复变函数的极限与连续
复变函数第2章
![复变函数第2章](https://img.taocdn.com/s3/m/33079d86a0116c175f0e48ed.png)
第二章 解析函数1. 复变函数:()w f z =w =f (z )又常写成w =u (x ,y )+iv (x ,y ),从而对复变函数f (z )的讨论可相应地 转化为对两个实函数u (x ,y )和v (x ,y )的讨论.2.复变函数的极限与连续:定义2.2 设函数w =f (z )定义在z 0的去心邻域0<|z -z 0|<r 内,若存在常数A ,对于任意给定的0ε>,都存在一正数(0)r δδ<≤,使得当0<|z -z 0|<δ时,有()f z A ε<-,则称函数f (z )当0z z →时的极限存在,常数A 为其极限值.记作0lim ()z z f z A →=或 0()()f z A z z →→.定理2.1 设f (z )=u (x ,y )+iv (x ,y ),z 0=x 0+iy 0,A =a +ib ,则000(,)(,)lim ()lim (,),z z x y x y f z A u x y a →→=⇔= (2.1) 00(,)(,)lim (,).x y x y v x y b →= (2.2)定义 2.3 若00lim ()()z z f z f z →=,则我们就说函数 f (z ) 在点 z 0 处连续. 如果函数f (z )在区域D 内每一点都连续,那么称函数f (z )在区域D 内连续.定理2.5 设函数000()(,)(,),f z u x y iv x y z x iy =+=+,则f (z )在点z 0连续的充分必要条件是u (x ,y )、v (x ,y ) 均在点(x 0,y 0)连续.3.复变函数的导数定义2.4 (导数的定义)设函数w =f (z )定义在z 平面上区域D 内,点z 0、z 0+Δz D ∈, 00Δ(Δ)()w f z z f z ∈=+-,若极限00Δ0Δ0(Δ)()Δlimlim ΔΔz z f z z f z w z z →→+- 存在,则称函数f (z ) 在 z 0可导,这个极限值称为f (z )在z 0的导数,记作00000Δ0(Δ)()d ()d lim ().d d Δz z z z z f z z f z f z w f z z z z==→+-='== (2.3) 由于复变函数导数的定义在形式上和一元实函数的导数定义一致,并且复变函数中的极限运算法则与实函数中一样,所以微积分中几乎所有的关于函数导数的计算规则都可以不加更改地推广到复变函数中来.4.解析函数的概念定义2.6 若函数f (z )在点z 0及z 0的邻域内处处可导,则称函数f (z )在点z 0解析.若函数f (z )在区域D 内每一点都解析,则称函数f (z )在区域D 内解析,或称f (z )是D 内的解析函数.若f (z )在点z 0不解析,但在z 0的任一邻域内总有f (z )的解析点,则称z 0为f (z )的奇点.5.函数可导与解析的充要条件定义2.6 对于二元实函数u (x ,y )和v (x ,y ),方程,.u v u v x y y x∂∂∂∂==-∂∂∂∂ (2.5) 称为柯西-黎曼方程(简记为C-R 方程).定理2.7 设函数f (z )=u (x ,y )+iv (x ,y )在区域D 内有定义,则f (z )在区域D 内一点z =x +iy 可导的充要条件是(1) 二元实函数u (x ,y )和v (x ,y )在点(x ,y )可微;(2) u (x ,y ),v (x ,y )在点(x ,y )满足柯西-黎曼方程.6.初等函数(1)指数函数定义2.7 对于复变数z =x +iy ,定义指数函数为:e e e (cos sin ).z x iy x y i y +==+e z 又用记号exp(z )表示.(2)对数函数定义2.8 规定对数函数是指数函数的反函数,即若e (0)w z z =≠则称函数w =f (z )为z 的对数函数,记作w =Ln z .令w =u +iv ,则w =u +iv =ln|z |+i Arg z ∆Ln z .注意到Arg z 是多值函数,所以对数函数w =f (z )也是多值函数.上式中Arg z 取主值arg z (-π<arg z ≤π)时对应的w 值称为Ln z 的主值,并记作ln z =ln|z |+i arg z .这样对数函数可表示为:w =ln z =ln z +2k πi =ln|z |+i arg z +2k πi , k =0,±1, ±2,….上式中对于每一个确定的k ,对应的w 为一单值函数,称为Ln z 的一个分支.(3)幂函数定义2.9 函数w =z a =e a Ln z (z≠0,a 为复常数)称为z 的一般幂函数.当一般的幂函数aw z =的底数z 为一确定复常数b (b≠0)时,则b a =e a Ln b 称为乘幂.由于Ln b =ln|b |+i arg b +2k πi ,所以乘幂b a 也是多值的.(4)三角函数与反三角函数定义2.10 规定e e e e sin , cos .22iz iz iz izz z i ---+== 其它三角函数定义如下:sin cos 11tan , cot , sec , csc .cos sin cos sin z z z z z z z z z z==== (5)双曲函数与反双曲函数我们用指数函数来定义双曲函数.定义2.11 规定e e e e sh , ch 22z z z zz z ---+== 小 结复变函数及其极限、连续、导数等概念是微积分学中相应概念的推广.复变函数的定义在形式上只是将一元实函数的定义域与值域由“实数集”扩大为“复数集”,但要注意实函数是单值函数,而复变函数有单值函数与多值函数之分.一个复变函数f (z )=u (x ,y )+iv (x ,y )对应着两个二元实函数u (x ,y )和v (x ,y ),所以对复变函数的研究可以转化为对它的实部和虚部两个二元实函数的研究.另外将复变函数看成复平面上两个点集之间的映射,有时可以将问题直观化、几何化.复变函数极限的定义在形式上与一元实函数极限的定义相似,因此复变函数具有与实函数类似的极限运算法则.但实质上复变函数的极限与二元实函数的极限是等价的.一元实函数的极限00lim (),x x f x x x →→是指x 在x 轴上从x 0的左右两侧以任何方式趋向于x 0,而在复变函数的极限0lim ()z z f z →中,0z z →是指z 在z 0的邻域内以任何方式趋于z 0.如果z 沿两条不同路径趋于z 0, f (z )不趋于同一复数,那么f (z )在z 0处的极限不存在.复变函数的连续定义是依赖于极限定义的,若00lim ()()z z f z f z →=,则我们说f (z )在z 0处连续.复变函数w =f (z )=u (x ,y )+iv (x ,y )极限存在与连续的充要条件是其实部u (x ,y )和虚部v (x ,y )极限存在与连续.复变函数的导数定义在形式上与一元实函数导数的定义相似,因此复变函数具有与实函数类似的求导法则.复变函数导数为函数的改变量Δw 与自变量Δz 的比0(+Δ)()ΔΔΔf z z f z w z z-=当Δ0z →的极限,该极限值与Δ0z →的方式无关,也就是说如果当Δz 沿某一路径趋于0时,ΔΔw z 的极限不存在,或沿两条不同路径趋于0时,ΔΔw z趋于不同的数,则f (z )在z 0处不可导.由此可见复变函数在一点可导要比一元实函数可导条件更强.解析函数是复变函数的主要研究对象,它有着一元实函数所没有的好性质,如解析函数的导数仍是解析函数,解析函数的虚部为实部的共轭调和函数以及解析函数可以展开为幂级数等,这些性质在后面就会学到.应当注意的是解析与可导的区别与联系.对于一个区域而言, 函数解析与可导是一回事;但对于一个点,解析就比可导要求高得多.函数在某点解析不仅要求在该点可导而且要求在该点的某邻域内可导.判断函数可导与解析的方法主要有以下三种:(1)利用可导与解析的定义.(2)利用可导(解析)函数的和、差、积、商及其复合仍为可导(解析)函数这一性质.(3)利用可导与解析的充要条件(即定理2.7和定理2.8).定理2.7给出了函数f (z )在一点z D ∈处可导的充要条件,由于z 的任意性,从而可以得到函数在区域D 内可导与解析的充要条件,即定理2.8.复初等函数是实初等函数在复数域的推广,它既保持了实初等函数的一些性质,又有一些不同的性质.指数函数e z =e x (cos y +i sin y )在z 平面上处处解析,并且(e z )'=e z ,它具有实指数函数相同的某些性质如加法定理.但周期为2πi 这与实指数函数不同,实指数函数e x 可以看成数e 的x 次幂,但在复变函数中e z 仅仅是一个记号,而不再有幂的含义.对数函数Ln z =ln z +i Arg z 是一多值函数,它在除去原点与负实轴的复平面上处处解析,且有(l nz )' =1z.它保持了实对数函数的如下性质: 11212122ln()ln ln ,ln ln ln .z z z z z z z z ⎛⎫=+=- ⎪⎝⎭应当注意的是,等式1ln ln ln n z n z z n== 不再成立,其中2n ≥,为正整数.幂函数w =z a =e a L n z , 除了整幂函数z n (z 为正整数)外都是多值函数,在除去原点与负实轴的复平面上处处解析,且有(z a )'=az a -1.而整幂函数z n (z 为正整数)是单值函数,在复平面上处处解析,且(z n )'=nz n -1.当底数z 为一确定的常数b (b ≠0)时,b a =e a L nb 为乘幂.三角正弦函数与三角余弦函数e e e e sin , cos 22iz iz iz izz z i ---+== 在复平面上处处解析,并且(sin z )'=cos z ,(cos z )'=-sin z .它保持了对应的实函数的奇偶性、周期性,类似的三角恒等式成立,但是不再具有有界性,即|sin z |≤1,|cos z |≤1不成立.其它三角函数与反三角函数、双曲函数与反双曲函数读者可以自己小结它们的性质.1.讨论函数(1) f (z )= Im(z ) ;(2) f (z )=|z |2z .的可导性,并在可导点处求其导数.。
1-2复变函数的极限解析
![1-2复变函数的极限解析](https://img.taocdn.com/s3/m/6a8b81e6aef8941ea76e05a9.png)
称为z0的 邻域,记作U (z0 , )
复 变 函 数 与
由 0 |z z0 | ( 0) 所
确定的平面点集,称为
• z0
积
分 变
z0的去心 邻域,
换
记为U o(z0 , ).
内点: 对任意z0属于点集E,若存在U(z0 ,δ),
哈
使该邻域内的所有点都属于E,则称z0
立点所构成.
二、简单曲线(或Jardan曲线)
平面上一条连续曲线可表示为:
哈
尔 滨 工 程 大
x x(t)
y
y(t )
( t ),
学 其中x(t)、y(t)是连续的实变函数。
复 变 函
若x '(t)、y'(t) C[a, b]且[x '(t)]2 [ y'(t)]2 0
尔
滨 工
其边界为点集 :{z | | z a | r}
程
大
学 例2 点集 z r1 z z0 r2是一有界区域,
复
变 函 数
其边界由两个圆周 z z0 r1, z z0 r2构成.
与
积
分 变
如果在圆环内去掉若干个点,它仍是区域,
换 但边界有变化,是两个圆周及其若干个孤
尔
滨
工 程
z( ) z( )的简单曲线,称为简单闭曲线,
大 学
或约当闭曲线.
复
变
函
数
与
积
分 变
z( ) z( )
换
简单闭曲线
z( ) z( )
不是简单闭曲线
约当定理(简单闭曲线的性质)
任一条简单闭曲线C:z=z(t), t∈[a,b],
复变函数的极限和连续
![复变函数的极限和连续](https://img.taocdn.com/s3/m/90ad99cd7cd184254a35357b.png)
场在空间某方向上是均匀的,则只需要在垂直于该方
向的平面上研究它,这样的场便称为平面场。本节对
解析函数在平面场研究中的应用作一简单介绍。
解析函数,实、虚部是共轭调和函数,曲线族u=常数
与v=常数是正交曲线族。 1. 平面静电场
在无电荷区,静电场电势满足拉普拉斯方程,电场所
在区域上的某一解析函数的实部(或虚部)就可以用
来表示该区域上的静电场的电势。这个解析函数称为
平面静电场的复势。其实部或虚部就是电势。
为叙述方便,这里说u是电势。u=常数,是等势线族。
曲线族v(x,y)=常量,垂直于等势线族,因而v=常量,
是电场线族。
数学物理方法 第一章
30
例1. 已知平面电场的电势为u=x2-y2,求电场线方程
分析:等势面与电力线相互正交,对应的函数组成一个解析函数 的实部与虚部,满足C-R条件
例22.已知解析函数的虚部 v(x,y) x x2y2,求实部
和这个解析函数
方法三d提u 示 :u d u d
u
u
d
(
)
2 cos ( )
2
u sin ( )
22
( ) 0, ( ) C
数学物理方法 第一章
29
1.5 平面标量场
场在物理上和工程技术上得到广泛应用。当所研究的
满足C-R条件。
x y x y
证明(板书):
数学物理方法 第一章
13
作业:试推导极坐标系中的C-R条 件
数学物理方法 第一章
14
数学物理方法 第一章
15
1.点解析
解析z 0 ;
2.区域解析 若函数在区域B内处处可导,则称f(z)在 区域B内解析;
复变函数第3讲
![复变函数第3讲](https://img.taocdn.com/s3/m/2fbccfa1284ac850ad024279.png)
z1 − z 2 w1 − w 2
=
z3 − z 2 w3 − w 2
z1 − z 2 w1 − w 2 arg = arg z3 − z2 w3 − w2
所以表示二三角形相似! 所以表示二三角形相似!
z → z0
lim f ( z ) = A, 或者 当z → z0时, f ( z ) → A。
注:从形式上来看,复变函数的极限定义与一元实函数 从形式上来看, 是完全类似的,但实际上二者有很重要的区别。 是完全类似的,但实际上二者有很重要的区别。主要是 因为在复平面上,变量z趋于z 的方式有无穷多种, 因为在复平面上,变量z趋于z0的方式有无穷多种,可以 从不同的方向,既可以沿直线,也可以沿曲线。 从不同的方向,既可以沿直线,也可以沿曲线。这一点 跟二元函数的极限又有相似之处。 跟二元函数的极限又有相似之处。
z n − 1 = ( z − z1 )( z − z 2 )L ( z − z n )
然后呢? 然后呢?
比较两端n-1次幂的系数! 比较两端 次幂的系数! 次幂的系数
由此还可看出, 由此还可看出,n 个根的乘积为 (-ห้องสมุดไป่ตู้)n+1
z1 − z 2 w1 − w 2 3. 分析 = 的几何意义 z3 − z2 w3 − w2 w1 z1
3.函数的极限 3.函数的极限 定义:设函数 定义:设函数w=f(z)在z0的去心邻域内有定义,如果对于 在 的去心邻域内有定义, 任意给定的ε>0, 相应地总有 相应地总有δ>0存在,使得当 存在, 任意给定的 存在 使得当0<|z-z0|<δ时, 时 恒有|f(z)-A|<ε成立,则称 为f(z)当z趋向于Z0时的极限。 成立, 恒有 成立 则称A为 当 趋向于 时的极限。 记作: 记作:
复变函数的极限
![复变函数的极限](https://img.taocdn.com/s3/m/6c412160f111f18582d05a4a.png)
x l im x 0 u ( x ,y ) u 0 , x l im x 0 v ( x ,y ) v 0
变
y y 0
y y 0
函
数
与 积
例1 试求下列函数的极限.
分
变 换
1 .lim z 2 .lim z z z z 1
z z 1 i
z 1 z 1
例2 证 明 函 数 f ( z ) z 在 z 0 时 极 限 不 存 在 . z
尔 滨 工
例3
考 察 函 数 w z2
程 大
w u i v ( x i y ) 2 x 2 y 2 2 x y i
学
因 此 w z 2 对 应 u x 2 y 2 , v 2 x y
复
变 函
例 4 将定义在全平面除原点区域上的一对
数
与 积
二元实变函数
分
变 换
ux22xy2,vx2yy2,x2y20
第一章 复数与复变函数
哈
尔 滨
第二讲 复变函数的极限与连续性
工
程
大
学
学习要点
复
变
函
数 与
掌握复变函数的概念
积
分 变
掌握复变函数的极限与连续性
换
一 、 复平面上的点集与区域
哈
尔
邻 域 : 复 平 面 上 以 z0 为 心 , 0 为 半 径 的 圆 :
滨 工 程 大 学
|zz0| (0 ),所 确 定 的 平 面 点 集 , 称 为 z0 的 邻 域 , 记 作 U (z0,)
尔
滨 工
0,0,当0zz0 时恒有
程
大 学
f(z)A
复 则称A为函数f(z)当z趋于z0时的极限,记作
复变函数与积分变换重点公式归纳
![复变函数与积分变换重点公式归纳](https://img.taocdn.com/s3/m/901ba298d4d8d15abe234e34.png)
复变函数与积分变换第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。
二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。
掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。
1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。
4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数)1(1sin 2z iz Ln iz Arc w -+== 反余弦函数 )1(1cos 2-+==z z Ln iz Arc w性质与对数函数的性质相同。
复变函数的极限与连续性
![复变函数的极限与连续性](https://img.taocdn.com/s3/m/d4ac635e52ea551811a68707.png)
z z0
z z0
z z0
lim f (z)g(z) lim f (z) lim g(z)
z z0
z z0
z z0
lim
f (z)
lim
z z0
f (z) (lim g(z) 0)
zz0 g(z) lim g(z) zz0
z z0
以上定理用极限定义证!
3.函数的连续性
定义
若 lim z z0
故不连续。
(2)在负实轴上 P( x,0)( x 0)
y (z) z
lim arg z y0
而 lim arg z y0
P( x,0)
ox
z
arg z 在负实轴上不连续。
定理4 连续函数的和、差、积、商、(分母不为0) 仍为连续函数; 连续函数的复合函数仍为连续函数。
由以上讨论 P(z) a0 a1z anzn在整个复平面内是连续的; R(z) P(z) 在复平面内除分母为0点外处处连续.
z0
一个预先给定的
A
ε邻域中 定义中 的方式是任意的. 与一元实变函数相比较要求更高. (2) A是复数.
2. 运算性质
复变函数极限与其实部和虚部极限的关系: 定理1
定理2
若 lim f (z) A lim g(z) B
z z0
z z0
lim f (z) g(z) lim f (z) lim g(z)
Q(z)
有界性:
设 曲 线C为 闭 曲 线 或 端 点 包 括 在内 的 曲 线 段 若f (z)在C上连续 M 0 f (z) M(z C )
1. 函数的极限
定义 设 w f (z) z O(z0 , ),若数A,
第2章 复变函数
![第2章 复变函数](https://img.taocdn.com/s3/m/d8d9786d1ed9ad51f01df2fe.png)
( x, y ) Î E .
(1)
其中 u = u ( x, y ) 和 v = v( x, y ) 是一对二元实函数, 它们分别称为 f ( z ) 的实部和虚部, 分别记 为 Re f ( z ) 和 Im f ( z ). 这说明一个复函数等价于一对二元实变量的实函数. 复函数的形如(1)式的表示形式对应于复数的代数形式. 对应于复数的指数形式, 相应地可 以将复函数表示为指数形式:
f ( z) > M ,
则称当 z 0 时, f ( z ) 趋近于无穷大 记为 lim f ( z ) = ¥.
z z0
(2) 设 w = f ( z ) 是定义在 E 上的复函数, 无穷远点 ¥ 是 E 的聚点(即对任意 r > 0, ¥ 的
r 邻域 { z : z > r } 中包含 E 中的点), 是一复数. 若对任意 > 0, 存在 r > 0, 使得当 z Î E 并且 z > r 时, 有
复变函数的连续性
定是 E 的聚点. 若
z z0
lim f ( z ) = f ( z0 ),
则称 f ( z ) 在点 z0 处(相对于集 E )连续. 若 f ( z ) 在 E 上的每一点处都连续, 则称 f ( z ) 在 E 上连 续. 例6 例 5(2)的结论表明多项式函数在复平面上处处连续. 设 f ( z ) = u ( x, y ) + iv( x, y ) 是定义在 E 上的复函数, z0 = x0 + iy0 是 E 的聚 定理 2.1.2
于是 f ( z ) f ( z0 ) f ( z ) f ( z0 )
1 f ( z0 ) . 2
1 f ( z0 ) . 即 2
复变函数的极限和连续性
![复变函数的极限和连续性](https://img.taocdn.com/s3/m/6b2353fd0242a8956bece416.png)
趋于 z 0 所采取的方式 ( 选取的路径 )有无关系 ?
思考题答案 极限值都是相同的. 没有关系. 没有关系 z 以任何方式趋于 z0 , 极限值都是相同的
复变函数与积分变换
目 录 上一页 下一页 返 回 结 束
时,
( u + iv ) − ( u0 + iv 0 ) < ε . ⇒ u − u0 < ε , v − v 0 < ε ,
x → x0 y → y0
或当 0 < ( x − x0 ) 2 + ( y − y0 ) 2 < δ 时, ( u − u0 ) + i (v − v 0 ) < ε ,
故
说明: 说明:
f ( z ) − A < ε , 所以
lim f ( z ) = A.
z → z0
[证毕 证毕] 证毕
该定理将求复变函数 f ( z ) = u( x , y ) + iv ( x , y ) 的极限问题 , 转化为求两个二元实变 函数 u( x , y ) 和 v ( x , y ) 的极限问题 .
随 k 值的变化而变化 , 所以 lim v ( x , y ) 不存在, 根据定理一
可知, 可知 lim f ( z ) 不存在.
z→ 0 →
x → x0 y → y0
复变函数与积分变换
目 录
上一页
下一页
返 回
结 束
第一章 复数与复变函数
第六节 复变函数的极限与连续性
二、函数的连续性
连续的定义: 1. 连续的定义: 如果 lim f ( z ) = f ( z 0 ), 那末我们就说 f ( z )在 z 0 处连续 .
复变函数第二章 1-2
![复变函数第二章 1-2](https://img.taocdn.com/s3/m/72340d0bf78a6529647d53ca.png)
0
lim u( x , y ) = u0 , lim v ( x , y ) = v0 .
x→ x0 y → y0
若 f ( z ) 在区域 D 内处处连续 , 则称 f ( z ) 在
z = z0
z → 0
f ( z0 + z ) f ( z0 ) . z
(1)
注: (1)式中的极限与 z0 + z → z0 ( z → 0)的方式无关 , 即: 无论 z0 + z 以何种方式趋于 z0 ,
f ( z0 + z ) f ( z0 ) 都趋于同一个数 . z
该极限称为 f ( z ) 在 z0 点的导数 , 记作
1 , 其中 z = ( w ) 和 w = f ( z ) 是互为反函 ′( w ) 数的单值函数 , 且 ′( w ) ≠ 0
注:w = f ( z ) 在 z0 点可导与在 z0 点可微是等价的 .
3
§2.1 解析函数的概念 —— 解析函数
二、解析函数 定义 1.2 若 f ( z ) 在 z0 及 z0 的某个邻域内处处可导 , 则 称 f ( z ) 在 z0 点解析 ; 若 f ( z ) 在区域 D 内的每 个点都解析 , 则称 f ( z ) 在区域 D 内解析 , 或称
lim arg z = π , lim arg z = π .
x= x0 y →0 + x= x0 y→ 0
z z + 在 z = 0 点是否有极限? 否 . z z Re( z ) 在 z = 0 点是否有极限? 否 . z
复变函数
![复变函数](https://img.taocdn.com/s3/m/779d3e71a45177232f60a2cb.png)
盐城工学院基础部应用数学课程组
z Re( z ) 例1 计算函数 f ( z ) 在 z 0 的极限. z
解 设z x iy,则 f ( z )
x2 x y
2 2
i
xy x2 y2
u( x, y )
x2 x y
2 2
, v( x, y)
2 2
xy x2 y 2
根据复数的乘法公式可知,
映射 w z 2 将 z 的辐角增大一倍 .
y
v
o
x
o
2
u
将 z 平面上与实轴交角为 的角形域映射成 w 平面上与实轴交角为 2 的角形域 .
盐城工学院基础部应用数学课程组
定义虽然在形式上相同 , 但在实质上要求苛刻得多
.复变函数、极限、连续的等价条件 2.
① 一个复变函数对应于两个二元实变函数; ② 复变函数的极限存在等价于两个二元实变函数 极限同时存在; ③ 复变函数连续等价于两个二元实变函数同时连续.
盐城工学院基础部应用数学课程组
作业
习题一: 31,32
盐城工学院基础部应用数学课程组
z 2 . 例3 计算 lim z i z 1 z 2 z 2 i 2 1 3i 在z i处连续, 故 lim . 解 因为 z i z 1 z 1 i 1 2
盐城工学院基础部应用数学课程组
2.连续函数的性质 (1)连续函数的和差积商仍然连续;
f ( z ) g ( z ), f ( z ) g ( z)
盐城工学院基础部应用数学课程组
1 例1 证明 w 是定义在除原点外的整个复平面上 z 的复变函数.
证 令z x iy,
复变函数课件:2_1极限与连续
![复变函数课件:2_1极限与连续](https://img.taocdn.com/s3/m/09f2af2c7fd5360cba1adbb5.png)
映射 如果用 z 平面上的点表示自变量 z 的值, 而用另一个平面 w 平面上的点表示函数 w 的 值, 那末函数 w f (z) 在几何上就可以看作 是把 z 平面上的一个点集 E (定义集合) 变到 w 平面上的一个点集 A (函数值集合)的映射 (或变换).
如果 E 中的点 z 被映射 w f (z) 映射成 A 中的点 w, 那末 w 称为 z 的象 (映象), 而 z 称为 w 的原象.
由二元实函数极限的定义,
lim u(x, y) a, lim v(x, y) b.
xx0 y y0
xx0 y y0
充分性() 若 lim u(x, y) a, lim v(x, y) b,
xx0
xx0
y y0
y y0
0, 0,使得当0 x x0 2 y y0 2 时
| u(x, y) a | , | v(x, y) b | ,
例3 函数 w z2, 令 z x iy, w u iv, 则 u iv ( x iy)2 x2 y2 2xyi, 于是函数 w z2 对应于两个二元实变函数 : u x2 y2, v 2xy.
3. 映射的概念
对于复变函数,由于它反映了两对变量u, v 和 x, y 之间的对应关系,因而无法用同一平面内 的几何图形表示出来, 必须看成是两个复平面上 的点集之间的对应关系.
2. 复变函数极限与实函数极限的关系
定理2.1.1 设 f (z) u(x, y) iv(x, y)在点集E 上
有定义,z0 x0 iy0为E的一个聚点, a ib,
则 lim f (z) a ib z z0
lim u(x, y) a, lim v(x, y) b.
若有一法则 f ,使对E中的每一个点 z x iy, 存在多个 w u iv 和它对应, 则称 f 为在 E 上定义了一个复变数(多值)函数 .
复变函数的极限与连续性
![复变函数的极限与连续性](https://img.taocdn.com/s3/m/da38ffb448649b6648d7c1c708a1284ac9500570.png)
处是连续的。
例 多项式函数
在复平
上是连续函数。
例 有理分式函数
,其中
为多项式函数在复平面上使分母不为零的点处是连续
的。
例 函数
单击此处添加副标题
一 函数的极限
如图:
定义1
为定复数,
在
的某个去心邻域内
有定义,
设函数
总
存在一个正数
如果对于任意给定的
使得当
时,
恒有
那么称
为函数
当
趋向于
时的极限。
记作
注意: 趋向于 的方式是任意的。 定理1 设 则 的充要条件为 且 定理2 设 则
不存在,其中
例 解 因此 不存在。 说明 由于
二 函数的连续性
定理3
在点
处连续的充要条件是
在
处都连续。
定理4
处连续函数的和、差、积和商
(分母不为零)仍为
处连续函数。
(1)在
定义2
则称函数
处是连续的,
在
如果
在区域
上每一
点都是连续的,
如果函数
上的连续函数。
则称函数为区域
(2)如函数
在
处连续,函数
在
处连续,则复合函数
复变函数的极限.ppt
![复变函数的极限.ppt](https://img.taocdn.com/s3/m/3e14ec081eb91a37f1115cbe.png)
z z0
六、复变函数的连续性(P22)
哈 尔
如果 lim z z0
f (z)
f (z0 ),则称f (z)在z0处连续.
滨 工
如果f (z)在区域G内每一点均连续,则称
程
大 学
f (z)在G内连续。
定理3 f (z) u( x, y) iv( x, y)在点z0 x0 iy0
尔
滨 工
例3
考察函数w z2
程 大
w u iv (x iy)2 x2 y2 2xyi
学
因此w z2对应u x2 y2, v 2xy
复 变
例4
函
数
与
积
分
变
换
将定义在全平面除原点区域上的一对
二元实变函数
u
x
2x 2
y
2
,v
x2
y
y2 ,x2
y2
大 学
z z0
z z0
z z0
复 2. lim f (z)g(z) lim f (z) lim g(z)
变
z z0
z z0
z z0
函
数
与 积 分 变 换
3.
lim
f (z)
lim
z z0
f (z)
(lim g(z) 0)
zz0 g(z) lim g(z) zz0
证明函数f (z)
z 在z 0时极限不存在. z
哈 尔
证
设z x iy,
滨
工 程 大 学
f (z)
z z
x2 x2
1-3复变函数的极限与连续
![1-3复变函数的极限与连续](https://img.taocdn.com/s3/m/0f53e603ff00bed5b9f31da4.png)
根据反函数的定义,
w G*, w f [ ( w )],
当反函数为单值函数时, z [ f ( z )], z G .
如果函数 (映射) w f ( z ) 与它的反函数 (逆映射 ) z ( w )都是单值的, 那末称函数 (映 射) w f ( z ) 是一一对应的. 也可称集合 G 与集 合 G * 是一一对应的.
2 2
v o
4
2
o
2
u
平行于 v 轴的直线.
例1 在映射 w z 下求下列平面点集在w 平面
2
上的象 :
π ( 3) 扇形域 0 , 0 r 2. 4 解 设 z re i , w e i , 则 r 2 , 2 ,
π 故扇形域 0 , 4 0 r 2映射为
故 lim u( x , y ) u0 ,
x x0 y y0 x x0 y y0
lim v ( x , y ) v0 .
(2) 充分性.
若 lim u( x , y ) u0 ,
x x0 y y0
x x0 y y0
lim v ( x , y ) v0 ,
以原点为焦点,开口相左的抛物线.(图中红色曲线)
同理直线 y 的象为:
v 2 4 2 ( 2 u),
以原点为焦点,开口相右的 抛物线.(图中蓝色曲线)
3. 反函数的定义:
设 w f ( z ) 的定义集合为 z 平面上的集合 G , 函数值集合为 w 平面上的集合 G*, 那末 G * 中的 每一个点 w 必将对应着 G 中的一个(或几个)点. 于是在 G * 上就确定了一个单值 (或多值)函数 z ( w ), 它称为函数 w f ( z ) 的反函数 , 也称 为映射 w f ( z ) 的逆映射.
1-6复变函数的极限和连续性
![1-6复变函数的极限和连续性](https://img.taocdn.com/s3/m/c072051755270722192ef77d.png)
, ∃δ > 0 , 当z ∈ N δ ( z0 ) 时
f ( z ) − f ( z0 ) ≤ f ( z ) − f ( z 0 ) < ε
故 0< f ( z0 ) 2 < f ( z0 ) - ε < f ( z ) ≤ f ( z0 ) + ε
∴ f ( z) ≠ 0
25
32. 试证 arg z 在原点与负实轴上不连续 .
那末 lim f ( z ) = A 的充要条件是
z → z0 x → x0 y → y0
lim u( x , y ) = u0 ,
x → x0 y → y0
lim v ( x , y ) = v0 .
证明:书上26页 证明:书上26页 26
4
说明
该定理将求复变函数 f ( z ) = u( x , y ) + iv ( x , y ) 的极限问题 , 转化为求两个二元实变 函数 u( x , y ) 和 v ( x , y ) 的极限问题 .
8
当 z 沿不同的射线 arg z = θ 趋于零时, f ( z )趋于不同的值 . 例如 z 沿正实轴 arg z = 0 趋于零时, f ( z ) → 1,
π 沿 arg z = 趋于零时 , f ( z ) → 0, 2
故 lim f ( z ) 不存在.
z→0 →
9
1z z 例2 设 f ( z ) = − ( z ≠ 0 ) 2i z z 证 明 : 当 z → 0时 , f ( z )的 极 限 不 存 在
2
= ( z1 − z2 )( z1 − z2 ) = z1 z1 + z2 z2 − z2 z1 − z1 z2
大学高数复变函数与积分变换复习公式知识点
![大学高数复变函数与积分变换复习公式知识点](https://img.taocdn.com/s3/m/eb528ca8ccbff121dc368384.png)
ℱ f nx ( j)n F()
4、积分性质
ℱ
x x0
f
xdx
1 F () j
ℱ
(
j
xn)
f
x
d
n F () d n
由 Fourier 变换的微分和积分性质,我们可以利用 Fourier 变换求解微积分方程。
四、卷积和卷积定理
f1(x) * f2 (x) f1( ) f2 (x )d
2、闭路积分: a) f zdz c
利用留数定理,柯西积分公式,高阶导数公式。
b) [u(x, y) iv(x, y)]dz c
三、柯西积分定理:
c f zdz 0
推论 1:积分与路径无关
f zdz z2 f (z)dz
c
z1
推论 2:利用原函数计算积分
z2 z1
f
(z)dz
F(z2 ) F(z1)
第四章 解析函数的级数
一、幂级数及收敛半径:
an (z b)n
n0
1、一个收敛半径为 R(≠0)的幂级数,在收敛圆内的和函数 f (z) 是解析函数,在这个收敛圆内,这
个展开式可以逐项积分和逐项求导,即有:
f 'z nan z bn n1
zb R
z f
0
z dz
n0
z
l an
大学高数复变函数与积分变换复习公式知识点
第一章 复变函数 一、复变数和复变函数
w f z ux, y ivx, y
二、复变函数的极限与连续
极限 lim f (z) A zz0
连续
lim f (z)
zz0
f (z0)
第二章 解析函数
一、复变函数 w f (z) u(x, y) iv(x, y) 可导与解析的概念。
复变函数及其极限与连续性
![复变函数及其极限与连续性](https://img.taocdn.com/s3/m/117457ce5acfa1c7aa00ccee.png)
故当 0 z z0 时, f (z) A ,
所以 lim f (z) A. zz0
复变函数极限的性质
(1)唯一性 (2)有界性 (3)有理运算法则
注意:因为一个复变函数的极限问题相当于两个二元实变 函数的极限问题,复变函数的极限要比实变函数的极限复 杂得多,要求也苛刻的多。
例3
证明当
z z(t ) x(t ) iy(t ) (a t b ).
光滑曲线
如果 x t , y t 均连续,且 t,[x t ]2 [ y t ]2 0
则称曲线是光滑的. 分段光滑曲线
简单曲线或约当曲线
没有重点或除起点和终点重合外,自身不相交的曲线.
z(a )
z(b ) z(a )
(1)圆环域: r1 z z0 r2; (2)上半平面: Im z 0; (3)角形域: 1 arg z 2;
(4)带形域: a Im z b.
r2
r1z0
y
o
x
连续曲线
如果x=x(t), y=y(t) (atb)为连续函数时, 则称
C
:
x y
x y
t t
a
t
b
为连续曲线.
z0 时,函数
Re z
f (z)
极限不存在.
z
方法1. 沿 y kx
方法2. 沿不同射线 arg z
复变函数的连续性
设
f (z)在z0的邻域内有定义,
且 lim f (z) z z0
f (z0 )
则称f(z)在z0处连续. 若f(z)在区域D内的每一点都连续,则称f(z)在区域D上连续.
使得当 0 z z0 时,总有 f (z) A
成立,则称当z趋于z0时, f(z)以A为极限,并记作 lim f (z) A 或 f (z) A (z z0 ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 复变函数 二、 复变函数的极限 三、 复变函数的连续性
1
一、 复变函数
x 实变量, y f ( x) 为实变函数, x 的值一旦确定,
y 只有一个数和它对应. 高等数学中的实变函数,
都是单值函数. 可用平面上的一条曲线表示一个实变函数.
z 复变量, w f (z) 为复变函数, z 的值一旦确定,
x
u
9
例2(3) 函数 w 1
z
把z平面上的直线 y kx
映射成 怎样的曲线?
解
w
1
x i kx
1 ik
x (1 k 2 )
u 1 , x (1 k 2 )
v k , x (1 k 2 )
ku v 0
y
w1 z
把
y kx 映射成 ku v 0
v
把 y x 映射成 u v 0
0x
yc y 1
v2 4c2(c2 u) v2 4(1 u)
y 2 y
v2 16(4 u) v
x
u
证 zz xc iyc w (cxiiyc))22cx2 2yc2222ccyxi i
uu xc2 cy22 v 2cxy
xy v 2c
u
v2 c42c2
vc22 4c2
v22 4c22(c22 u) u c2 u c72
z z 2 t (2ti 0) w (2 2i)2 8i
2
0 arg(w)
5
例1.14续 考察 w z2 的映射性质 z x iy
w ( x iy)2 x2 y2 i2xy
3) w z2 将z平面上的
w平面上的
双曲线 xy a 映射成 v 2a 直线
x2 y2 a
u a
把 y x 映射成 u v 0
0u
10
例2续 函数w
1 z
把z平面上的曲线 映射成怎样的曲线?
(4) ( x a)2 y2 a2
u 1
2a
( x 1)2 y2 1 u 0.5
(5)
x
2( y
y
a
)2
(x a2
2)2 v
y
2 牙形映射成
带形
x
u
解:
例1.14 考察 w z2 的映射性质
1) | w | | z2|| z |2 若 | z | a, 则| w | a2
w z2 将z平面上的中心在原点的圆| z | a
映射成w平面上的 | w | a2 中心在原点的圆
y
v
| z | 1 | w | 1
| z | 2 | w | 4
|
x
z |
w 有一个复数 或几个复数和它对应.
如果 z 的一个值对应着的w 只有一个值, 则称
w f (z) 为单值函数. 例如 w z2为单值函数.
z 1 i w (1 i)2 12 2i i2 1 2i 1 2i
如果 z 的一个值对应着的 w 有两个 或两个以上的值,
则称 w f (z) 为多值函数. 例如 w z 为多值函数.
x2 y2 1
u1
x2 y2 2
u2
y
xy 1
v4 v
v2
xy 1
x
u
xy 2
v 2 6
例1.14续 考察 w z2 的映射性质 4) w z2 将z平面上的
w平面上的 抛物线
直线 x c 映射成 v2 4c2 (c2 u)
x 1
v2 4(1 u)
x 2
v2 16(4 u)
解
z
a
z
iy,则 w
aaa21iiyyy2
a2
a
y2
iy a2 y2
a u a2 y2
v
a2
y
y2
消去 y 得到 ( u 1 )2 v2 ( 1 )2
消去过程为
u a y, y vy
av u
2a 中心在 (
1
,0)
代入
u
2aav a2 y2
2a 1 半径为 | 2a |的圆
化简得到上式
e
i
z 1i 2 e
w0 w1 4
4 2(cos i 98
2 (cos 8
4 w
sin )
89
i sin 8
)
1
z ( 2)2
2k
i4 2
2k
4 2 (cos 4
i sin 4
2
2k
22
)
一个复变函数 w f (z) 一定对应着两个 二元实变函数
因为 z x iy
所以 w f ( x iy) u( x, y)iv( x, y)
例2 (1)映射 w 1 把z平面上的曲线 x2 y2 a2 z
映射成w平面上怎样的曲线?
解: | z |a
| w | 1 1 |z| a
中心在原点、半径为 1 的圆
a
v
y
| z | 1 | w | 1
| z | 2 x| z | 1
|
w | |w
1
2 |
2
u
2 8
例2(2) 函数 w 1 把z平面上的直线 x a映射成什么曲线
1.函数的极限 如果当 z z0 时, f (z) 接近于常数A,
则称当 z
定理一
z0 时, 设z
f
(z x
)
的极限为A, 记为 lim z z0
z x iy
w
x x2 y2
x2
iy
y2
原方程变为 x2 y2 2axy
所以
w 221axay22iaiyax
1 v u 11
2a
二、 复变函数的极限
一个复变函数 w f (z) 一定对应着两个二元实变函数 因为 z x iy
所以 w f ( x iy) u( x, y)iv( x, y)
例如 w z2
z x iy w ( x iy)2
x2 y2 i2xy
此时 u x2 y2 v 2xy
映射、变换 自变量z 的值用z平面上的点表示 因变量w 的值用w平面上的点表示
复变函数 w f (z) 将z平面上的曲线映射成或变换成 w平面上的曲线
将z平面上的区域 映射成或变换成w平面上的区3 域
映射成 w平面上的
Arg(w) 20 射线
arg(w)
2 w (t it )2 2t 2i 正虚轴
虚轴 z it w t 2 负实轴
arg(z) arg(w)
2
z t it (t 0)
zy
wv
w 2t 2i 负虚轴
4
u 0 arg(z)
z负实1轴 i
x ww(1t 2 i正)2实2轴i
1
| w | 1
u
2
4
如果 z | z | ei 则 w ( | z | ei )2| z |2ei 2
Arg (w ) 2 2 Arg(z)
若Arg ( z ) 0 , 则 Arg ( w ) 20 .
4
2) w z2 将z平面上的
射线 Arg(z) 0
arg(z) 4
z t it (t 0)