函数的概念与性质教案

合集下载

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。

本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。

本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。

通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。

但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。

三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。

四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。

2.难点:函数的概念的理解,函数的性质的推导。

五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。

2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。

3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。

六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。

2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。

3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。

4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。

函数的概念与性质教案

函数的概念与性质教案

函数的概念与性质教案一、教学目标:1. 理解函数的概念,掌握函数的表示方法。

2. 掌握函数的性质,包括单调性、奇偶性、周期性等。

3. 能够运用函数的性质解决问题。

二、教学内容:1. 函数的概念:函数的定义、函数的表示方法(列表法、解析法、图象法)。

2. 函数的性质:单调性、奇偶性、周期性。

3. 函数性质的应用:解决实际问题。

三、教学重点与难点:1. 重点:函数的概念与表示方法,函数的性质及其应用。

2. 难点:函数的单调性、奇偶性、周期性的理解和应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数的性质。

2. 利用数形结合法,直观展示函数的性质。

3. 运用实例分析法,让学生学会运用函数的性质解决实际问题。

五、教学准备:1. 教学课件:包含函数的概念、性质及其应用的实例。

2. 教学素材:包括函数图象、实际问题等。

3. 学生用书、练习题。

【导入】(此处简要介绍本节课的教学目标和内容,引导学生进入学习状态。

)【新课导入】1. 函数的概念:(1)引导学生回顾数学中的变量概念,引入函数的定义。

(2)讲解函数的表示方法:列表法、解析法、图象法。

2. 函数的性质:(1)单调性:讲解函数单调递增和单调递减的概念,引导学生通过图象观察函数的单调性。

(2)奇偶性:讲解函数奇偶性的定义,引导学生通过图象观察函数的奇偶性。

(3)周期性:讲解函数周期性的定义,引导学生通过图象观察函数的周期性。

【课堂练习】1. 让学生自主完成教材中的练习题,巩固所学内容。

2. 选取部分学生进行答案展示,并讲解答案的得出过程。

【实例分析】1. 给出实际问题,让学生运用函数的性质解决问题。

2. 引导学生总结解题思路和方法,并进行讲解。

【小结】1. 让学生回顾本节课所学内容,总结函数的概念、性质及其应用。

2. 强调函数在实际问题中的重要性。

【作业布置】1. 让学生完成课后作业,巩固所学内容。

2. 鼓励学生进行自主学习,提前预习下一节课的内容。

《函数的概念》教学教案

《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。

2. 掌握函数的表示方法,包括列表法、图象法、解析式法。

3. 能够判断两个变量之间的关系是否为函数。

4. 理解函数的性质,如单调性、奇偶性等。

二、教学内容1. 函数的定义及概念。

2. 函数的表示方法:列表法、图象法、解析式法。

3. 判断两个变量之间的关系是否为函数。

4. 函数的性质:单调性、奇偶性。

三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。

2. 教学难点:函数的性质的理解与应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。

2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。

3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。

2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。

3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。

4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。

5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。

6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。

7. 总结本节课的主要内容,布置课后作业,巩固所学知识。

六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。

2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。

3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。

七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。

2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。

3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。

八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。

中职数学函数的概念教案

中职数学函数的概念教案

中职数学函数的概念教案第一章:函数的概念与性质1.1 函数的定义引入函数的概念,通过实例让学生理解函数的定义。

讲解函数的表示方法,包括函数表格、函数图像和函数表达式。

1.2 函数的性质讲解函数的单调性、奇偶性、周期性等基本性质。

通过实例让学生理解函数的性质,并学会如何判断函数的性质。

第二章:函数的图像2.1 函数图像的绘制讲解如何绘制函数的图像,包括直线、二次函数、指数函数等。

通过实例让学生学会绘制函数图像,并理解函数图像与函数性质的关系。

2.2 函数图像的性质讲解函数图像的性质,包括对称性、单调性、极值等。

通过实例让学生理解函数图像的性质,并学会如何分析函数图像。

第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义和性质,包括斜率和截距的概念。

通过实例让学生理解一次函数的图像和性质,并学会解一次方程组。

3.2 二次函数讲解二次函数的定义和性质,包括开口方向、顶点、对称轴等。

通过实例让学生理解二次函数的图像和性质,并学会解二次方程。

第四章:函数的极限与连续性4.1 函数的极限讲解函数极限的概念,包括左极限和右极限。

通过实例让学生理解函数极限的性质,并学会计算函数极限。

4.2 函数的连续性讲解函数连续性的概念,包括连续函数的性质和判定条件。

通过实例让学生理解函数连续性的重要性,并学会判断函数的连续性。

第五章:函数的导数与微分5.1 函数的导数讲解函数导数的概念和计算方法,包括导数的定义和导数的计算规则。

通过实例让学生理解函数导数的意义,并学会计算常见函数的导数。

5.2 函数的微分讲解函数微分的概念和计算方法,包括微分的定义和微分的计算规则。

通过实例让学生理解函数微分的应用,并学会计算函数的微分。

第六章:函数的积分与累积6.1 定积分的概念讲解定积分的定义和性质,包括定积分的几何意义和计算方法。

通过实例让学生理解定积分的概念,并学会计算常见函数的定积分。

6.2 定积分的应用讲解定积分在几何和物理中的应用,包括面积和体积的计算。

高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法第一册数学教案

高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法第一册数学教案

3.1.2 函数的表示法最新课程标准:(1)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用.(2)通过具体实例,了解简单的分段函数,并能简单应用.知识点一 函数的表示法状元随笔 1.解析法是表示函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了变量之间的数量关系.2.由列表法和图象法的概念可知:函数也可以说就是一张表或一张图,根据这张表或这张图,由自变量x 的值可查找到和它对应的唯一的函数值y.知识点二 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.状元随笔 1.分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.2.分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x≤0,x ,0<x≤3,其“段”是不等长的.[教材解难]教材P 68思考(1)三种表示方法的优缺点比较适用于所有函数,如D (x )=⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段). [基础自测]1.购买某种饮料x 听,所需钱数为y 元,若每听2元,用解析法将y 表示成x (x ∈{1,2,3,4})的函数为( )A .y =2xB .y =2x (x ∈R )C .y =2x (x ∈{1,2,3,…}) D.y =2x (x ∈{1,2,3,4}) 解析:题中已给出自变量的取值范围,x ∈{1,2,3,4},故选D.答案:D2.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0 B.13C .1D .2解析:f (2)=2-1=1. 答案:C3.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4解析:方法一 令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2.∴f (x )=3x +2.方法二 ∵f (2x +1)=3(2x +1)+2. ∴f (x )=3x +2. 答案:A4.已知函数f (x ),g (x )分别由下表给出.则f (g (1))的值为 当g (f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3, ∴f (g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1. 答案:1 1题型一 函数的表示方法[经典例题]例 1 (1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )(2)已知函数f(x)按下表给出,满足f(f(x))>f(3)的x的值为________.【解析】(1)所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.【答案】(1)D由题意找到出发时间与离校距离的关系及变化规律【解析】(2)由表格可知f(3)=1,故f(f(x))>f(3)即为f(f(x))>1.∴f(x)=1或f(x)=2,∴x=3或1.【答案】(2)3或1观察表格,先求出f(1)、f(2)、f(3),进而求出f(f(x))的值,再与f(3)比较.方法归纳理解函数的表示法应关注三点(1)列表法、图象法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.跟踪训练1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x (x 为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.解析:(1)列表法:(3)解析法:y =3 000x ,x ∈{1,2,3,…,10}.状元随笔 本题中函数的定义域是不连续的,作图时应注意函数图象是一些点,而不是直线.另外,函数的解析式应注明定义域.题型二 求函数的解析式 [经典例题] 例2 根据下列条件,求函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫1x =x1-x 2,求f (x );(2)f (x )是二次函数,且f (2)=-3,f (-2)=-7,f (0)=-3,求f (x ).【解析】 (1)设t =1x ,则x =1t (t ≠0),代入f ⎝ ⎛⎭⎪⎫1x =x1-x 2,得f (t )=1t1-⎝ ⎛⎭⎪⎫1t 2=tt 2-1,故f (x )=xx 2-1(x ≠0且x ≠±1).(2)设f (x )=ax 2+bx +c (a ≠0).因为f (2)=-3,f (-2)=-7,f (0)=-3.所以⎩⎪⎨⎪⎧4a +2b +c =-3,4a -2b +c =-7,c =-3.解得⎩⎪⎨⎪⎧a =-12,b =1,c =-3.所以f (x )=-12x 2+x -3.(1)换元法:设1x=t ,注意新元的范围.(2)待定系数法:设二次函数的一般式f(x)=ax 2+bx +c. 跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________;(2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________.解析:(1)因为f (x 2+2)=x 4+4x 2 =(x 2+2)2-4,令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2),所以f (x )=x 2-4(x ≥2).(2)因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:(1)f (x )=x 2-4(x ≥2)(2)2x -13或-2x +1(1)换元法 设x 2+2=t. (2)待定系数法 设f(x)=ax +b.题型三 求分段函数的函数值 [经典例题] 例3 (1)设f (x )=⎩⎪⎨⎪⎧|x -1|-2|x |≤1,11+x 2|x |>1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A.12B.413 C .-95 D.2541(2)已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.【解析】(1)∵f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+94=413,故选B. 判断自变量的取值范围,代入相应的解析式求解. (2)因为8<10,所以代入f (n )=f (f (n +5))中, 即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3中,得f (13)=10, 故f (8)=f (10)=10-3=7. 【答案】 (1)B (2)7 方法归纳(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得.(2)像本题中含有多层“f ”的问题,要按照“由里到外”的顺序,层层处理.(3)已知函数值求相应的自变量值时,应在各段中分别求解.跟踪训练3 已知f (x )=⎩⎪⎨⎪⎧x +1 x >0,π x =0,0 x <0,求f (-1),f (f (-1)),f (f (f (-1))).解析:∵-1<0,∴f (-1)=0,∴f (f (-1))=f (0)=π, ∴f (f (f (-1)))=f (π)=π+1. 根据不同的取值代入不同的解析式. 题型四 函数图象[教材P 68例6]例4 给定函数f (x )=x +1,g (x )=(x +1)2,x ∈R , (1)在同一直角坐标系中画出函数f (x ),g (x )的图象; (2)∀x ∈R ,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )}.例如,当x =2时,M (2)=max{f (2),g (2)}=max{3,9}=9. 请分别用图象法和解析法表示函数M (x ).【解析】 (1)在同一直角坐标系中画出函数f (x ),g (x )的图象(图1).(2)由图1中函数取值的情况,结合函数M (x )的定义,可得函数M (x )的图象(图2).由(x +1)2=x +1,得x (x +1)=0.解得x =-1,或x =0. 结合图2,得出函数M (x )的解析式为M (x )=⎩⎪⎨⎪⎧x +12,x ≤-1,x +1,-1<x ≤0,x +12,x >0.状元随笔 1.先在同一坐标系中画出f(x)、g(x); 2.结合图象,图象在上方的为较大者; 3.写出M(x). 教材反思(1)画一次函数图象时,只需取两点,两点定直线.(2)画二次函数y =ax 2+bx +c 的图象时,先用配方法化成y =a (x -h )2+k的形式⎝ ⎛⎭⎪⎫其中h =-b 2a ,k =4ac -b 24a ,确定抛物线的开口方向(a >0开口向上,a <0开口向下)、对称轴(x =h )和顶点坐标(h ,k ),在对称轴两侧分别取点,按列表、描点、连线的步骤画出抛物线.(3)求两个函数较大者,观察图象,图象在上方的为较大者. 跟踪训练4 作出下列函数的图象: (1)y =-x +1,x ∈Z ; (2)y =2x 2-4x -3,0≤x <3; (3)y =|1-x |.解析:(1)函数y =-x +1,x ∈Z 的图象是直线y =-x +1上所有横坐标为整数的点,如图(a)所示.(2)由于0≤x <3,故函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的部分,如图(b).(3)因为y =|1-x |=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,故其图象是由两条射线组成的折线,如图(c).(2)先求对称轴及顶点,再注意x 的取值(部分图象).(3)关键是根据x 的取值去绝对值.解题思想方法 数形结合利用图象求分段函数的最值例 求函数y =|x +1|+|x -1|的最小值.【解析】 y =|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1.作出函数图象如图所示:由图象可知,x ∈[-1,1]时,y min =2.【反思与感悟】 (1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错.答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( )A .f (x )=11+xB .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t ,∴f (x )=1x +2.答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1].答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________. 解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f 2-12f-2=4,f-2-12f2=-4,得⎩⎪⎨⎪⎧2f 2-f -2=8,f -2-12f 2=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /张 1 2 3 4 5 y /元20406080100(2)(3)解析法:y =20x ,x ∈{1,2,3,4,5}. 9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x );(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析:(1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. [尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数); (2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎪⎨⎪⎪⎧…-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y=-x-2的图象,取(-∞,-2)上的一段,如图2所示.。

函数的性质教案8篇

函数的性质教案8篇

函数的性质教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!函数的性质教案8篇教案是教师与学生之间沟通的桥梁,教案是教学的路线图,帮助我们不偏离轨道,以下是本店铺精心为您推荐的函数的性质教案8篇,供大家参考。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

《函数的概念》教学教案

《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 知识与技能:(1)理解函数的定义及其基本性质;(2)能够正确运用函数的概念解决实际问题。

2. 过程与方法:(1)通过实例分析,引导学生掌握函数的定义;(2)利用数形结合,让学生理解函数的性质。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点1. 教学重点:(1)函数的定义及其基本性质;(2)函数图像的特点。

2. 教学难点:(1)函数概念的理解;(2)函数图像的解读。

三、教学方法1. 情境导入:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。

2. 讲授法:(1)讲解函数的定义及基本性质;(2)分析函数图像的特点,引导学生理解函数的概念。

3. 讨论法:(1)分组讨论函数实例,让学生深入理解函数的概念;(2)组织学生展示讨论成果,促进学生之间的交流。

4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。

四、教学过程1. 导入新课:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。

2. 讲解函数的定义及基本性质:(1)讲解函数的定义,让学生理解函数的概念;(2)介绍函数的基本性质,如单调性、奇偶性等。

3. 分析函数图像的特点:(1)让学生观察函数图像,理解函数的性质;(2)引导学生学会解读函数图像,掌握函数图像的特点。

4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。

5. 课堂小结:(2)强调函数在实际问题中的应用价值。

五、课后作业1. 复习本节课所学内容,整理函数的定义及基本性质;2. 运用函数概念,解决实际问题;3. 观察函数图像,分析函数的单调性、奇偶性等性质。

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇

函数教学教案设计优秀4篇函数教学教案设计篇一教学目标:(一)教学学问点:1.对数函数的概念;2.对数函数的图象和性质。

(二)本领训练要求:1.理解对数函数的概念;2.把握对数函数的图象和性质。

(三)德育渗透目标:1.用联系的观点分析问题;2.认得事物之间的相互转化。

教学重点:对数函数的图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发觉、探究教学辅佑襄助:多媒体教学过程:一、引入对数函数的概念由同学的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否料想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数.3.结论所以函数与指数函数互为反函数.这节课我们所要讨论的便是指数函数的反函数——对数函数.二、讲授新课1.对数函数的定义:定义域:(0,+∞);值域:(∞,+∞)2.对数函数的图象和性质:由于对数函数与指数函数互为反函数.所以与图象关于直线对称.因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.讨论指数函数时,我们分别讨论了底数和两种情形.那么我们可以画出与图象关于直线对称的曲线得到的图象.还可以画出与图象关于直线对称的曲线得到的图象.请同学们作出与的草图,并察看它们具有一些什么特征?对数函数的图象与性质:(1)定义域:(2)值域:(3)过定点,即那时候,(4)上的增函数(4)上的减函数3.练习:(1)比较下列各组数中两个值的大小:(2)解关于x的不等式:思考:(1)比较大小:(2)解关于x的不等式:三、小结这节课我们紧要介绍了指数函数的反函数——对数函数.而且讨论了对数函数的图象和性质.四、课后作业课本P85,习题2.8,1、3函数教学教案设计篇二一、教学内容分析本节内容是高一数学必修4(苏教版)第三章《三角恒等改换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。

基本初等函数教案

基本初等函数教案

基本初等函数教案章节一:函数概念与基本性质1. 教学目标(1)理解函数的定义及表示方法。

(2)掌握函数的基本性质,如单调性、奇偶性、周期性等。

(3)学会运用函数的基本性质解决实际问题。

2. 教学内容(1)函数的定义及表示方法。

(2)函数的单调性、奇偶性、周期性等基本性质。

(3)函数性质在实际问题中的应用。

3. 教学方法采用讲授法、案例分析法、讨论法相结合,引导学生主动探究、积极思考。

4. 教学步骤(1)引入函数概念,讲解函数的定义及表示方法。

(2)通过例题,引导学生掌握函数的基本性质。

(3)分析实际问题,展示函数性质在解决问题中的应用。

5. 课后作业(1)复习本节课的内容,整理笔记。

(2)完成课后练习题,巩固所学知识。

章节二:幂函数与指数函数1. 教学目标(1)了解幂函数、指数函数的定义及性质。

(2)掌握幂函数、指数函数在实际问题中的应用。

2. 教学内容(1)幂函数的定义及性质。

(2)指数函数的定义及性质。

(3)幂函数、指数函数在实际问题中的应用。

3. 教学方法采用讲授法、案例分析法、讨论法相结合,引导学生主动探究、积极思考。

4. 教学步骤(1)讲解幂函数的定义及性质,举例说明幂函数在实际问题中的应用。

(2)介绍指数函数的定义及性质,分析指数函数在实际问题中的应用。

(3)通过练习题,巩固幂函数、指数函数的知识。

5. 课后作业(1)复习本节课的内容,整理笔记。

(2)完成课后练习题,巩固所学知识。

章节三:对数函数1. 教学目标(1)了解对数函数的定义及性质。

(2)掌握对数函数在实际问题中的应用。

2. 教学内容(1)对数函数的定义及性质。

(2)对数函数在实际问题中的应用。

3. 教学方法采用讲授法、案例分析法、讨论法相结合,引导学生主动探究、积极思考。

4. 教学步骤(1)讲解对数函数的定义及性质,举例说明对数函数在实际问题中的应用。

(2)通过练习题,巩固对数函数的知识。

5. 课后作业(1)复习本节课的内容,整理笔记。

《函数的概念与性质——函数的基本性质》数学教学PPT课件(8篇)

《函数的概念与性质——函数的基本性质》数学教学PPT课件(8篇)
3.2 函数的基本性质3.2.2 奇偶性第4课时 函数奇偶性的应用(习题课)
第三章 函数的概念与性质
本部分内容讲解结束
第三章 函数的概念与性质
3.2 函数的基本性质3.2.1 单调性与最大(小)值第1课时 函数的单调性
Thank you for watching !
第三章 函数的概念与性质
3.2 函数的基本性质3.2.1 单调性与最大(小)值第2课时 函数的最大(小)值
Thank you for watching !
第三章 函数的概念与性质
3.2 函数的基本性质3.2.2 奇偶性第3课时 奇偶性的概念
ቤተ መጻሕፍቲ ባይዱ
Thank you for watching !
第三章 函数的概念与性质
3.2 函数的基本性质 3.2.2 奇偶性第4课时 奇偶性的应用
Thank you for watching !
3.2 函数的基本性质3.2.1 单调性与最大(小)值第1课时 函数的单调性
第三章 函数的概念与性质
单调递增
单调递减
单调递增
单调递减
单调区间
×
×

×
×
本部分内容讲解结束
3.2 函数的基本性质3.2.1 单调性与最大(小)值第2课时 函数的最大值、最小值
第三章 函数的概念与性质
×

×
本部分内容讲解结束
3.2 函数的基本性质3.2.2 奇偶性第3课时 函数奇偶性的概念
第三章 函数的概念与性质
y轴

×
×

本部分内容讲解结束

【高中数学人教】函数的概念与性质 大单元教学设计

【高中数学人教】函数的概念与性质 大单元教学设计
函数的概念及其表示 大单元设计专题概览
函数的概念及其表示
数学运算
直观想象
数学建模
逻辑推理
函数的概念及其表示 单元
学科核心素养
数据分析
1.函数的概念(一)
3.函数的表示(一)
数学抽象
2.函数的概念(二)
4.函数的表示(二)
函数的概念及其表示
主题
单元主题
本单元教学目标
整体设计
函数
函数的概念及其表示
函数的概念及其表示
函数的基本性质及函数的应用 大单元设计专题概览
函数的基本性质及函数的应用
数学运算
直观想象
数学建模
逻辑推理
函数的基本性质及函数应用单元
学科核心素养
数据分析
1.函数的单调性
3.函数的奇偶性
数学抽象
2.函数的最大(小)值
4.函数的应用
函数的基本性质数理解为刻画变量间依赖关系的数学语言和工具,也罢函数理解为实数集合之间的对于关系。
函数是现代数学中最基本的概念,是描述客观世界变化关系和规律的最为基本的数学语言和工具,在解决实际问题中发挥重要作用.函数是贯穿高中数学课程的主线.在函数概念的建立过程中,经历从具体到一般的概念形成过程,提升数学抽象素养.在分段函数的简单应用过程中,体会分类讨论思想.在解决具体的实际问题过程中,理解函数图象的作用,体会数形结合思想,提升直观想象素养.
主题
单元主题
本单元教学目标
整体设计
函数
函数的基本性质及函数的应用
四基四能
通过抽象概括,用代数运算和函数图象揭示函数的主要性质;在现实问题中,能利用函数构建模型,解决问题。
本单元要用代数运算和函数图象研究函数的单调性、奇偶性和最大(小)值以及运用性质解决实际问题.这里既注意体现研究数学性质的一般思路,又注意函数性质的所反映的变化中的规律性、不变性.研究方法上,要注意加强通过代数运算和图象直观揭示函数性质的引导和明示.特别是在单调性的研究中,要构建一个从具体到抽象、从特殊到一般的过程,引导学生归纳概括出用严格的数学语言精确刻画单调性的方法,从而为提升数学运算、直观想象、数学抽象等素养,提升学生的抽象思维水平奠定基础.这种探究函数基本性质的思想和方法对于后续研究其他具体函数也有指导性的意义.

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即函数表达式为y=kx+b(k、b为常数,k≠0)的形式。

通过实际例子,让学生理解一次函数的图像是一条直线。

1.2 一次函数的斜率与截距解释斜率k和截距b的概念,并引导学生通过函数表达式理解它们的含义。

利用实际例子,展示斜率和截距如何影响函数图像的位置和斜率。

1.3 一次函数的图像利用图形工具,展示不同斜率和截距的一次函数图像。

引导学生观察图像的特性,如斜率和截距对图像的影响。

第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即函数表达式为y=kx(k为常数)的形式。

解释正比例函数是一种特殊的一次函数,其截距b为0。

2.2 正比例函数的斜率与图像解释正比例函数的斜率代表比例常数k,并展示不同k值的图像。

引导学生观察正比例函数图像的特点,如通过原点、斜率为正或负等。

2.3 正比例函数的应用通过实际例子,展示正比例函数在实际生活中的应用,如购物时商品的价格与数量的关系。

引导学生理解正比例函数的局限性,即仅限于变量间成正比的情况。

第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的转化解释一次函数可以通过移项转化为正比例函数的形式。

引导学生掌握如何将一次函数y=kx+b转化为正比例函数y=kx。

3.2 一次函数与正比例函数的图像关系利用图形工具,展示一次函数和正比例函数图像之间的关系。

引导学生观察当截距b为0时,一次函数图像与正比例函数图像的相似性。

3.3 一次函数与正比例函数的交点解释一次函数与正比例函数的交点是两个函数图像的交点。

引导学生利用图形工具,找出一次函数与正比例函数的交点,并分析其含义。

第四章:一次函数与正比例函数的应用4.1 线性方程的解法引导学生掌握线性方程的解法,包括代入法、消元法等。

通过实际例子,展示如何利用一次函数和正比例函数解决实际问题。

《函数的概念与性质》教案设计范例

《函数的概念与性质》教案设计范例

《函数的概念与性质》教案设计范例一、教学目标1. 了解函数的概念,理解函数的性质,能够运用函数的性质解决实际问题。

2. 掌握函数的表示方法,包括解析式、表格和图象等。

3. 学会运用函数的性质分析问题,提高解决问题的能力。

二、教学内容1. 函数的概念:函数的定义、函数的表示方法、函数的性质。

2. 函数的性质:单调性、奇偶性、周期性。

3. 函数的图像:函数图像的画法、函数图像的特点。

三、教学重点与难点1. 教学重点:函数的概念、函数的性质、函数的图像。

2. 教学难点:函数的单调性、奇偶性、周期性的理解与应用。

四、教学方法与手段1. 教学方法:讲授法、案例分析法、讨论法、实践活动法。

2. 教学手段:多媒体课件、黑板、教学卡片、练习题。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念与性质。

2. 讲解与示范:讲解函数的概念,举例说明函数的表示方法,展示函数的图像,引导学生理解函数的性质。

3. 互动环节:分组讨论函数的性质,分享各自的观点和理解。

4. 练习与巩固:布置练习题,让学生运用函数的性质解决问题。

5. 总结与反思:对本节课的内容进行总结,引导学生思考函数的概念与性质在实际生活中的应用。

教案设计范例仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评价1. 评价目标:学生能理解函数的概念,掌握函数的性质,能够运用函数的性质解决实际问题。

2. 评价方法:课堂问答、练习题、小组讨论、课后作业。

3. 评价内容:函数的概念、函数的表示方法、函数的性质、函数的图像。

七、教学拓展1. 函数与方程的关系:引导学生思考函数与方程的联系,理解函数的图像与方程的解的关系。

2. 函数的实际应用:举例说明函数在实际生活中的应用,如线性规划、最优化问题等。

八、教学资源1. 教材:《数学教材》2. 多媒体课件:函数的图像、案例分析3. 练习题:针对函数的概念、性质和图像的练习题4. 教学卡片:用于小组讨论和分享九、教学进度安排1. 第一课时:函数的概念与表示方法2. 第二课时:函数的性质(单调性、奇偶性)3. 第三课时:函数的性质(周期性)4. 第四课时:函数的图像5. 第五课时:函数的图像分析与应用十、课后作业1. 作业内容:针对本节课的内容,布置相关的练习题,巩固所学知识。

一次函数与正比例函数教案

一次函数与正比例函数教案

一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即形如y = kx + b (k、b 为常数,k 不等于0)的函数。

通过实际例子,让学生理解一次函数的组成和意义。

1.2 一次函数的图像引导学生了解一次函数图像是一条直线,并掌握直线的斜率和截距的概念。

1.3 一次函数的性质引导学生掌握一次函数的增减性和过原点性质。

举例说明一次函数在实际生活中的应用,如成本与数量的关系等。

第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即形如y = kx (k 为常数)的函数。

通过实际例子,让学生理解正比例函数的组成和意义。

2.2 正比例函数的图像引导学生了解正比例函数图像是一条通过原点的直线。

2.3 正比例函数的性质引导学生掌握正比例函数的单调性和过原点性质。

举例说明正比例函数在实际生活中的应用,如速度与时间的关系等。

第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的联系引导学生了解一次函数和正比例函数之间的关系,即一次函数可以看作是正比例函数的一种特殊形式。

3.2 一次函数与正比例函数的转化引导学生掌握如何将一次函数转化为正比例函数,以及如何将正比例函数转化为一次函数。

3.3 一次函数与正比例函数的应用通过实际例子,让学生了解一次函数和正比例函数在实际生活中的应用,如商品价格与数量的关系等。

第四章:一次函数与正比例函数的图像解析4.1 一次函数图像的解析引导学生掌握如何从一次函数的图像中获得斜率和截距的信息。

4.2 正比例函数图像的解析引导学生掌握如何从正比例函数的图像中获得斜率的信息。

4.3 一次函数与正比例函数图像的比较引导学生了解一次函数图像和正比例函数图像的异同,并掌握如何判断一个函数是一次函数还是正比例函数。

第五章:一次函数与正比例函数的综合应用5.1 实际问题转化为一次函数与正比例函数的问题引导学生学会将实际问题转化为一次函数与正比例函数的问题,并利用相关性质解决。

新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册

新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册

新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A 版必修第一册3.1.1 函数的概念(教师独具内容)课程标准:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.在此基础上学习用集合与对应的符号语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求一些简单函数的定义域.教学重点:1.理解函数的定义,会求一些简单函数的定义域和值域.2.明确函数的两个要素,了解同一个函数的定义,会判定两个给定的函数是否是同一个函数.教学难点:1.对应关系f 的正确理解,函数符号y =f (x )的理解.2.抽象函数的定义域.3.一些简单函数值域的求法.【知识导学】知识点一 函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有□01唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作□02y =f (x ),x ∈A .其中,x 叫做□03自变量,x 的取值范围A 叫做函数的□04定义域;与x 的值相对应的y 值叫做□05函数值,函数值的集合{f (x )|x ∈A }叫做函数的□06值域.显然,□07值域是集合B 的子集. 注意:(1)两个非空实数集间的对应能否构成函数,主要看是否满足三性:任意性、存在性、唯一性.这是因为函数概念中明确要求对于非空实数集A 中的任意一个(任意性)元素x ,在非空实数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.(2)集合A 是函数的定义域,因为给定A 中每一个x 值都有唯一的y 值与之对应;集合B 不一定是函数的值域,因为B 中的元素可以在A 中没有与之对应的x ,也就是说,B 中的某些元素可以不是函数值,即{f (x )|x ∈A }⊆B .(3)在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示“x 对应的函数值”,而不是“f 乘x ”.知识点二 函数的两要素从函数的定义可以看出,函数有三个要素:□01定义域、□02对应关系、□03值域,由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:□04定义域和对应关系.即要检验给定的两个变量(变量均为数值)之间是否具有函数关系,只要检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值是否都有唯一的函数值y 和它对应.知识点三 区间的概念(1)设a ,b 是两个实数,而且a <b .我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做□01闭区间,表示为□02[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做□03开区间,表示为□04(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做□05半开半闭区间,分别表示为□06[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的□07端点. 实数集R 可以用区间表示为□08(-∞,+∞),“∞”读作“□09无穷大”,“-∞”读作“□10负无穷大”,“+∞”读作“□11正无穷大”. 我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合,用区间分别表示为□12[a ,+∞),□13(a ,+∞),□14(-∞,b ],□15(-∞,b ). (2)区间的几何表示在用数轴表示区间时,用实心点表示□16包括在区间内的端点,用空心点表示□17不包括在区间内的端点.(3)含“∞”的区间的几何表示注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号. 知识点四 同一个函数如果两个函数的□01定义域相同,并且□02对应关系完全一致,即相同的□03自变量对应的□04函数值也相同,那么这两个函数是同一个函数.【新知拓展】(1)函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图象.(2)函数的概念中强调“三性”:任意性、存在性、唯一性,这是因为函数定义中明确要求是对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一确定(唯一性)的数y 和它对应,这“三性”只要有一个不满足,便不能构成函数.1.判一判(正确的打“√”,错误的打“×”)(1)函数值域中的每一个数都有定义域中的数与之对应.( ) (2)函数的定义域和值域一定是无限集合.( )(3)定义域和对应关系确定后,函数值域也就确定了.( )(4)若函数的定义域中只有一个元素,则值域中也只有一个元素.( )(5)对于定义在集合A 到集合B 上的函数y =f (x ),x 1,x 2∈A ,若x 1≠x 2,则f (x 1)≠f (x 2).( )答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(请把正确的答案写在横线上)(1)下列给出的对应关系f ,不能确定从集合A 到集合B 的函数关系的是________. ①A ={1,4},B ={-1,1,-2,2},对应关系:开平方; ②A ={0,1,2},B ={1,2},对应关系:③A =[0,2],B =[0,1],对应关系:(2)下列函数中,与函数y =x 是同一个函数的是________. ①y =x 2;②y =3x 3;③y =(x )2;④s =t . 答案 (1)①③ (2)②④题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =2x +3;(2)f (x )=1x +1;(3)y =x -1+1-x ;(4)y =x +1x 2-1;(5)y =(1-2x )0. [解] (1)函数y =2x +3的定义域为{x |x ∈R }.(2)要使函数式有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(3)要使函数式有意义,则⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,所以x =1,从而函数的定义域为{x |x =1}.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以函数的定义域是{x |x ≠±1}. (5)∵1-2x ≠0,即x ≠12,∴函数的定义域为{|x x ≠12}.例2 已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. [解] 已知函数f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32,∴函数f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. 例3 如图所示,用长为1 m 的铁丝做一个下部为矩形、上部为半圆形的框架(铁丝恰好用完),若半圆的半径为x (单位:m),求此框架围成的面积y (单位:m 2)与x 的函数关系式.[解] 由题意可得,AB =2x ,CD ︵的长为πx , 于是AD =1-2x -πx2,∴y =2x ·1-2x -πx 2+πx 22,即y =-π+42x 2+x .由⎩⎪⎨⎪⎧2x >0,1-2x -πx2>0,得0<x <1π+2,∴此函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 故所求的函数关系式为y =-π+42x 2+x ⎝ ⎛⎭⎪⎫0<x <1π+2.金版点睛求函数定义域的基本要求(1)整式:若y =f (x )为整式,则函数的定义域是实数集R .(2)分式:若y =f (x )为分式,则函数的定义域为使分母不为0的实数集.(3)偶次根式:若y =f (x )为偶次根式,则函数的定义域为被开方数非负的实数集(特别注意0的0次幂没有意义).(4)几部分组成:若y =f (x )是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.(5)对于抽象函数的定义域:①若f (x )的定义域为[a ,b ],则f [g (x )]中,g (x )∈[a ,b ],从中解得x 的解集即f [g (x )]的定义域.②若f [g (x )]的定义域为[m ,n ],则由x ∈[m ,n ]可确定g (x )的范围,设u =g (x ),则f [g (x )]=f (u ),又f (u )与f (x )是同一个函数,所以g (x )的范围即f (x )的定义域.③已知f [φ(x )]的定义域,求f [h (x )]的定义域,先由f [φ(x )]中x 的取值范围,求出φ(x )的取值范围,即f (x )中的x 的取值范围,即h (x )的取值范围,再根据h (x )的取值范围便可以求出f [h (x )]中x 的取值范围.(6)实际问题:若y =f (x )是由实际问题确定的,其定义域要受实际问题的约束.如:例3中,任何一条线段的长均大于零.[跟踪训练1] (1)若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________;(2)求下列函数的定义域:①y =(x +1)2x +1-1-x ;②y =x +1|x |-x ;(3)①求函数y =5-x +x -1-1x 2-9的定义域; ②将长为a m 的铁丝折成矩形(铁丝恰好用完),求矩形的面积y (单位:m 2)关于一边长x (单位:m)的解析式,并写出此函数的定义域.答案 (1)⎣⎢⎡⎦⎥⎤32,4 (2)见解析 (3)见解析解析 (1)由题意知,-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.∴f (x -1)的定义域为⎣⎢⎡⎦⎥⎤32,4.(2)①要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1,∴函数的定义域为{x |x ≤1,且x ≠-1}.②要使函数有意义,需满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}. (3)①解不等式组⎩⎪⎨⎪⎧5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.②因为矩形的一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <a 2. 题型二 已知函数值求自变量的值例4 已知函数f (x )=2x 2-4,x ∈R ,若f (x 0)=2,求x 0的值. [解] 易知f (x 0)=2x 20-4, ∴2x 20-4=2,即x 20=3. 又∵x 0∈R ,∴x 0=± 3. 金版点睛就本例而言,已知函数值求自变量的值就是解方程,需要注意:所求的自变量的值必须在函数的定义域内.如果本例中加一个条件“x ∈[0,+∞)”,则x 0=3(-3不符合题意,舍去).[跟踪训练2] 已知函数f (x )=x 2-2x ,x ∈(-∞,0),若f (x 0)=3.求x 0的值. 解 由题意可得f (x 0)=x 20-2x 0. ∴x 20-2x 0=3,即x 20-2x 0-3=0. 解得x 0=3或x 0=-1.又∵x 0∈(-∞,0),∴x 0=-1. 题型三 已知自变量的值求函数值 例5 已知f (x )=x 2,x ∈R ,求: (1)f (0),f (1); (2)f (a ),f (a +1).[解] (1)f (0)=02=0,f (1)=12=1. (2)∵a ∈R ,a +1∈R , ∴f (a )=a 2,f (a +1)=(a +1)2. 金版点睛对于函数定义域内的每一个值,都可以求函数值(当然函数值唯一),本例可以直接应用公式:f (x )=x 2求解,实质上就是求代数式的值,例如f (1)就是当x =1时,代数式x 2的值,而f (a +1)就是当x =a +1时,代数式x 2的值.[跟踪训练3] 已知f (x )=x +1x +1,求: (1)f (2);(2)当a >0时,f (a +1)的值. 解 (1)f (2)=2+13.(2)易知f (x )的定义域A =[0,+∞), ∵a >0,∴a +1>1,则a +1∈A , ∴f (a +1)=a +1+1a +2. 题型四 求函数的值域 例6 求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3;(4)y =2x -x -1.[解] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.(2)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(4)(换元法)设t =x -1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t=2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如右图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 金版点睛求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算法则确定其值域. (2)常用方法①观察法:对于一些比较简单的函数,其值域可通过观察法得到. ②配方法:是求“二次函数”类值域的基本方法.③换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.④分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.[跟踪训练4] 求下列函数的值域: (1)y =xx +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =x +x +1. 解 (1)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0,∴函数y =xx +1的值域为{y |y ≠1}.(2)配方,得y =(x -2)2+2. ∵x ∈[1,5),∴结合函数的图象可知,函数的值域为{y |2≤y <11}. (3)(换元法)设t =x +1,则x =t 2-1,且t ≥0,所以y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54,由t ≥0,再结合函数的图象可得函数的值域为[-1,+∞). 题型五 相同函数的判断例7 下列各组函数表示同一函数的是( ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2+1,g (t )=t 2+1 C .f (x )=1,g (x )=x xD .f (x )=x ,g (x )=|x |[解析] A 项中,由于f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{x |x ≥0},它们的定义域不相同,所以它们不是同一函数.B 项中,函数的定义域、值域和对应关系都相同,所以它们是同一函数.C 项中,由于f (x )=1的定义域为R ,g (x )=x x的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数.D 项中,两个函数的定义域相同,但对应关系不同,所以它们不是同一函数. [答案] B 金版点睛判断两个函数为同一函数的条件(1)判断两个函数是相同函数的准则是两个函数的定义域和对应关系分别相同.定义域、对应关系两者中只要有一个不相同就不是相同函数,即使定义域与值域都相同,也不一定是相同函数.(2)函数是两个实数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.另外,在化简解析式时,必须是等价变形.[跟踪训练5] 下列函数中哪个与函数y =x 相同?(1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.解 (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相同. (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相同. (3)y =x2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y=x 不相同,所以不相同.(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相同.1.下列各图中,可能是函数y =f (x )的图象的是( )答案 D解析 A ,B 中的图象与y 轴有两个交点,即有两个y 值与x =0对应,所以A ,B 不可能是函数y =f (x )的图象;对于C 中图象,过x =1作与x 轴垂直的直线,与图象有两个交点,所以C 不可能是函数y =f (x )的图象.故选D.2.函数f (x )=x +2-x 的定义域是( )A .{x |x ≥2} B.{x |x >2}C .{x |x ≤2} D.{x |x <2}答案 C解析 要使函数式有意义,则2-x ≥0,即x ≤2.所以函数的定义域为{x |x ≤2}.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 ∵原函数的定义域为(-1,0),∴-1<2x +1<0,解得-1<x <-12. ∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =________.答案 2解析 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2. 5.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ,f (a +1); (2)若f (x )=5,求x . 解 (1)f (2)=22+2-1=5,f ⎝ ⎛⎭⎪⎫1x =1x 2+1x -1=1+x -x 2x 2, f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0,解得x =2或x =-3.。

函数的基本性质(教案)

函数的基本性质(教案)

函数的基本性质教学目标:1. 了解函数的定义和基本概念。

2. 掌握函数的域和值域的概念。

3. 理解函数的单调性、连续性和可导性的概念。

4. 学会运用函数的基本性质解决实际问题。

教学内容:第一章:函数的定义与域1.1 函数的定义1.2 函数的域第二章:值域2.1 值域的概念2.2 确定函数的值域第三章:函数的单调性3.1 单调性的定义3.2 单调性的判定第四章:函数的连续性4.1 连续性的定义4.2 连续性的判定第五章:函数的可导性5.1 可导性的定义5.2 可导性的判定教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的基本性质。

2. 使用多媒体辅助教学,通过动画和图形来直观展示函数的单调性、连续性和可导性。

3. 组织小组讨论和实践活动,培养学生的合作能力和解决问题的能力。

教学评估:1. 课堂讨论和提问,评估学生对函数基本性质的理解程度。

2. 布置课后习题和作业,巩固学生对函数基本性质的掌握。

3. 进行定期的测验和考试,检验学生对函数基本性质的掌握情况。

教学资源:1. 教科书和参考书籍,提供详细的知识点和实例。

2. 多媒体课件和教学软件,提供直观的图形和动画展示。

3. 在线学习平台和论坛,提供额外的学习资源和交流平台。

教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本章的教学,学生应该能够理解函数的定义和基本概念,掌握函数的域和值域的概念,理解函数的单调性、连续性和可导性的概念,并能够运用函数的基本性质解决实际问题。

函数的基本性质(续)教学内容:第六章:函数的极值与最值6.1 极值的概念6.2 函数的最值第七章:函数的周期性7.1 周期性的定义7.2 周期函数的性质第八章:函数的奇偶性8.1 奇偶性的定义8.2 奇偶函数的性质第九章:函数的图像9.1 图像的性质9.2 图像的变换第十章:函数的极限10.1 极限的概念10.2 极限的计算教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的极值、周期性、奇偶性、图像和极限的基本性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示题型一 求函数的定义域求函数定义域的主要依据是:(1)分式的分母不能为零;(2)偶次方根的被开方式其值非负;(3)对数式中真数大于零,底数大于零且不等于1.(4)若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;(5)若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题【例1】求下列函数的定义域:(1)f (x )=|x -2|-1log 2x -1;(2)f (x )=ln x +1-x 2-3x +4.【例2】(1)已知()f x 得定义域为[1,2],求()f 2x +1的定义域;(2)已知()f 2x +1得定义域为[1,2],求()f x 的定义域【跟踪训练】(1)已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域; (2)已知函数f (3-2x )的定义域为[-1,2],求f (x )的定义域.题型二 求函数的解析式(1)待定系数法:【例3】已知(())98f f x x =+,且()f x 是一次函数,求()f x(2)换元法:已知(())()f g x h x =,求()f x 时,可设()g x t =,从中解出()x x t =,代入()h x 进行换元,便可求解【例4】已知2(2)1f x x =+,求()f x 的解析式。

【例5】若xx x f -=1)1( 求()f x题型三 求函数的值域(1)二次函数在区间上的值域(最值):【例6】求下列函数的最大值、最小值与值域:①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;(2)分离常数法 【例7】(1)1+=x x y 的值域 (2)求22321x y x +=+的值域题型四 分段函数分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题。

【例9】设函数f (x )=⎩⎪⎨⎪⎧ 21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ).A .[-1,2]B .[0,2]C .[1,+∞) D.[0,+∞)【跟踪训练】 (江苏)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧ 2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.-3/4函数的性质一、函数的单调性设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当x1<x2时,都有f(x 1)<f(x 2)(f(x 1)>f(x 2)),那么就说f(x)在区间D 上是增(减)函数.区间D 称为y=f(x)的单调增(减)区间。

函数单调区间与单调性的判定方法(A) 定义法 (B)图象法(从图象上看升降) (C)导数法:导函数大于零为增函数,导函数小于零为减函数。

(D)复合函数的单调性,规律:“同增异减”(E )1.在区间(0,+∞)上不是增函数的是 ( C )A.y=2x-1B.y=3x 2-1C.y=x2 D.y=2x 2+x+1 2.设函数b x a x f +-=)12()(是(-∞,+∞)上的减函数,若a ∈R, 则 ( D ) A.21≥a B.21≤a C.21->a D.21<a 3.函数y=4x 2-mx+5在区间[)∞+,2上是增函数,在区间(]2,∞-上是减函数,则m=____16____; 4.函数f(x)=ax 2-(5a-2)x-4在[)+∞,2上是增函数, 则a 的取值范围是____[0,2]__________. 5.根据图象写出函数y=f(x)的单调区间:增区间 ;减区间:6、函数3212+--=x x y 的单调增区间为 .7、已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若2(2)()f a f a ->,则a 的取值范围是 8、)(x f 是R 上的增函数,A (0,-1),B (3,1)是其图像上的两点,则不等式|(1)|1f x +<的解集是C10.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围.[0,1/2)函数的奇偶性与周期性一、函数的奇偶性1.函数奇偶性的定义及简单性质.2.若f (x )为偶函数,则f (-x )=f (x )=f (|x |),反之,也成立.3.若奇函数f (x )的定义域包含0,则f (0)=0.4.判断函数的奇偶性有时可以用定义的等价形式.在定义域关于原点对称的情况下,(1)若f (x )-f (-x )=0或f (x )f (-x )=1[f (-x )≠0],则f (x )为偶函数; (2)若f (x )+f (-x )=0或f (x )f (-x )=-1[f (-x )≠0],则f (x )为奇函数. 5.设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,偶+偶=偶,偶×偶=偶,奇×奇=偶,奇×偶=奇.二、函数的周期性1.周期函数定义:若T 为非零常数,对于定义域内的任意x ,使得f (x +T )=f (x )恒成立,则f (x )叫做________,T 叫做这个函数的________.2.周期函数的性质:(1)若T 是函数f (x )的一个周期,则kT (k ∈Z ,k ≠0)也是它的一个周期;(2)f (x +T )= f (x )常写作f ⎝⎛⎭⎫x +T 2=f ⎝⎛⎭⎫x -T 2; (3)若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;1.下列函数为奇函数的是( )DA .y =|sin x|B .y =|x|C .y =x3+x -1D .y =ln1+x 1-x2.函数f(x)=1x +x 的图象关于( )CA .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称3.设f(x)是定义在R 上的奇函数,且当x >0时,f(x)=2x -3,则f(-2)=( )BA .1B .-1C .-114 D.1144.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( )A A .-2 B .0 C .1 D .25.设函数f(x)和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )AA .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|- g (x )是奇函数6.已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________(-5,0)并(5,正无穷)7.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=e x +a ,若f (x )在R 上是单调函数,则实数a的最小值是________.-18.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是________.练习题1.判断下列函数11log )(2+-=x x x f 的奇偶性 解:奇2.设f(x)在R 上是偶函数,在区间)0,(-∞上递增,且)12(2++a a f ),123(2+-<a a f 求a 的取值范围。

(0,3)3.已知)(x f 是奇函数,且0>x 当时,),2()(-=x x x f 求0<x 时,)(x f 的表达式。

-x(x+2)4.求函数)34(log 221+-=x x y 的单调递增区间。

负无穷到15.函数2)1(2)(2+-+=x a x x f 在区间)4,(-∞上是减函数,实数a 的取值范围是 (B )(A) 3≥a (B) 3-≤a (C) 3-≥a (D) 5≤a6.若)(x f 是奇函数,且在)0,(-∞上单调递增,又,0)2(=f 则0)(<x xf 的解集为(A )(A) {}2002|<<<<-x x x 或 (B) {}202|><<-x x x 或(C) {}202|<<-<x x x 或 (D) {}33|>-<x x x 或7.函数3212+--=x x y 的单调增区间为 (-1,1) .8.若函数200620062210)(x a x a x a a x f ++++= 是奇函数,则=++++2006420a a a a 0 .9.函数)(x f 是定义在]1,1[-上的奇函数,且是增函数,满足0)1()1(2<-+-a f a f ,求实数a 的取值范围。

(]10.定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,f (1)=2,则f (99)=( )A .13B .2 C.132 D.213 解析:由f (x )·f (x +2)=13,知f (x +2)·f (x +4)=13,所以f (x +4)=f (x ),即f (x )是周期函数,周期为4.所以f (99)=f (3+4×24)=f (3)=13f (1)=132. 答案:C11.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>0解析:由题意得当x ∈(1,2)时,0<2-x <1,0<x -1<1,f (x )=f (-x )=f (2-x )=log 12[1-(2-x )]=log 12(x -1)>0,则可知当x ∈(1,2)时,f (x )是减函数,选D.答案:D。

相关文档
最新文档