 先两种方法,求下列不等式的解集:
1 (1) sin x ≥ ; 2 1 5π (2) cos x ≤ (0 < x ≤ ); 2 2
例3.判断y = cos x + 1, x ∈ [0,2π ]与下列 直线交点的个数: 3 ( )y = 2; (2) y = ; (3) y = 0. 1 2


y
1-
数、 图

图象的最高点 ( ,1) 图象的最高点 2 与x轴的交点 轴的交点
( 0 , 0 ) (π , 0 ) (2π ,0)
x
π
-
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6

图象的最低点 (32 ,−1 图象的最低点 π )
简图作法 (1) 列表 列出对图象形状起关键作用的五点坐标) 列表( (2) 描点 定出五个关键点) 描点( y (3) 连线 用光滑的曲线顺次连结五个点) 连线(

1.3.1正弦函数的性质

1.3.1正弦函数的性质

sin x的周期: ...... 4、 2、 2、 4、 6 ......
例如:y=sinx的最小正周期T=2π
例4求下列函数的周期: f(x
( 1 )y sin 3x
2π x y=sinu的周期为 T 8 (2)y sin 4 u →u+2π 2 (3)y A sin ( x ),(A , 0) 3x →3x+2π ( 30x )
性质一:正弦函数 y=sinx 定义域和值域
定义域为R,值域为[-1,1]
π x 2kπ (k Z)时,ymax 1; 2 π x 2kπ (k Z)时,ymin 1; 2
例1、下列各等式能否成立?为什么? (1)2sinx=3; (2)sin2x=0.5
1 sin x 1
2

3 2

2
2
3
4

5 2
0
-1
2
3 2
5 2
7 2
x
3 y sin x的减区间: [ 2k, 2k ] 2 2

(k Z)
性质三:正弦函数 y=sinx 的单调性
增区间: π [ 2kπ , 2kπ ] 2 2
减区间: 3 π [ 2kπ , 2kπ ] 2 2
例8 求函数y sin(2 x

)图象的对称轴方程及对称中心坐标.
练习1:
1 求函数y sin( x )图象的对称轴方程及对称中心坐标. 2 3
5 对称轴方程x 2k (k Z ); 3 2 对称中心(2k , 0)(k Z ) 3
习2、函数y sin(2 x ) 3 kπ π x (k Z ) 2 12 __, 的对称轴是__ __________

正弦函数y=sinx的图象与性质

正弦函数y=sinx的图象与性质

§4.4 正弦函数的性质教学目标:1、进一步熟悉单位圆中的正弦线;2、理解正弦诱导公式的推导过程;3、掌握正弦诱导公式的运用;4、能了解诱导公式之间的关系,能相互推导;5、理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;6、能熟练运用正弦函数的性质解题。

二、教学重、难点重点: 正弦函数的诱导公式,正弦函数的性质。

难点: 诱导公式的灵活运用,正弦函数的性质应用。

第一课时 正弦函数诱导公式 一、教学思路【创设情境,揭示课题】 在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2k π+α)=sin α (k∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。

如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。

这就是我们这一节课要解决的问题。

【探究新知】 1.复习:(公式1)sin(360︒k +α) = sin α2.对于任一0︒到360︒的角,有四种可能(其中α为不大于90︒的非负角)[[[[⎪⎪⎩⎪⎪⎨⎧β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角),当为第三象限角),当为第二象限角),当为第一象限角,当36027036027018018018090180)900 (以下设α为任意角) 3. 公式2:设α的终边与单位圆交于点P(x ,y ),则180︒+α终边与单位圆交于点P’(-x ,-y ),由正弦线可知:sin(180︒+α) = -sin α4.公式3:如图:在单位圆中作出α与-α角的终边, 同样可得:sin(-α) = -sin α,5.公式4:由公式2和公式3可得:P’(P(x ,-y )sin(180︒-α) = sin[180︒+(-α)] = -sin(-α) = sin α,同理可得: sin(180︒-α) = sin α, 6.公式5:sin(360︒-α) = -sin α 【巩固深化,发展思维】 1.例题讲评例1:求下列函数值(1)sin(-1650︒); (2)sin(-150︒15’); (3)sin(-47π) 解:(1)sin(-1650︒)=-sin1650︒=-sin(4×360︒+210︒)=-sin210︒=-sin(180︒+30︒)=sin 30︒=21(2) sin(-150︒15’)=-sin150︒15’=-sin(180︒-29︒45’) =-sin29︒45’=-0.4962(3) sin(-47π)=sin(-2π+4π)=sin 4π=22 例2.化简:()()()()()πααπαπαπαπ---+-+-sin 3sin sin 3sin 2sin 解:(略,见教材P24)2.学生练习教材P24练习1、2、3 二、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

正弦型函数图象与性质

正弦型函数图象与性质

定义域:R
值域:[-A,A],最大值是A,最小值是-A 2 周期: T

想一 想 求下列函数的最大值、最小值和周期:
1.y=5sinx
4.y= 2sin(x+ ) 6
1 2.y=sin x 4
3 5.y=2sin(3x+ 4 )
3.y=sin(x- )
思考 题
2π 已知函数y=5sin(3x) 3
2
π
2π x
0 0 0 0
2
1 2 1/2
π 0 0 0
3 2
-1 -2 -1/2
2π 0 0 0
1、A的作用:研究 y=Asinx 与 y=sinx 图象的关系
1 先观察y=2sinx、y= sinx与y=sinx的图象间的关系 2 y
2
1 0 -1 -2 A的作用:使正弦函数相应的函数值发生变化。 y=Asinx(A>0, A1)的图象是由y=sinx的图象上所有 点的纵坐标扩大 (当A>1时)或缩小(当0<A<1时)到原 来打的A倍而得到. π 2π x
π 12
π 3
7π 12
5π 6
x
x 2x


-3
6 0
0

12

3

3

2
3

0
7 12 3 2
3
5 6 2
0
y 3 sin( 2 x ) 3
y
o
x
横坐标不变
纵坐标不变
图像向左平移
y=sinx
y=3sin2x
y=sin2x
纵坐标伸长到原来的3倍
横坐标缩短到原来1/2

第四讲 正弦、余弦、正切函数的图象与性质(解析版)

第四讲  正弦、余弦、正切函数的图象与性质(解析版)

第四讲 正弦、余弦和正切函数的图像与性质知识提要1. 用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2. 正弦函数、余弦函数、正切函数的图象和性质函数 y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R 且x ≠π2+k π,k ∈Z }值域[-1,1][-1,1]R单调性[-π2+2k π,π2+2k π](k ∈Z )上递增; [π2+2k π,3π2+2k π](k ∈Z )上递减 [-π+2k π,2k π](k ∈Z )上递增;[2k π,π+2k π](k ∈Z )上递减(-π2+k π,π2+k π) (k ∈Z )上递增最值x =π2+2k π(k ∈Z )时,y max =1;x =-π2+2k π(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =π+2k π(k ∈Z )时,y min =-1奇偶性 奇函数 偶函数 奇函数 对称中心 (k π,0)(k ∈Z ) (π2+k π,0) (k ∈Z ) (k π2,0)(k ∈Z ) 对称轴方程x =π2+k π(k ∈Z ) x =k π(k ∈Z )周期2π2ππ※ 学习评价1、判断下面结论是否正确(请在括号中打“√”或“×”)(1)常数函数f (x )=a 是周期函数,它没有最小正周期. ( √ ) (2)y =cos x 在第一、二象限上是减函数. ( × ) (3)y =tan x 在整个定义域上是增函数.( × )(4)y =k sin x +1(x ∈R ),则y max =k +1. ( × )2、函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:方法一 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z . 取k =-1,则x =-π4.方法二 用验证法.x =π4时,y =sin ⎝⎛⎭⎫π4-π4=0,不合题意,排除A ; x =π2时,y =sin ⎝⎛⎭⎫π2-π4=22,不合题意,排除B ; x =-π4时,y =sin ⎝⎛⎭⎫-π4-π4=-1,符合题意,C 项正确; x =-π2时,y =sin ⎝⎛⎭⎫-π2-π4=-22,不合题意,故D 项也不正确. 3、若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A .23B .32C .2D .3解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.例1 求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间. 解析:y =1+sin ⎝⎛⎭⎫-12x +π4=-sin ⎝⎛⎭⎫12x -π4+1. 由2k π-π2≤12x -π4≤2k π+π2(k ∈Z ).解得4k π-π2≤x ≤4k π+32π(k ∈Z).令k =0时,-π2 ≤x ≤32π; 令k =1时,72π≤x ≤4π+32π. 令k =-1时,-4π-π2≤x ≤-52π;∵-4π≤x ≤4π,∴函数y =1+sin ⎝⎛⎭⎫-12x +π4的单调减区间为 [-4π,-52π],[-π2,32π],[72π,4π].变式:(1)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2](2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3解析:(1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆[π2,3π2],∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.解析:由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. 故选C. 例2 求函数f (x )=lg sin x +16-x 2的定义域.解析:由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π). 例3 求下列函数的周期.(1)y =sin ⎝⎛⎭⎫2x +π3 (x ∈R); (2)y =cos(1-πx )(x ∈R); (3)y =|sin x | (x ∈R). 解析:(1)方法一 令z =2x +π3,∵x ∈R ,∴z ∈R ,函数f (z )=sin z 的最小正周期是2π,就是说变量z 只要且至少要增加到z +2π,函数f (z )=sin z (z ∈R)的值才能重复取得, 而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,从而函数y =sin ⎝⎛⎭⎫2x +π3 (x ∈R)的周期是π..方法二 y =sin ⎝⎛⎭⎫2x +π3(x ∈R)的周期为2π2=π. (2)设f (x )=cos(1-πx ),则f (x )=cos(πx -1).∵cos[(πx -1)+2π]=cos[(πx +2π)-1]=cos[π(x +2)-1]=co s(πx -1). ∴f (x +2)=f (x ),从而函数y =cos(1-πx )(x ∈R)的周期是2. (3)作出y =|sin x |(x ∈R)的图象.由图象可知,y =|sin x |(x ∈R)的周期为π.例4 (1) 求函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域. (2) 求函数y =sin 2x -sin x +1,x ∈R 的值域.解 (1)∵0≤x ≤π2,∴π6≤x +π6≤23π. ∴cos 23π≤cos ⎝⎛⎭⎫x +π6≤cos π6,∴-12≤y ≤32(2)设t =sin x ,t ∈[-1,1],f (t )=t 2-t +1. ∵f (t )=t 2-t +1=⎝⎛⎭⎫t -122+34. ∵-1≤t ≤1, ∴当t =-1,即sin x =-1时,y max =f (t )max =3; 当t =12,即sin x =12时,y min =f (t )min =34.∴函数y =sin 2x -sin x +1,x ∈R 的值域为⎣⎡⎦⎤34,3.巩固提高※夯实基础1.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( A )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)2、函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.[0,2]3、求函数y =tan ⎝⎛⎭⎫π3x +π4的定义域、周期、单调区间和对称中心. 解析:①由π3x +π4≠k π+π2,k ∈Z ,得x ≠3k +34,k ∈Z .∴ 函数的定义域为{x |x ∈R ,且x ≠3k +34,k ∈Z }.②T =ππ3=3,∴函数的周期为3.③由k π-π2<π3x +π4<k π+π2,k ∈Z . 解得3k -94<x <3k +34,k ∈Z .∴函数的单调增区间为⎝⎛⎭⎫3k -94,3k +34,k ∈Z . ④由π3x +π4=k π2,k ∈Z . 解得x =3k 2-34,k ∈Z .∴函数的对称中心是⎝⎛⎭⎫3k 2-34,0,k ∈Z . 4. 设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值.解析:f (x )=cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54. ∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22.5. 已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z , 其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .※能力提高6、将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是 ( )A.13B .1C.53D .2解析:根据题意平移后函数的解析式为y =sin ω⎝⎛⎭⎫x -π4, 将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0,故ω的最小值为2. 7、函数y =|sin x +cos x |-1的定义域是( )A .[k π,k π+π2](k ∈Z )B .[2k π,2k π+π2](k ∈Z )C .[-π2+k π,k π](k ∈Z )D .[-π2+2k π,2k π](k ∈Z )解析:|sin x +cos x |-1≥0⇒(sin x +cos x )2≥1 ⇒sin 2x ≥0,∴2k π≤2x ≤2k π+π,k ∈Z ,故原函数的定义域是[k π,k π+π2](k ∈Z ).8、已知函数)2sin()(ϕ+=x x f ,其中ϕ为实数,若|)6(|)(πf x f ≤对R x ∈恒成立,且)()2(ππf f >,则)(x f 的单调递增区间是 ( ) (A) )(6,3Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ (B) )(2,Z k k k ∈⎥⎦⎤⎢⎣⎡+πππ(C) )(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ (D) )(,2Z k k k ∈⎥⎦⎤⎢⎣⎡-πππ 解析:∵|)6(|)(πf x f ≤, ∴)6(πf 为)(x f 的最小值或最大值,∴ 1)62sin()6(±=+⨯=ϕππf , ∴ Z k k ∈+=+,23ππϕπ,∴ Z k k ∈+=,6ππϕ.当6πϕ=时,2167sin )622sin()2(-==+⨯=ππππf ,216sin )62sin()(==+=ππππf . 这与)()2(ππf f >矛盾,舍去。

高二数学正弦函数的图像和性质

高二数学正弦函数的图像和性质
[2kπ,(2k+1)π] (k∈Z)上都是减函数,其值从1减小 到-1.
解:由 cosx≥0 得:+2kπ 2 (k∈Z) ∴函数定义域为[- +2kπ, +2kπ] 2 2 +2kπ≤ x ≤ 2
例:求函数y = 2 cos x +1 的定义域、值域, 并求当x为何值时,y取到最大值,最大值为 多少?
正弦、余弦函数的奇偶性、单调性
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-


2
o
-1

2

3 2
2
5 2
x
3
7 2
4
x
cosx
- -1



2

0
1

2


-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
2 的最小正周期为
例:求证 1)y=cos2x+sin2x的周期为
证明:f ( x ) cos 2( x ) sin 2( x cos(2 x 2) sin(2 x 2 cos 2 x sin 2 x f ( x)
知: 函数y=sinx和y=cosx都是周期函数,2kπ(k∈Z且 k≠0)都是它的周期,最小正周期是 2π。
周期性
注意:(1)周期T为非零常数。 (2)等式f(x+T)=f(x)对于定义域M内任意一个x都 成立。 (3)周期函数f(x)的定义域必为无界数集(至少一 端是无界的)

正弦、余弦、正切函数的图象与性质

正弦、余弦、正切函数的图象与性质

讲解新课:正弦、余弦函数的图象(1)函数y=sinx 的图象:叫做正弦曲线第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象:叫做余弦曲线 根据诱导公式,可以把正弦函数y=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象.y=cosxy=sinxπ2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11y x-11o xy(3)用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0) 余弦函数y=cosx x [0,2]的五个点关键是哪几个(0,1) (2π,0) (,-1) (23π,0) (2,1)讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2)y=-COSx探究 如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到 (1)y =1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

正弦函数

正弦函数

• 求使下列函数取得最大值 的自变量x的集合,并说 出最大值是什么? • y=-2sinx,x∈R
2 k -

2
;2.
例3. 求使下列函数取得最大值的自变量x的集合, 并说出最大值是什么? (1)y=sin2x,x∈R;(2)y=-2sin2x+1,x∈R. y
y=sinx (xR)
-3
5 2
2k - ,2k ( k Z ); 0, 3
y
1
-4 -3 -2
-
o
-1

2
3
4
5
6
x
定义域 xR
y=sinx (xR)

域 y[ - 1, 1 ]
二、余弦函数y=cosx, xR的图象:
(1)、 y=cosx, x[0,2]的图象。 (2)、 y=cosx, xR的图象。 Y y=cosx,x R
1
-2 - O -1 余弦函数y=cosx, xR的图象可以通过将正弦曲线向左平行移动2个单位长 度而得到。余弦函数的图象叫做余弦曲线。 用“五点法”作出y=cosx, x[0,2]的图象: 在y=cosx, x[0,2]的图象上起着关鍵作用的点是以下五个: 2 3 X
正弦线
y
1
α的终边
P
-1
M
O
1
x
-1
有向线段MP为角a的正弦线,即sina=MP
2 一. 正弦函数y=sinx,x[0, ]的图象:
2 3
5 6
2
3 6
11 6
y
1
● ● ● ● ● ●

7 6 4 3 5 3
7 4 3 5 6 3 2 3

高中数学课件-第一章 正弦函数的图像与性质

高中数学课件-第一章  正弦函数的图像与性质

周期函数:f(x+T)=f(x) 最小正周期:所有周期中最小的正数
y 1
4 x
y 1
函 数 y= sinx (k∈z)
性质
定义域
x∈ R
值域 最值及相应的 x
的集合
周期性 奇偶性
单调性
[-1,1]
x= 2kπ+
π
2

ymax=1
x=2kπ-
π
2
时 ymin=-1
周期为T=2π
奇函数
当函当数xx∈ ∈是[[22增kkππ加+- 的ππ22,,,22kkππ++
例2.画出y=1+sinx , x∈[0, ]的简图
解:(2)
x
0
π 2
π
3π 2
2
sinx 0
1
0
-1
0
1sinx 1
2
1
0
1
y. 1.
y 1 sinx,x [0,2π]
.
.
o -1
.
π 2
3π 2
2
x
y sinx,x [0,2π]
3. 作出下列函数的图象
y 3 sin x x [0 , 2 ]
求函数y=2+sinx的最大值、最小值和周期,并求这个函数取 最大值、最小值的x值的集合。
解: ymax 2 sin x max 2 1 3
ymin 2 sin x min 2 (1) 1 周期T 2
使y=2+sinx取得最大值的x的集合是:
x
x
2
2k , k
Z
使y=2+sinx取得最小值的x的集合是:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】一. 教学内容:1.3.1 正弦函数的图象和性质二. 教学目的1、掌握用几何法绘制正弦函数y sin x,x R =∈的图象的方法;掌握用五点法画正弦函数的简图的方法及意义;2、掌握正弦函数y sin x,x R =∈的性质及应用;3、掌握正弦型函数y Asin(x ),x R =ω+ϕ∈的图象(特别是用五点法画函数y Asin(x ),x R =ω+ϕ∈的图象)、性质及应用。

三. 教学重点、难点重点:1、用五点法画函数y Asin(x ),x R =ω+ϕ∈的简图;2、函数y Asin(x ),x R =ω+ϕ∈的性质及应用;3、函数y sin x,x R =∈与y Asin(x ),x R =ω+ϕ∈的图象的关系。

难点:1、正弦函数y sin x,x R =∈的周期性和单调性的理解;2、函数y sin x,x R =∈与y Asin(x ),x R =ω+ϕ∈的图象的关系。

四. 知识分析1、正弦函数图象的几何作法采用弧度制, x 、y 均为实数,步骤如下:(1)在 x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从这个圆与 x 轴交点 A 起把圆分成 12 等份;(3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π、、2π的正弦线; (4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份;(5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合; (6)用光滑曲线把这些正弦线的终点连结起来。

2、五点法作图描点法在要求不太高的情况下,可用五点法作出,y sin x,x [0,2]=∈π的图象上有五点起决定作用,它们是3(0,0),(,1),(,0),(,1),(2,0)22πππ-π。

描出这五点后,其图象的形状基本上就确定了。

因此,在精确度要求不太高时,我们常常先描出这五个点,然后用平滑的曲线将它们连接起来,就得到在相应区间内正弦函数的简图,这种方法叫做五点法。

注意:(1)描点法所取的各点的纵坐标都是查三角函数表得到的数值,不易描出对应点的精确位置,因此作出的图象不够精确。

(2)几何法作图较为精确,但画图时较繁。

(3)五点法是我们画三角函数图象的基本方法,要切实掌握好,与五点法作图有关的问题曾出现在历届高考试题中。

(4)作图象时,函数自变量要用弧度制,这样自变量与函数值均为实数,因此在 x 轴、 y 轴上可以统一单位,作出的图象正规,便于应用。

(5)如果函数表达式不是y sin x =,则那五点就可能不是3(0,0),(,1),(,0),(,1),22πππ-(2,0)π如:用“五点法”作函数y 1sin x,x [0,2]=+∈π的简图,所用的五个关键点列表就是:而用“五点法”作函数y sin(2x )3π=+的简图,开始的一段图象所用的五个关键点列x6π-12π 3π712π 56π2x 3π+0 2ππ 32π2π y1-13、正弦曲线下面是正弦函数y sin x,x R =∈的图象的一部分:2-2-15-10-5510154、正弦函数的值域从正弦线可以看出:正弦线的长度小于或等于单位圆半径的长度; 从正弦曲线也可以看出:正弦曲线分布在 y = 1 和 y =-1 之间,说明|sinx|≤1,即正弦函数的值域是[-1 , 1 ]。

注意:这里所说的正弦函数的值域是[-l,1],是指整个正弦曲线或一个周期内的正弦曲线。

如果定义域不为全体实数,那么正弦函数的值域就可能不是[-1,1]。

如y sin x,x 0,2π⎡⎤=∈⎢⎥⎣⎦,则值域就是[0,1], 因而在确定正弦函数的值域时,要特别注意其定义域。

5、周期函数的定义一般地,对于函数 y =f ( x ) ,如果存在一个不为零的常数 T ,使得当 x 取定义域内的每一个值时, f(x +T)=f(x)都成立,那么就把函数 y = f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。

注意:( 1)定义应对定义域中的每一个 x 值来说,只有个别的 x 值或只差个别的 x 值满足f(x +T)=f(x)或不满足都不能说 T 是 f(x)的周期。

例如:4sin)24sin(π=π+π 但是3sin)23sin(π≠π+π 就是说,2π不能对x 的定义域内的每一个值都有sin(x )sin x2π+=, 因此2π不是 sinx的周期 。

(2)从等式f(x +T)=f(x)来看,应强调的是与自变量 x 本身相加的常数才是周期,如 f (2x + T) = f (2x) , T 不是f(2x)的周期,而应写成 f(2 x + T)=Tf[2(x )]2+= f( 2x ) ,则T2是 f ( 2x)的周期。

(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期,今后提到的三角函数的周期,如未特别指明,一般都是指它的最小正周期。

(4)并不是所有周期函数都存在最小正周期.例知,常数函数 f ( x ) = C ( C 为常数) , x ∈R ,当 x 为定义域内的任何值时,函数值都是 C ,即对于函数 f( x)的定义域内的每一个值 x ,都有 f ( x + T ) = C ,因此 f (x)是周期函数,由于 T 可以是任意不为零的常数,而正数集合中没有最小者,所以 f (x)没有最小正周期。

再如函数⎩⎨⎧=)(0)(1)(是无理数是有理数x x x D 设 r 是任意一个有理数,那么当 x 是有理数时, x + r 也是有理数,当 x 为无理数时, x + r 也是无理数,就是说 D ( x )与 D ( x + r )或者等于 1 或者等于 O ,因此在两种情况下,都有 D ( x + r ) = D ( x ) ,所以 D ( x )是周期函数, r 是 D ( x )的周期,由于 r 可以是任一有理数,而正有理数集合中没有最小者,所以 D (x)没有最小正周期。

(5)“f ( x + T )=f ( x ) ”是定义域内的恒等式,即对定义域内的每一个值都成立, T 是非零常数,周期 T 是使函数值重复出现的自变量 x 的增加值。

(6)周期函数的周期不只一个,若T 是周期,则 kT ( k ∈N *)一定也是周期。

(7)在周期函数 y =f (x )中,T 是周期,若 x 是定义域内的一个值,则 x + kT 也一定属于定义域,因此周期函数的定义域一定是无限集。

6、正弦函数的周期性(1)从正弦线的变化规律可以看出,正弦函数是周期函数,2k (k Z k 0)π∈≠且是它的周期,最小正周期是 2π。

(2)正弦函数的周期也可由诱导公式 sin ( x + 2k π)=sinx ( k ∈Z)得到。

7、正弦函数的奇偶性正弦函数 y = sinx ( x ∈R )是奇函数。

(1)由诱导公式 sin (-x ) =-sinx 可知上述结论成立, (2)反映在图象上,正弦曲线关于原点 O 对称;(3)正弦曲线是中心对称图形,其所有的对称中心为( k π, 0 )。

正弦曲线也是轴对称图形,其所有的对称轴方程为x k ,x Z2π=π+∈。

注意:正弦曲线的对称轴一定是经过正弦曲线的最高点或最低点,此时正弦值为最大值或最小值。

8、正弦函数的单调性由正弦曲线可以看出:当x 由-π2增大到π2时,曲线逐渐上升,sinx 由-1增大到1;当x 由π2增大到32π时,曲线逐渐下降,sinx 由1减小到-1。

由正弦函数的周期性知道:正弦函数y x =sin 在每一个闭区间[-++ππππ2222k k ,](k Z ∈)上都从-1增大到1,是增函数;在每一个闭区间[ππππ22322++k k ,](k Z ∈)上,都从1减小到-1,是减函数。

也就是说正弦函数y x =sin 的单调区间是:[-++ππππ2222k k ,]及[ππππ22322++k k ,](k Z ∈)9、函数图象的左右平移变换如在同一坐标系下,作出函数y x =+sin()π3和y x =-sin()π4的简图,并指出它们与y x =sin 图象之间的关系。

解析:函数y x =+sin()π3的周期为2π,我们来作这个函数在长度为一个周期的闭区间上的简图。

设x Z +=π3,那么sin()sin x Z +=π3,x Z =-π3当Z 取0、ππππ2322、、、时,x 取-πππππ36237653、、、、。

所对应的五点是函数y x =+sin()π3,x ∈-[]ππ353,图象上起关键作用的点。

列表:x-π3π623π76π53π x +π3π2π32π2πsin()x +π31-1类似地,对于函数y x =-sin()π4,可列出下表:xπ434π54π74π94π x -π40 π2π32π2πsin()x -π41-1描点作图(如下)利用这类函数的周期性,可把所得到的简图向左、右扩展,得出y x =+sin()π3,x R∈及y x =-sin()π4,x R ∈的简图(图略)。

由图可以看出,y x =+sin()π3的图象可以看作是把y x =sin 的图象上所有的点向左平行移动π3个单位而得到的,y x =-sin()π4的图象可以看作是把y x =sin 的图象上所有的点向右平行移动π4个单位得到的。

注意:一般地,函数y x =+≠sin()()ϕϕ0的图象,可以看作是把y x =sin 的图象上所有的点向左(当ϕ>0时)或向右(当ϕ<0时)平行移动||ϕ个单位而得到的。

推广到一般有:将函数y f x =()的图象沿x 轴方向平移||a 个单位后得到函数y f x a a =+≠()()0的图象。

当a>0时向左平移,当a<0时向右平移。

10、函数图象的横向伸缩变换如作函数y x =sin2及y x=sin 12的简图,并指出它们与y x =sin 图象间的关系。

解析:函数y x =sin2的周期T ==22ππ,我们来作x ∈[]0,π时函数的简图。

设2x Z =,那么sin sin 2x Z =,当Z 取0、ππππ2322、、、时,所对应的五点是函数y Z Z =∈sin [],,02π图象上起关键作用的五点,这里x Z =2,所以当x 取0、π4、πππ234、、时,所对应的五点是函数y x x =∈sin []20,,π的图象上起关键作用的五点。

列表:x 0 π4π234ππ2x0 π2π32π2πsin 2x1-1函数y x=sin 12的周期T ==2124ππ,我们来作x ∈[]04,π时函数的简图。

列表:x 0 π2π3π 4π 12x 0 π2π32π2πsin 12x 01-1描点作图,如图:利用这类函数的周期性,我们可以把上面的简图向左、右扩展,得出y x =sin2,x R∈及y x=sin 12,x R ∈的简图(图略)。

相关文档
最新文档